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Abstract

The cardiovascular biology of proton radiotherapy is not well understood. We aimed to com-

pare the genomic dose-response to proton and gamma radiation of the mouse aorta to

assess whether their vascular effects may diverge. We performed comparative RNA

sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5–200

cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes

that showed a dose response. While fewer genes were dose-responsive to proton than

gamma radiation (29 vs. 194 genes; q-value� 0.1), the magnitude of the effect was greater.

Highly responsive genes were enriched for radiation response pathways (DNA damage,

apoptosis, cellular stress and inflammation; p-value� 0.01). Gamma, but not proton radia-

tion induced additionally genes in vasculature specific pathways. Genes responsive to both

radiation types showed almost perfectly superimposable dose-response relationships.

Despite the activation of canonical radiation response pathways by both radiation types, we

detected marked differences in the genomic response of the murine aorta. Models of cardio-

vascular risk based on photon radiation may not accurately predict the risk associated with

proton radiation.

Introduction

Radiotherapy is a widely used cancer treatment resulting in the exposure to ionizing radiation

of nearly half a million Americans every year. Therapeutic gamma irradiation that includes the

heart and aortic arch in the radiation field is associated with increases in the rates of myocar-

dial infarction, congestive heart failure, valve disease and arrhythmia [1–3]. These complica-

tions may have long latency times but continue to rise over decades after the initial treatment

[4–6] in a radiation dose-dependent fashion [7–9]. The dose-response relationship for major

cardiac events, such as myocardial infarction, is linear and appears to have a threshold dose to
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the heart in childhood cancer survivors [10]. In breast cancer survivors the rate of major coro-

nary events increased linearly with the mean radiation dose to the heart (between 1.4 to 15.8

Gy) and was independent of preexisting cardiovascular risk factors [6].

While the underlying molecular mechanisms of gamma radiation-induced cardiovascu-

lar disease are not fully understood, inflammatory responses [11,12] are thought to be an

important common feature of the enhanced likelihood of thrombosis [13], accelerated

atherosclerosis [11,14], and impaired cardiac function [15]. Gamma radiation-induced

experimental atherosclerosis is characterized by vessel wall lesions rich in inflammatory

cells [11,12,16]. Other processes driving the vascular pathology are thought to involve endo-

thelial damage [14,15], induction of apoptosis [17,18] and premature cellular senescence

[19].

Proton beam therapy has emerged as an alternative to gamma radiotherapy for the treat-

ment of some types of cancer. Its therapeutic use is motivated primarily by an inverted

depth-dose profile, the so-called Bragg peak; the proton stops at a specific tissue depth deter-

mined by its energy [20]. These physical proprieties of proton beams can be exploited to

reduce exposure of healthy tissue, such as the heart and the vasculature, by targeting the

administered dose more specifically to the tumor [21,22]. While reducing exposure of heart

and blood vessels can be reasonably expected to translate into a decrease in acute and chronic

toxicity compared with photon radiation [23–26], the dose response relationship between

proton irradiation and cardiovascular complication rate has not been established. Prospec-

tive investigations comparing the cardiovascular effects of proton beam therapy with con-

ventional photon irradiation have not yet been reported and it is currently unknown

whether protons and photons induce similar pathological mechanisms in cardiovascular tis-

sue despite their distinct physics.

Generally, the molecular response following proton radiation-exposure is less well charac-

terized than that of gamma radiation-exposure, because of the limited availability of proton

beams for research on model organisms. A small number of studies have directly compared

the biological effects of proton and gamma radiation in vivo, but they did not focus on the vas-

culature. Mice and ferrets respond with a dose-dependent reduction of peripheral blood cell

counts to both proton radiation and gamma radiation [27–29]. However, gene expression

analysis revealed that the molecular changes associated with the apoptotic response varied

greatly between proton and gamma radiation in a tissue- and dose-dependent manner [30].

