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Abstract

Variation in LINE composition is one of the major determinants for the substantial size and structural differences among vertebrate

genomes. In particular, the larger genomes of mammals are characterized by hundreds of thousands of copies from a single LINE

clade, L1, whereas nonmammalian vertebrates possess a much greater diversity of LINEs, yet with orders of magnitude less in copy

number. It has been proposed that such variation in copy number among vertebrates is due to differential effect of LINE insertions on

host fitness. To investigate LINE selection, we deployed a framework of demographic modeling, coalescent simulations, and

probabilistic inference against population-level whole-genome data sets for four model species: one population each of threespine

stickleback, green anole, and house mouse, as well as three human populations. Specifically, we inferred a null demographic

background utilizing SNP data, which was then exploited to simulate a putative null distribution of summary statistics that was

comparedwithLINEdata. Subsequently,weapplied the inferrednull demographicmodelwithanadditionalexponential size change

parameter, coupledwithmodel selection, to test forneutrality aswell as estimate the strengthofeithernegativeorpositive selection.

We found a robust signal for purifying selection in anole and mouse, but a lack of clear evidence for selection in stickleback and

human. Overall, we demonstrated LINE insertion dynamics that are not in accordance to a mammalian versus nonmammalian

dichotomy, and instead the degree of existing LINE activity together with host-specific demographic history may be the main

determinants of LINE abundance.

Key words: retrotransposons, transposable elements, purifying selection, comparative population genomics, composite

likelihood optimization, approximate Bayesian computation.

Introduction

Vertebrate genomes differ considerably in size and structure,

with transposable element (TE) abundance and diversity

among the genomic features that show the most variation

between species (Tollis and Boissinot 2012). Specifically, copy

number for Long Interspersed Nuclear Elements (LINEs) largely

accounts for the generally greater genome sizes of mammals

relative to nonmammalian vertebrates. LINEs constitute a di-

verse and ancient group of mobile DNA, consisting of 28

clades defined by specific functional features and supported

by phylogenetic analysis (Kapitonov et al. 2009). Each of these

clades can then be represented within an organism by multi-

ple discrete groups of elements, denoted as families. As non-

long terminal repeat retrotransposons, LINEs replicate by

reverse transcription of their RNA at the site of insertion by

a process called target primed reverse transcription (Luan et al.

1993; Cost et al. 2002). This is an inefficient process since the

majority of novel insertions are truncated at the 50 end and

� The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This isanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense(http://creativecommons.org/licenses/by-nc/4.0/),whichpermitsnon-

commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Genome Biol. Evol. 10(5):1265–1281. doi:10.1093/gbe/evy083 Advance Access publication April 23, 2018 1265

GBE

http://creativecommons.org/licenses/by-nc/4.0/


thus no longer capable of further transposition, that is, dead-

on-arrival. LINE insertions can cause genetic defects and ge-

nomic instability (Ostertag and Kazazian 2001; Burns and

Boeke 2012), yet they contribute a substantial source of evo-

lutionary novelties that can affect genes and genomic regu-

lation (Rebollo et al. 2012; Warren et al. 2015; Mita and

Boeke 2016).

Mammalian genomes contain hundreds of thousands of

LINE copies generated by a single clade, L1, which accounts

for at least 18% of genome size (International Human

Genome Sequencing et al. 2001; Mouse Genome

Sequencing Consortium et al. 2002). L1 elements have accu-

mulated from a single lineage of families since the origin of

mammals and are mostly ancient remnants of past activity,

with only the most recently evolved family active at a time

(Smit et al. 1995; Furano 2000; Khan et al. 2005). There is

however a number of differences in L1 content between

mammalian species (supplementary table S1,

Supplementary Material online). For example, the copy num-

ber of potentially active L1 progenitors is far larger in mouse

(> 3,000) than in human (< 100), resulting in a higher rate of

L1 transposition in the former (Ostertag and Kazazian 2001).

Additionally, three distinct L1 subfamilies are concurrently ac-

tive in the mouse genome (L1Md_A, Tf, and Gf), all of which

entail further subsets. Some of these subsets have evolved in a

strictly vertical manner (e.g., L1Md_A, Tf_III, and Gf_II), while

others have invaded the genome following hybridization with

a sister species (e.g., Tf_I, Tf_II, and Gf_I) (Rikke et al. 1995;

Hardies et al. 2000; Goodier et al. 2001; Sookdeo et al. 2013).

Conversely, the human genome has a single active family, Ta,

comprised of two closely related subsets: Ta-0, which was

mostly active> 1.5 Ma; and Ta-1, which is responsible for

the bulk of novel insertions in modern human (Boissinot

et al. 2000, 2004; Sheen et al. 2000).

In contrast, nonmammalian vertebrates possess a much

larger diversity of active LINEs represented by divergent fam-

ilies distributed across multiple clades (supplementary table

S1, Supplementary Material online). For instance, the genome

of the lizard Anolis carolinensis has five active clades (L1, L2,

CR1, RTE, and R4), with both L1 and L2 containing>20 active

and highly divergent families (Novick et al. 2009; Alföldi

2011). However, each specific LINE family in nonmammalian

vertebrates tends to be represented by a small copy num-

ber (< 100) of recently inserted elements (Furano et al.

2004; Novick et al. 2009; Chalopin et al. 2015). As in

mammals, there are substantial differences in the diversity

and abundance patterns among species. For example, the

zebrafish (Furano et al. 2004) and Xenopus tropicalis

(Hellsten et al. 2010) genomes harbor a great diversity

of LINE elements similar to A. carolinensis, whereas the

genomes of stickleback (Blass et al. 2012) and fugu con-

tain much smaller numbers of families, though with num-

bers of recent clades similar to other fish (Duvernell et al.

2004; Chalopin et al. 2015).

It remains unclear why the abundance of LINE insertions

differs so greatly among vertebrates. It has been proposed

that this pattern reflects variation in fixation rates of polymor-

phic LINE insertions caused by differential fitness effects on

the host organism (Furano et al. 2004; Novick et al. 2009). A

presumed fitness dichotomy between mammals and non-

mammal vertebrates has been hypothesized to result from

differing rates of ectopic recombination among lineages,

where crossing over of nonhomologous loci occurs and pro-

duces deleterious chromosomal rearrangements. Specifically,

it has been proposed that mammalian genomes intrinsically

have a reduced rate of ectopic recombination as an adapta-

tion to an extreme accumulation of L1 elements (Furano et al.

2004). Indeed, the majority of L1 insertions appear to behave

as neutral alleles in mammals (Boissinot et al. 2006), such that

population-level frequency and chance of fixation depend

solely on the stochastic process of genetic drift that is shaped

by the host demographic history. However, L1 elements may

not be fully neutral in mammals since longer elements are

found at lower allele frequencies than shorter ones within

human populations, suggesting an appreciable fitness cost

related to TE length (Boissinot et al. 2006). This is consistent

with the observation that longer L1 elements occupy genomic

compartments with a lower recombination rate, which would

be less likely to mediate ectopic recombination events, than

shorter L1 elements (Boissinot et al. 2001; Song and Boissinot

2007). Conversely, the young age and low genome-wide

abundance of LINEs in fish and reptiles has been interpreted

as evidence for rapid turnover (Duvernell et al. 2004; Furano

et al. 2004), similar to that observed in Drosophila

(Charlesworth and Charlesworth 1983; Kaplan and

Brookfield 1983; Langley et al. 1983). Under this scenario,

most LINEs remain at low allele frequencies and rarely reach

fixation due to the deleterious effect of novel insertions,

which may be due to the ectopic recombination rate being

intrinsically higher in these organisms than mammals.

Here, we performed a model-based demographic analysis

for several vertebrate species to explore the relative effect of

selection versus genetic drift on LINE polymorphisms (Ewing

and Jensen 2016). Previous studies investigating this question

used a limited number of TE insertions, mostly derived from

the published reference genomes (Boissinot et al. 2006; Blass

et al. 2012; Tollis and Boissinot 2013). However, the recent

availability of resequenced whole-genome data at

population-level sampling in threespine stickleback fish

(Gasterosteus aculeatus), green anole (A. carolinensis), house

mouse (Mus musculus), and human (Homo sapiens) now per-

mits access to a more complete collection of polymorphic LINE

insertions as well as genome-wide SNP data (1000 Genomes

Project Consortium 2010; Chain et al. 2014; Harr et al. 2016;

Ruggiero et al. 2017). We exploited these SNP resources to

inform null demographic backgrounds that were then lever-

aged against the LINE data to infer the presence, direction,

and magnitude of selection (fig. 1) (Williamson et al. 2005;
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Jensen et al. 2007). In particular, following recent efforts to

elucidate selective effects by accounting for genome-wide

heterogeneity in demographic parameter values

(Aeschbacher et al. 2016; Roux et al. 2016; Rougemont

et al. 2017; Rougeux et al. 2017), our methodology included

a separate analysis that incorporates an additional demo-

graphic parameter to mimic the effect of selection within

the context of demographic history.