Gamma radiation uniquely triggered a stress-response that mediates apoptosis partially inde-

pendent of the extent of DNA damage. In contrast, proton radiation was associated with

increased DNA damage and DNA damage-repair in comparison to exposure to gamma radia-

tion [30]. Differences between the radiation types in their effect on gene expression may trans-

late into functional differences. For example, in a three dimensional tissue culture model of

endothelial tube formation, protons had a more pronounced dose-dependent effect on vessel

structure than gamma photons at equal physical doses [31].

Thus, we hypothesized that the distinct physical interactions of photon and proton radia-

tion with living cells and/or distinct dose response relationships differences might result in

detectable differences in the genomic response in blood vessels in vivo. We performed a

comparative transcriptome analysis of the early (4 hrs) dose response of the mouse aorta to

proton and gamma radiation. While both radiation types activated the core pathways of the

early cellular radiation response, we detected marked differences in the genomic response.

Thus, it seems plausible that the downstream pathological processes initiated in blood vessels

by the induction of gene expression may differ between protons and photons in quality and

timing.
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Materials and methods

Mice

Ten to twelve week old male C57Bl/6 mice (Jackson Laboratory, ME) were housed in a con-

trolled environment with regard to light, temperature and humidity in the animal facility of

the University of Pennsylvania. All mice had free access to food and water. Mice were eutha-

nized through carbon dioxide induced asphyxiation following radiation exposure. Animal

care and the experimental protocol were approved by the Institutional Animal Care and Use

Committees of the University of Pennsylvania.

Proton and gamma irradiation

Mice were exposed to ten densely spaced total-body doses of gamma radiation or high energy

protons: 0 cGy, 5 cGy, 10 cGy, 25 cGy, 50 cGy, 75 cGy, 100 cGy, 125 cGy, 150 cGy, 200 cGy

(N = 10 mice per radiation type, one mouse per dose level). This is a more efficient experimen-

tal design than using fewer dose levels with multiple replicates per dose level (see ‘Statistical

Analysis’). Proton radiation was performed using a proton beam produced by the IBA cyclo-

tron system at the Roberts Proton Therapy Center at the University of Pennsylvania at a dose

rate of 0.5 Gy/min. The 230 MeV proton beam derived from the cyclotron was reduced using

the energy selection system to a nominal energy of 151 MeV or range of 16 cm water equiva-

lent thickness (WET). The reduced beam was delivered in double scattering mode with a

spread out Bragg peak (SOBP) modulation width of 5 cm. A 23 cm × 17 cm opening in the

tungsten multi-leaf collimator shaped the beam to a useable field size (>95% of uniform dose

within the flat region) of 20.6 cm × 17 cm at the gantry isocenter. The mouse enclosures were

arranged so that they formed a 16.4 cm × 14.2 cm target area. The center of the enclosure array

was placed at the gantry isocenter with an additional 11 cm WET of Solidwater (Gammex,

Inc.) placed directly in front of the enclosure array, further reducing the proton beam energy

to approximately 74 MeV or range of ~4.5 cm WET. Five centimeters of Solidwater were

placed directly behind the enclosure array. The mouse enclosures were irradiated with a range

of proton energies forming the uniformly modulated dose region of the SOBP. The dose aver-

aged linear energy transfer (LET) of the proton radiation is low (10 keV/μm) within the mid-

SOBP where the mice are located and rises to higher LET (> 10 keV/μm) towards the down-

stream edge of the SOBP, which lies beyond the mouse enclosures [32]. Dosimetry verification

was performed before the irradiations with a 2D ion chamber array (I’mRT MatriXX, IBA

Dosimetry) placed at a depth of 13.3 cm WET. These irradiation conditions result in a homo-

geneous dose distribution of SPE-like proton irradiation in the mice. Mouse proton irradia-

tions at the Roberts Proton Therapy Center have been described previously [28,33,34]. Total-

body gamma radiation was delivered from a 137Cs gamma source (Shepherd Mark I Irradia-

tor) at the University of Pennsylvania at a dose rate of 39.25 cGy/min. All mice were restrained

in custom-designed, aerated plexiglass chambers, including sham irradiated control mice (0

cGy) which were placed in the gamma or proton irradiators, but not exposed to radiation.