Materials and Methods

Resequenced Whole-Genome Data

We analyzed one population each of stickleback, anole, and

mouse, as well as three populations of human. For anole,

mouse, and human, we focused on L1 elements because L1

is the clade that accounts for most of the genome size varia-

tion among vertebrates (Furano et al. 2004; Tollis and

Boissinot 2012). However, this clade has not been recently

active in stickleback, thus we instead collected stickleback

LINE data for the Maui element, which belongs to the L2

clade. The published genome contains �2,400 Maui copies

and this family was shown to be polymorphic within stickle-

back populations, suggesting that it is currently amplifying in

this species (Blass et al. 2012). Our total data set consisted of: six

stickleback individuals from a river population in Europe (Chain

et al. 2014); seven anole individuals (Ruggiero et al. 2017)

assigned to the Gulf-Atlantic population as defined by Tollis

and Boissinot (2012), which is the most widespread of the

five distinct North American populations; ten mouse individuals

belonging to a Northern Indian population, obtained from

http://www.ebi.ac.uk/ena/data/view/PRJEB2176, last accessed

April 28, 2018 (Harr et al. 2016); and 179 individuals across

the human populations of Yoruba from Ibadan (YRI; N¼ 59),

Han Chinese from Beijing combined with Japanese from Tokyo

(CHBþ JPT, henceforth CHJ; N¼ 60), and Utah residents of

Central European ancestry (CEU; N¼ 60) (Stewart et al. 2011).

For stickleback,anole,andmouse,whole-genomedatawere

processed following the procedure described in Ruggiero et al.

(2017). To detect LINEs, we employed the program MELT

(Mobile Element Detector Tool), which had been used to dis-

cover TE polymorphisms within the human genome (Sudmant

et al. 2015). This program requires a library of TE consensus

sequences to identify split reads, indicativeofpolymorphic inser-

tions. We searched the stickleback genome utilizing a single

Maui consensus since this family is highly homogenous in se-

quence (Blass et al. 2012), anolegenomewith the20consensus

sequences described in Novick et al. (2009), and the mouse

genome given the consensus of the three active families (Tf,

Gf, L1Md_A). For human, data were retrieved from the 1000

Genomes Project pilot phase, with SNPs in VCF format at ftp://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_

sets/a_map_of_human_variation/low_coverage/snps/, last

accessed April 28,2018, L1 insertion data listed in supplemen-

tary Table S1, Supplementary Material online of Stewart et al.

(2011), and recombination hotspot location information in

the file “hotspot_positions_b36.txt” located within the

archive “1000G_LC_Pilot_genetic_map_b36_genotypes_10_

2010.tar.gz” at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pi-

lot_data/paper_data_sets/a_map_of_human_variation/

supporting_data/recombination_hotspots/, last accessed

April 28, 2018.

Processing Data into SFS Format

Polymorphic SNP and LINE insertion data for stickleback,

anole, mouse, YRI, CHJ, and CEU were converted to the

single-population folded site frequency spectrum (SFS), that

is, not polarized against an ancestral outgroup for derived

frequencies and instead based on minor allele frequencies.