Chambers were stationary during the radiation exposure. Mice were not anesthetized and to

reduce diurnal variation, proton and photon doses were administered at the same time of the

day within a 6 hour time window and in randomized order. There was no difference in the

body weight between mice exposed to the gamma or proton radiations (25.4±0.6 vs 26.7±0.5

gr, respectively in mice irradiated with gamma or proton radiations). All animals were sacri-

ficed four hours following irradiation. Thoracic aorta, liver, heart and kidney were quickly

excised while flushing the thorax and abdominal cavity with ice-cold phosphate buffered saline

and snap-frozen in liquid nitrogen.
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RNA sequencing

Total RNA from aortas were isolated using Trizol and Qiagen RNeasy and the RNA integ-

rity was checked on an Agilent Technologies 2100 Bioanalyzer. RNA-seq of 20 samples on

Illumina HiSeq2500 system was performed, using the Illumina TruSeq RNA Sample Prepa-

ration Kit and SBS Kit v3. Samples were handled in a blinded fashion during the library

preparation and sequencing process. Ribosomal RNA was depleted using a polyA selection

protocol.

RNA-seq analysis

Raw RNA-seq reads were aligned to the mouse genome build mm9 by STAR version 2.5.2a

[35]. The dataset contained about 6,416,284 sense and 47,258 antisense paired-end stranded

100bp reads, per sample. Data were normalized and quantified at both gene and exon-intron

level, using a resampling strategy implemented in the PORT pipeline v0.8.2a-beta [36]. A

trend analysis (as described in the ‘Statistical Analysis’ section below) was performed to iden-

tify genes that showed a dose response.

Quantitative Reverse Transcriptase (RT-) PCR

Total RNA from various tissues (lung, liver, heart and kidney) was isolated using the Trizol

and Qiagen RNeasy Kit. Reverse transcription was performed using an RNA-cDNA kit

(Applied Biosystems, Carlsbad, CA). Real-time PCR was performed using ABI Taqman

primers and reagents on an ABI Prizm 7500 thermocycler according to manufacturer’s

instructions. The following primers were used: apoptosis enhancing nuclease (Aen,

Mm00471554_m1), cyclin-dependent kinase inhibitor 1a (Cdkn1a, Mm00432448_m1),

epoxide hydrolase 1 (Ephx1, Mm00468752_m1) and solute carrier family 19 member 2

(Slc19a2, Mm01290461_m1). All mRNA measurements were normalized to GAPDH mRNA

levels (Mm99999915_g1).

Statistical analysis

Frequency distribution of the differences between ranks of gene expression were plotted to

visualize global differences between radiation types at each dose level. The genes were sorted

by descending expression value, ranked by row number, and sorted by the difference in ranks

between proton and gamma radiation.

The experimental design used 10 densely spaced dose levels with one mouse per dose. The

dose response, measured as the expression trend across doses, was the primary outcome. Such

design provides greater statistical power in gene expression profiling than fewer dose levels

with more replicates per dose level [37]. For example, ten dose levels with one mouse each

would provide 80% power to detect a correlation between dose and gene expression of

r> 0.95 (Spearman) with an uncorrected p value of ~0.0002. However, here we applied a

more robust trend analysis to capture a broader dose-response and conducted a permutation

based, non-parametric test for slopes significantly different from horizontal. The trend analysis

was performed with two statistics: the number of steps in the same direction (up or down),

between consecutive levels of radiation and the slope of the line fitted to the data. Significance

was assessed with a permutation distribution obtained by permuting the radiation dose levels

thousands of times and for each permutation computing the maximum value of the statistics

over all genes. By using the maximum values of the statistics, the tail probabilities of the per-

mutation distribution are automatically corrected for multiple testing. The analysis was per-

formed on sense and antisense signal, for both gene and intron levels. We identified the genes
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with q-value� 0.1. The antisense signal showed no significant findings at this level; thus, only

sense signal results are reported. Differences between increasing doses (q-value� 0.1) were

visualized by plotting the empirical cumulative distribution (eCDF) of the gene expression

ratio (expression value at each dose in cGy divided by expression value at 0 cGy) as a non-

parametric estimator of the underlying CDF [38].

For more targeted comparison between the two radiation types, we identified the intersec-

tion of the genes that were highly responsive to increasing doses (e.g. using a filter of q-

value� 0.1) in both conditions. Furthermore, we performed a dose response analysis for the

19 genes upregulated by both radiation types. Four of these genes were validated with quantita-

tive RT-PCR, in terms of the mean expression for each radiation dose, the radiation type and

the cellular localization.

Enrichment analysis was done using the Ingenuity Knowledge Base (www.ingenuity.com).

We ranked genes with a dose-dependent increase in expression by their q-value for dose-

responsiveness (calculated by trend analysis, see above) and performed pathway enrichment

analyses on the top 300 genes in each radiation group. Pathways with a p-value� 0.01 (by

Ingenuity Pathway Analysis) are reported. Raw data were deposited in Gene Expression

Omnibus (NCBI) under accession number GSE105266 (S1 and S2 Tables).

Results

Vascular gene expression

Global comparison between proton and gamma radiation. We studied the comparative

dose-response (0.5–200 cGy whole body dose) of aortic gene expression four hours following

high energy proton or gamma irradiation. As an initial, qualitative comparison, we plotted

the frequency distributions of the differences in gene expression ranks between proton and

gamma radiation (Δ expression rank) at each dose (Fig 1). Narrow distributions of Δ expression
rank indicate that the impact on gene expression of a physical dose is similar between radiation

types.

Number of dose responsive genes. Trend analysis across the 10 doses revealed that fewer

genes increased dose-dependently in response to proton radiation than gamma radiation

(Table 1). The average fold change indicate that the expression of the two irradiation types is

similar, and are consistent with the observed global genomic effects shown in Fig 1. At a of q-

value� 0.1, 29 genes responded with a dose-dependent increase in expression to proton radia-

tion and 194 genes to gamma radiation (Fig 2; S3 and S4 Tables). A total of 19 genes were upre-

gulated by both types of radiation at this false discovery rate (Table 2 and S5 Table). We

detected no downregulated genes.

Magnitude of the dose-response. The magnitude of the change in dose-dependent gene

expression differed between proton and gamma radiation. Proton radiation caused a more

pronounced upregulation on average among the 29 dose-dependent genes than gamma radia-

tion among its 194 dose-dependent genes. This is illustrated by a right shift of the cumulative

frequency distribution of proton radiation responsive genes relative to gamma radiation

responsive genes (Fig 3). However, a direct comparison of the 19 genes (Table 2) that were

responsive to both types of radiation showed that their dose response curves were virtually

superimposable (Fig 4). These common genes were amongst those with the most pronounced

upregulation. They are involved in various cellular functions (i.e. enzyme, transporter, trans-

membrane receptor) related to radiation responsive pathways including apoptosis, cell cycle

progression and antioxidant defense and distributed across different cellular localization (i.e.

nucleus, cytoplasm, plasma membrane).
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Validation. We validated the dose-dependent effects of gamma and proton radiation on

the expression of the four most highly responsive genes—Aen, Cdkn1a, Ephx1 and Slc19a2 –

in the aorta by quantitative RT-PCR. All genes produced a q-value of� 0.1 in the trend analy-

sis confirming their dose responsiveness (Fig 5). Again, photon and proton induced expression

changes were virtually superimposable.