Importantly, information about monomorphic sites was not

included as it is challenging to reliably collect such data for

TEs, thus only the relative shape of the SFS (i.e., each allele

frequency class bin was scaled to proportion of total SNPs

rather than SNP count) was considered. As a result, SNP mu-

tation rate as well as LINE transposition rate are largely irrel-

evant to downstream simulation and modeling efforts since

only markers that are already polymorphic are included. For

the SNP data, only biallelic positions were considered, with a

minimum coverage of 10� read depth and minimum thresh-

old of 10 haploid individuals, except for the human

SNP Data

LINE Data

CL demographic
model selec�on

&

point es�mates

null distribu�ons
of

summary sta�s�cs

CL and ABC
model choice

between selec�on scenarios
&

υ es�ma�on

ABC
demographic

inference

1 2

34ABC power analysis
of selec�on inference

5

FIG. 1.—Flowchart of analyses. 1) Null demographic background is

inferred from the whole-genome SNP data using CL optimization. This

includes model selection between two-epoch expansion and three-epoch

bottleneck-expansion via Akaike’s relative weight. 2) ABC posterior distri-

butions are estimated against the SNP data under the CL-chosen demo-

graphic model and with prior distributions informed by the CL point

estimates. 3) Null distributions of summary statistics are simulated from

the ABC posterior distributions and compared with the empirical whole-

genome LINE data. 4) Selection is inferred from the LINE data using both of

the statistical frameworks CL and ABC. This involves choosing between

models of no selection, negative selection, and positive selection; demo-

graphic parameters are informed by the ABC posterior distributions and

selection is approximated via the parameter t, which converts to the stan-

dard exponential size change parameter r. 5) ABC leave-one-out cross-

validation is performed to examine accuracy and bias in selection model

choice and parameter estimation of t.

LINE Selection Inference Among Vertebrates GBE

Genome Biol. Evol. 10(5):1265–1281 doi:10.1093/gbe/evy083 Advance Access publication April 23, 2018 1267

http://www.ebi.ac.uk/ena/data/view/PRJEB2176
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/supporting_data/recombination_hotspots/
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/supporting_data/recombination_hotspots/
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/supporting_data/recombination_hotspots/


populations where the minimum coverage was disregarded

since these data sets had site frequencies inferred using a

validated probabilistic framework on the low coverage (1�–

3�) raw reads (Stewart et al. 2011). The number of SNPs was

further reduced to minimize linkage disequilibrium. For the

stickleback, anole, and mouse populations, SNPs were chosen

sequentially along each chromosome and contig at a distance

>10,000 sites from the preceding retained SNP. In the human

data sets, since a linkage map was available, the first SNP was

selected per length of sequence between HapMap-defined

recombination hotspots; if no valid SNP was available within

a particular sequence block, then the most adjacent SNP in

the preceding hotspot zone was considered, if available. For

LINE data, three independent SFS were calculated per popu-

lation based on TE length: short LINEs were at most 1,200 bp;

long LINEs were at most 6,000 bp and longer than short; and

FL (full-length) LINEs were over 6,000 bp. Notably, some L1

families in anoles generally considered to be FL are shorter

than 6 Kb and are thus included in the long category. For

stickleback, since FL Maui elements are substantially shorter

than 6 Kb, only short and long LINE SFS were constructed.

SFS files were created with the Python module dadi

(Gutenkunst et al. 2009), which utilizes a sampling projection

technique that entails considering all possible combinations of

subsampling haploid individuals in order to accommodate

missing data. A data projection of 10 haploid samples was

deployed among data sets for comparative purposes.

Additionally, a sampling projection that permits a more com-

plete data matrix was applied as well: 12 haploid samples for

stickleback; 14 haploid samples for anole; 20 haploid samples

for mouse; and 50 haploid samples for each human popula-

tion. In total, there were 12 observed SNP SFS, at two sam-

pling projections per population of stickleback, mouse, anole,

YRI, CHJ, and CEU, as well as 34 empirical LINE SFS, with three

length conditions imposed for all combinations of sampling

projections and populations (less two for no FL data in

stickleback).

Inferring Null Demographic Model from SNP Data

Demographic inference was conducted under single-

population instantaneous size change models to fit a null de-

mographic background to the whole-genome SNP data using

the program fastsimcoal2.5221 (Excoffier et al. 2013) (fig. 1).