Fig 1. Comparison of the global genomic effects of proton and gamma radiation. Frequency distributions of the difference between expression ranks between

proton and gamma radiation were plotted at each physical dose.

https://doi.org/10.1371/journal.pone.0207503.g001

Distinct vascular genomic response of proton and gamma radiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0207503 February 11, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0207503.g001
https://doi.org/10.1371/journal.pone.0207503


Dose-response across tissues

We conducted expression analyses on the four most responsive genes—Aen, Cdkn1a, Ephx1

and Slc19a2 –also in liver, lung, kidney and heart, to assess whether the similarity in the dose

response relationship between proton and gamma radiation was tissue specific. Aen, Cdkn1a,

Ephx1 were detectable in these tissues and showed a robust dose-dependent upregulation with

a q-value of� 0.1 in the trend analysis. Slc19a2 was not expressed in the heart at baseline and

we did not observe induction by irradiation (Fig 5). Again, the slope of the proton response

was virtually identical to that of the gamma radiation response.

Biological pathways impacted by gamma or proton radiation

The canonical biological pathways enriched for genes that were dose-responsive to gamma or

proton radiations (p� 0.01) are reported in Fig 6. Pathways common to both radiation types

Table 1. Number of dose-responsive genes at different q-value cut-offs.

q-value cut-off Gamma Proton

# of genes Average fold change # of genes Average fold change

0.5 3214 1.008 218 1.011

0.4 2310 1.009 94 1.016

0.3 1578 1.009 69 1.018

0.2 831 1.01 48 1.021

0.1 194 1.013 29 1.024

0.05 54 1.014 20 1.027

https://doi.org/10.1371/journal.pone.0207503.t001

Fig 2. Comparison of the number of dose-responsive genes. A Venn-diagram of genes that present a dose-

dependent increase in expression in response to gamma and proton radiation at q-value� 0.1 is shown.

https://doi.org/10.1371/journal.pone.0207503.g002
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were related to p53 dependent apoptosis pathways (p53 signaling, apoptosis signaling, PI3K/

AKT signaling, myc mediated apoptosis signaling, aryl hydrocarbon receptor signaling) and

p53 independent apoptosis pathways (tumor necrosis factor receptor (TNFR) signaling, gran-

zyme B signaling, signal transducer and activator of transcription 3 (STAT3) pathway, gluco-

corticoid receptor signaling, death receptor signaling, sumoylation pathway). Both types of

radiation also effected DNA damage and cellular stress (cell cycle: G2/M DNA damage check-

point regulation, ataxia telangiectasia mutated (ATM) signaling and D-glucuronate degrada-

tion I) and inflammation (NF-kB and toll like receptor pathways) (Fig 6).

Although we biased our enrichment analysis against detecting differences by using the 300

most dose-responsive genes of both radiation types regardless of false discovery rate thresh-

olds, we found pathways that were unique to one radiation type. Pathways enriched only by

the genes responding to proton radiation were primarily related to cellular growth and stress

(eukaryotic initiation factor (eiF2 and eiF4) and mechanistic target of rapamycin (mTOR)

pathways) and to the cellular immune response (phagosome maturation pathway) (Fig 6).

Gamma radiation induced a pathway that related to the broader response to oxidative stress

(ascorbate recycling pathway) and was not enriched following proton radiation, although indi-

vidual oxidant stress response genes were clearly upregulated by protons. A vascular process

that appeared to be particularly affected by gamma, but not proton radiation was angiogenesis

related signaling (extracellular-signal-regulated kinase 5 (ERK5) and Fms like tyrosine kinase

3 (Flt3) pathways) (Fig 6).

Discussion

Radiation induced cardiovascular disease is a recognized sequela of chest photon radiotherapy

for conditions such as for mediastinal lymphoma, breast, lung and esophageal cancer [39]. The

underlying pathophysiological mechanisms involve inflammatory processes in the micro- and

macro-vasculature that accelerate atherosclerosis, cause microthrombi and occlusion of

Table 2. Dose-responsive genes to both gamma and proton radiation.

Gene symbol Gene name

Aen apoptosis enhancing nuclease

Dcxr dicarbonyl L-xylulose reductase

Ddx3x DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked

Trp53inp1 transformation related protein 53 inducible nuclear protein 1

Cdkn1a cyclin-dependent kinase inhibitor 1A (P21)

Eif2ak2 eukaryotic translation initiation factor 2-alpha kinase 2

Ccng1 cyclin G1

Commd3 COMM domain containing 3

Ddit4l DNA-damage-inducible transcript 4-like

Gtse1 G two S phase expressed protein 1

Ephx1 epoxide hydrolase 1, microsomal

Mdm2 transformed mouse 3T3 cell double minute 2

Cd80 CD80 antigen

Eda2r ectodysplasin A2 receptor

Igf2r insulin-like growth factor 2 receptor

Ano3 anoctamin 3

Bax BCL2-associated X protein

Slc19a2 solute carrier family 19 (thiamine transporter), member 2

9030617O03Rik RIKEN cDNA 9030617O03 gene

https://doi.org/10.1371/journal.pone.0207503.t002
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vessels, reduced vascular density, perfusion defects and focal ischemia [22,40,41]. Proton

radiotherapy delivers a physical dose in a more targeted fashion than photon irradiation,

reducing exposure of the surrounding tissues. However, it is largely unclear whether the biol-

ogy of photon induced cardiovascular pathologies might similarly apply to proton radiation

and adequately sized long-term follow-up studies to determine the cardiovascular hazard asso-

ciated with proton therapy are not yet available. Gene expression profiles of irradiated tissues

were previously shown to correlate with radiation dose [42–44] and to be predictive of acute

Fig 3. Comparison of the dose response. Empirical cumulative frequency distributions of the gene expression ratios (gene expression at each physical

dose over the gene expression at 0 cGy) are plotted for gamma and proton radiation.

https://doi.org/10.1371/journal.pone.0207503.g003

Distinct vascular genomic response of proton and gamma radiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0207503 February 11, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0207503.g003
https://doi.org/10.1371/journal.pone.0207503


Fig 4. Highly dose-responsive genes upregulated by both proton and gamma radiation. Expression profiles of genes that showed a

significant dose-dependent response in the trend analysis (q-value� 0.1).

https://doi.org/10.1371/journal.pone.0207503.g004
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Fig 5. Validation of gene expression. Dose-dependent effects of gamma and proton radiation on Aen, Cdkn1a, Ephx1 and Slc19a2

expression in aorta, kidney, lung and heart. Gene expression was measured by quantitative RT-PCR.

https://doi.org/10.1371/journal.pone.0207503.g005
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Fig 6. Pathway analysis. Common canonical pathways enriched by genes that present a dose-dependent increase expression in response to gamma and proton

radiation. (log p-value<2 is interpreted as no enrichment; grey color).

https://doi.org/10.1371/journal.pone.0207503.g006
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radiotherapy-induced adverse effects [45]. Furthermore, gene expression profiling comparing

relative biological effective-weighted doses of gamma and proton radiation revealed differ-

ences in the induction of pro-apoptotic p53-dependent and independent target genes in mice

[30]. The aim of this study was to compare the vascular genomic response signatures to low

doses of proton and gamma radiation administered to conscious animals, in order to predict

how similar or dissimilar pathological vascular processes induced by both radiation types

might be. This may not only be of relevance in radiation cancer therapy, but also for manned

deep-space exploration, which will expose humans to particular radiation, including protons,

that does not penetrate the Earth’s geomagnetic shield [46].