Importantly, the results for this model fitting exercise are not

the focus of this study, but rather the aim is to construct a

valid null model that can reproduce the genome-wide SNP

data. Hence, assumption violations arising from a priori mis-

specifications are tolerable as long as the genomic signal un-

derlying the empirical SNPs is reasonably captured (i.e., the

SNP-based SFS can be attained via simulation). To achieve

probabilistic inference, fastsimcoal2.5221 employs coalescent

simulations to approximate the expected SFS given a set of

parameter values under a demographic model, and Brent’s

conditional maximization algorithm on each parameter itera-

tively (ECM) to optimize the composite likelihood (CL) of the

expected SFS against the observed data assuming a multino-

mial distribution. Every expected SFS was built from 100,000

coalescent simulations of genealogies, and a total of 10–40

ECM cycles were performed, with a single cycle comprising of

all parameters individually optimized once and the number of

cycles determined from a stopping criterion of 0.01 (i.e., the

minimum relative difference in parameters between two

cycles). The relative likelihoods of two demographic models

were compared per observed SNP SFS: two-epoch expansion

and three-epoch bottleneck-expansion. These models repre-

sent simplified yet commonly tested size change scenarios

that encompass a variety of single-population histories due

to the wide search ranges utilized (supplementary table S2,

Supplementary Material online). Each model inference

entailed 50 total independent optimization iterations, thus

involving different initial parameter draws, to avoid local op-

tima and in turn approach the global CL. In sum, across six

populations, two sampling projections, and two models, there

were (6�2�2�50)¼ 1,200 total executions of fastsim-

coal2.5221 here. Following optimization, model selection

was conducted for every data set via Akaike’s relative weight

of evidence, which utilizes the individual run with the highest

CL per model and is based on Akaike Information Criterion

(AIC) scores (Excoffier et al. 2013). In cases where model se-

lection contradicted between the two sampling projections,

the favored model at the higher data projection was assumed

for both in the interest of consistency.

Furthermore, we obtained additional point estimates as

well as uncertainty measures from approximate Bayesian

computation (ABC) posterior distributions, which were de-

rived under the CL chosen model given prior distributions

centered around the corresponding CL point estimates so as

to optimize intensive ABC efforts (fig. 1 and supplementary

table S3, Supplementary Material online). This ABC approach

supplements the CL framework by offering an alternative

model of statistical inference that operates under a different

procedure and associated set of assumptions. One major ben-

efit of ABC is that credibility intervals are easily procured si-

multaneously with point estimates, while CL bootstrapping,

an analogous measure of uncertainty, would be prohibitively

expensive computationally, requiring an additional

(100�1,200)¼ 120,000 fastsimcoal2.5221 replicates (assum-

ing 100 bootstraps). Conversely, ABC posterior distributions

are sensitive to prior distributions, whereas multiple indepen-

dent replicates of the Markovian process elicited in fastsim-

coal2 for CL optimization should be more robust to user

specification of search ranges. ABC simulations were facili-

tated with the R package Multi-DICE (Xue and Hickerson

2017), which allowed straightforward co-opting of fastsim-

coal2.5221 under its “FREQ” mode to populate multiple in-

dependent ABC reference tables for the separate populations

and two data projections. To clarify, each reference table

Xue et al. GBE

1268 Genome Biol. Evol. 10(5):1265–1281 doi:10.1093/gbe/evy083 Advance Access publication April 23, 2018

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy083#supplementary-data


consists of a set of simulations generated under the same

model as well as data specification, and can be applied to

an empirical data set for ABC inference. A total of 500,000

simulations were generated per reference table, the SFS were

converted to relative frequencies (i.e., frequency classes in

units of proportion from total SNPs rather than SNP count),

and demographic inference was executed using the abc R

package and eponymous function (Csill�ery et al. 2012) under

the simple rejection algorithm at a 0.003 tolerance threshold

(leading to 1,500 accepted simulations).

Notably, although a three-population model exploiting in-

formation from joint site frequencies (i.e., shared polymor-

phisms, private alleles, and fixed differences) could have

been employed for the human populations, the results would

not have been relevant here within a comparative context

since the other three species comprise of only a single popu-

lation. Furthermore, a three-population model would require

sites to be present across all three populations to construct the

multipopulation SFS, which is problematic for the LINE data

given allelic dropout and nonhomology coupled with a very

low quantity of loci at several dozen per length category.

Moreover, the additional parameterization and topological

complexity involved would be a nontrivial increase in required

computational resources. Although disregarding shared an-

cestry could possibly result in biased size change estimates,

migration rates between these human populations have pre-

viously been established to be low (Gutenkunst et al. 2009;

Gronau et al. 2011). Therefore, a single-population model is

an appropriate simplifying assumption for constructing a valid

null model to be utilized downstream for selection inference.

Although incorporating more complex multipopulation mod-

els is worth exploring in future applications, it is beyond the

scope of this study.

Testing Null Hypothesis on LINE Data with Simulated
Summary Statistics

To evaluate deviation in the LINE data from the null demo-

graphic background, which would suggest the presence of

selection in addendum to the whole-genome signal, we resi-

mulated from each of the 12 empirical ABC posterior distri-

butions to construct null distributions for a battery of

summary statistics (fig. 1). To achieve this, the sets of param-

eter draws from each of the 1,500 ABC accepted simulations

were exploited under the inferred demographic model to

generate 1,500 new SFS simulations. These new SFS were

simulated under the “SNP” simulation model in fastsim-

coal2.5221 according to the exact sampling specifications of

each LINE SFS. This resulted in slower runs than the “FREQ”

setting but better accounted for variance from number of

LINE loci sampled, which was lower than the SNP sampling

by orders of magnitude. The simulations were subsequently

converted into separate summary statistics, including the stan-

dard population genetic summary statistic Tajima’s D for the

total set of LINE loci, multinomial-distribution CL scores, indi-

vidual principal components (PCs), and individual SFS allele

frequency classes scaled to relative frequency. To clarify, CL

scores were calculated from the total product of the SFS bins,

which is a reduction (given no monomorphic sites) of the CL

equation deployed by fastsimcoal2.5221 that assumes these

represent independent probabilities. To obtain PCs, the 1,500

simulated SFS were entered into a principal component anal-

ysis (PCA), which was then leveraged against the simulations

for transformation into PC vectors of the same size but with

variation maximized. For each summary statistic, the 1,500

simulated values constituted an individual null distribution to

which the corresponding observed data value was compared.

Empirical values outside of the central 95% density were con-

sidered rejection of the null model (Bustamante et al. 2001;

Thornton and Andolfatto 2006), thus implicitly supporting

selection (with values departing from the central 50% density

also highlighted). Importantly, while this utilizes a traditional

null model test, it does not clearly indicate selection presence

due to the multitude of summary statistics, nor explicitly qual-

ify the type or quantify the magnitude of selection.

Demographic Models Testing Selection on LINE Data

As a complementary approach to detect putative selection

within LINE data sets as well as infer directionality (i.e., puri-

fying or positive) and magnitude, we tested an expanded set

of three discrete demographic models against each LINE SFS:

1) the null model inferred from the according SNP data set

without modification; 2) the null model inferred from the

according SNP data set with an additional exponential growth

parameter; and 3) the null model inferred from the according

SNP data set with an additional exponential contraction pa-

rameter. To clarify, the first model represents a null hypothesis

of no selection that is consistent with the genome-wide SNP

background, whereas the exponential size change parame-

ters act as a proxy for selective dynamics and are independent

from the instantaneous population size change(s) in the null

demographic background (Wright 2005). Specifically, expo-

nential growth (i.e., model 2) mimics weak purifying selection

given that both similarly affect the SFS with an increase in rare

alleles (Nielsen 2005; Williamson et al. 2005), and likewise

exponential contraction (i.e., model 3) approximates positive

directional selection as both shape the SFS toward intermedi-

ate frequency bins (Nielsen 2005; Gattepaille et al. 2013).

Exponential size change is parameterized by t, the ratio of

total effective population exponential size change scaled from

the bigger to smaller size. To clarify, the t CL search range/

ABC prior distribution is identical between the growth and

contraction models, yet its subsequent conversion to the stan-

dard exponential rate of size change parameter r reflects ei-

ther growth or contraction with a negative or positive sign,

respectively. To accomplish this conversion, exponential size

change begun at an arbitrary time of 125,000 generations
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into the past, which assures that the initiation of exponential

size change occurred as the earliest historical event across all

inferred null demographic backgrounds. Values for t close to

1.000 converge to zero size change beyond the genome-wide

null, consistent with LINE neutrality, whereas a large selective

effect is expected to confer values substantially >1.000.

To perform this task, we again applied the CL framework

in fastsimcoal2.5221 following the same software settings as

for the SNP data, as well as ABC inference using the fastsim-

coal2.5221 simulation machinery under the “SNP” setting to

match empirical LINE sampling along with the Multi-DICE and

abc R packages (fig. 1). Both approaches used the distribution

t � ln U(1, 1000), as a search range and prior, respectively.

For the CL framework, which included (6 populations�2 data

samplings�3 selection models�50 replicates)¼ 1,800 total

optimization replicates, bounded search ranges were set for

the null background demographic parameters (i.e., CL opti-

mization may not surpass bounds, unlike for t) by the corre-

sponding SNP ABC posterior distribution 50% credibility

intervals (CIs), that is, 25% and 75% quantile values, permit-

ting uncertainty in these demographic parameters to inform

selection parameter space optimization. As with the null de-

mographic models, Akaike’s relative weights were calculated

from the highest AIC score per set of 50 replicates to choose

among the three selection models. For ABC, 500,000 simu-

lations were generated under every selection model per pop-

ulation/sampling combination, with uncertainty in the null

demographic inference similarly integrated by exploiting the

entire corresponding SNP-based posterior distributions as the

prior. To clarify, the prior for each population/sampling com-

bination was composed of a discrete uniform distribution over

1,500 ABC-retained vectors of parameter draws. The simple

rejection algorithm assuming 1,500 accepted simulations was

utilized to choose between the three selection models by

combining the 1,500,000 total simulations into a single ref-

erence table (0.001 tolerance threshold), as well as estimate t
posterior distributions given solely the negative and positive

selection model simulations, respectively (0.003 tolerance

threshold).