We used the aorta as an accessible surrogate tissue for the vascular system and focused on

the early molecular radiation effects (4 hours following exposure), which precede the develop-

ment of structural changes such as intimal hyperplasia or atherosclerosis. We selected a dose

range of 0.5 to 200 cGy, which induces dose-dependent effects on the white blood cell counts

in mice [29]. In human proton beam therapy, the heart and the left anterior descending coro-

nary artery (LAD) is often exposed to doses within this range during the therapy of left-sided

breast cancer [47]. During photon radiotherapy of patients with breast or chest wall cancer,

the heart is usually exposed to higher doses—in the range of 3–17 Gy (total doses given in frac-

tions of 1.8–2.0 Gy)–and the LAD to even higher doses [48]. However, epidemiological studies

show an increased risk of cardiovascular disease already at markedly lower doses of photon

radiation [49–51].

We made the following observations: First, proton radiation resulted in the activation of

fewer dose-responsive genes than gamma radiation. For example, six times fewer genes were

dose-responsive to proton radiation, when the false discovery rate was set at a q-value� 0.1

(Fig 2, Table 1). Second, while fewer genes were upregulated by protons, their response was

more pronounced on average (Fig 3). Proton radiation induced primarily known, highly radia-

tion responsive genes. Similarly, the biological pathways affected by protons included predom-

inantly canonical radiation response functions such as DNA repair, apoptosis, cell growth and

inflammation, while gamma radiation induces not only more genes by number, but also a

broader range of functions, including for example angiogenesis signaling (Fig 6). Third, pro-

tons and gamma photons both induced a common set of highly responsive genes, which

showed almost perfectly superimposable dose-response relationships (Fig 4). We observed the

same superimposable dose response relationship of gamma and proton radiations in a subset

of genes not only in the aorta but also in liver, lung, heart and kidney (with the exception of

Slc19a2, which was not expressed in the heart) (Fig 5).

Thus, we found both similarities and intriguing differences in the genomic response to

equal physical doses of proton and gamma radiation. Both radiation types induced dose-

dependently similar gene sets enriched in the functional categories p53 dependent apoptosis,

p53 independent apoptosis, DNA damage, cellular stress and inflammation. DNA lesions

induced by ionizing radiation include modifications of the nucleobases, single-strand and dou-

bles strand breaks. The cell responds with activation of repair mechanisms or apoptosis. Thus,

the activation of pathways related to p53 dependent apoptosis is consistent with previous

reports showing that activation of p53 results in dramatically increased pre-mitotic apoptosis

in tissues with a rapid turnover rate such as the hematopoietic system, the gastrointestinal epi-

thelium and endothelial cells [52,53]. Indeed, both high dose of gamma and proton radiations

induced a similar number of DNA repair foci in endothelial matrigel cultures, although proton

radiation tends to produce larger repair foci, indicating a more complex DNA damage induced

by particle proton radiation [54,55].

The activation of the TNFR signaling pathway, one of the apoptosis p53 independent path-

ways, has also been shown highly radiation responsive in many tissues and cells [56].
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Consistent with the fact that inflammatory processes are involved in the initial events trigger-

ing atherosclerotic development after radiation exposure, we observed that inflammation asso-

ciated pathways (NF-kB and Toll like receptor pathways) are sensitive to proton and gamma

radiation exposure in a dosage-dependent manner [57]. Furthermore, our data confirmed that

activation of the ATM kinase pathway is an early event in cellular responses to both gamma

and proton irradiation [58,59].

The dose-dependent expression changes induced by exposure to both, proton or gamma

radiation, suggest that at least some of the molecular damage caused in aortic cells in vivo,

including DNA damage, is similar. Indeed, a previous comparison of higher equivalent doses

of gamma and proton radiations show a similar effect of both radiations on pro-apoptotic

p53-target genes in the spleens of treated mice [30]. However, as mentioned above, in mouse

spleen gamma radiation uniquely triggered a pro-apoptotic expression profile while proton

radiation triggered a stress-response that mediates apoptosis partially independent of the

extent of DNA damage [30]. Here, applying lower energy doses, we did not observe this dis-

tinction. Both radiation types caused an increased expression of members of the Granzyme B

Signaling pathway and Aryl Hydrocarbon Receptor Signaling pathways in the aorta, markers

of a response independent of the extent of DNA damage.

In addition to these functional similarities in the response to proton and photon radiations,

we also observed similar energy dose response relationships. Thus, the dose response curves of

the 19 genes highly responsive to both radiation types were virtually identical. Several well-

known radiation responsive genes are among those regulated by both radiation types. Aen has

been identified as a nuclease that enhances apoptosis following ionizing irradiation [60] and

shows dose dependent responses to photon radiation in human blood cells [61] and skin [62].

Cdkn1a is an inhibitor of G1/S cyclin-dependent kinases that plays a crucial role in the DNA

damage signaling in response to radiation [63]. Cdkn1a protein expression has been reported

to be upregulated in a dose dependent manner both by photon and proton radiation in human

fibroblasts [64]. Moreover, Cdkn1a gene and protein expression are induced by both gamma

and proton radiations in human lens epithelial cells [65]. Ephx1 plays an important role in the

detoxification of electrophiles and oxidative stress [66]. Slc19a2 or thiamin transporter

THTR1, together with Slc19a3/THTR2, transports thiamin into the cell [67]. Slc19a2/THTR1

has been shown to be up-regulated in breast cancer [68] and its expression seems to have a

negative effect on tumor specific radiosensitization [69].

We also detected pathways that were differentially activated by both radiation types. Path-

ways related to cellular growth and cellular stress (eiF2, eiF4 and mTOR pathways) [59] and to

cellular immune response (phagosome maturation pathway) were enriched uniquely by pro-

ton radiation [28,70]. Pathways related to cell death (ERK5 and Flt3 pathways) and to oxidative

stress (ascorbate recycling pathway) were enriched uniquely by gamma radiation. Indeed,

microvascular cell death is thought to be an important component of the ischemic injury that

initiates radiation-induced inflammatory processes and leads to tissue fibroses [71,72]. Activa-

tion of Flt-3 pathway is thought to provide radioprotection to hematopoietic progenitor cells

[73,74] and reactive oxygen species produced by xanthine oxidase following gamma radiation

may contribute to endothelial dysfunction and increased vascular stiffness [75]. An effect of

gamma radiation on ascorbate recycling pathway has not been previously reported.

Proton radiation has been shown to have no effect on or to inhibit angiogenesis related pro-

cesses while gamma radiation increases expression of angiogenic factors in isolated cells

[31,54,76,77]. Here—in the adult vasculature—an impact on angiogenic signaling was primar-

ily seen with gamma radiation.

Our study has limitations. The gene expression profiles were generated from male, adult

mice from a single strain in response to low doses of a single radiation exposure after a short
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period of time (acute response). Since the gene expression analyses were done on the whole

aorta which contains several cell types, we cannot determine cell type specific changes in gene

expression. Irradiation-induced cardiovascular pathologies are noted long (often years) after

irradiation therapies. The early gene expression responses detected in our study may not be

directly related to such delayed vascular pathologies but may represent early events that could

predispose to cardiovascular side-effects. The study utilized whole body irradiations of ani-

mals. This is not a representation of a possible radiotherapy scheme as multiple organs, includ-

ing circulating lymphocytes will be affected. This in turn can lead to formation of circulating

pro-inflammatory mediators that may modulate gene expression in the vasculature.

In conclusion, our RNA sequencing-based expression analysis profiled the changes in aortic

gene expression dose response of gamma and proton radiation exposure. Despite the activa-

tion of core pathways of the cellular response by both radiation types, we detected marked dif-

ferences in the genomic response. It seems plausible that these genomic differences may

translate into differences in the biological processes leading to cardiovascular pathologies.

Thus, our data justify investment in mechanistic research in model organisms, such as models

of atherogenesis or vascular injury, to address the potential differential effects of gamma and

proton radiation on cardiovascular outcomes.
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