Additionally, we performed ABC leave-one-out cross-vali-

dation, which involves iteratively extracting a single simulation

with known true values to infer as a pseudoobserved data set

(POD) against remaining simulations, to assess statistical

power (fig. 1). This was conducted against every reference

table for both model choice and t parameter estimation un-

der the identical protocol described for ABC inference, on 150

PODs consisting of 50 PODs per model for the former, and

100 PODs each for median and mode point estimates, respec-

tively, in the latter. For model choice cross-validation, a con-

fusion matrix, which describes accuracy and bias through

counts of correct model identifications as well as misclassifi-

cations, and mean posterior probabilities, which entail calcu-

lating the mean model posterior distribution among all 50

PODs per true model, were produced. For cross-validation

of t parameter estimation, true values were compared against

estimates through calculating Pearson’s r correlation and root

mean squared error (RMSE) across each set of 100 PODs.

Notably, a comparable CL power analysis would be prohibi-

tively expensive computationally in the same manner as afore-

mentioned for CL bootstrapping.

Importantly, unlike the null distribution simulations, this

strategy allows explicit testing between neutrality, purifying

selection, and positive selection through model choice within

a probabilistic framework, as well as quantification of selective

intensity through t estimates, for comparison between pop-

ulations and LINE sizes.

Results

SFS Data

Resequencing data provided a genome-wide distribution of

putatively unlinked SNPs (on the order of tens of thousands)

and LINEs among populations, with the number of LINEs

widely varying between data sets (table 1). Specifically,

LINEs were at least an order of magnitude more numerous

in mouse (53,674 in total across all length categories) than

any other species (�1,000 insertions in stickleback and anole),

whereas human populations contained only a few dozen

LINEs per size type. Overlaying the SFS of SNPs with those

of the LINEs, scaled to relative frequencies, suggests that

LINEs of different populations and size specifications are sub-

ject to varying levels of selective pressure (fig. 2). However,

further analysis beyond these mere observations is needed to

statistically test the presence, direction, and intensity of

selection.

Null Demographic Background Based on SNP Data

All populations except for stickleback supported the three-

epoch bottleneck-expansion model based on Akaike’s relative

weights across CL inferences (fig. 3 and table 2). In mouse and

YRI, this determination was more ambiguous due to a conflict

of favored models between sampling projections, with the 10

haploids data set favoring the two-epoch expansion model in

these cases. Nonetheless, the more complex three-epoch

model was designated as the inferred demographic model

in both populations given its Akaike’s relative weight at the

higher sampling projection, especially considering that sup-

port for the simpler two-epoch model was not overwhelming

for either mouse or YRI (� 0.6 higher in relative weight for

both). Among populations, time point estimates consistently

coincided either with postglacial or at least later Pleistocene

activity, and size change magnitudes were generally fairly

moderate, with most< 10� for either expansion or contrac-

tion (fig. 3 and supplementary table S4, Supplementary

Material online). Notably, stickleback, CHJ, and CEU experi-

enced minor expansions of �3� or less, whereas larger

expansions of at least 5� were inferred in anole and mouse.
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Across CL point estimates, most fell within the ABC central

95% density CIs, and many of these further were contained

by the central 50% density CIs.

Null Distributions of Summary Statistics against LINE Data

Comparing null distributions, generated from the ABC poste-

rior distributions of demographic parameters, to the mouse

LINE data sets almost universally displayed signals of selection

across the various summary statistic measures, three LINE

lengths, and two sampling projections (fig. 4, table 3, and

supplementary table S5, Supplementary Material online). In

fact, the observed summary statistic calculated from the LINE

data was well beyond the entire null distribution in many

cases. Furthermore, there is a clear trend of increasing num-

ber of outlier empirical summary statistics as well as greater

distance from the null distributions positively correlating with

LINE size. In anole, there was apparent selection on short and

long LINEs across both haploid samplings, but seemingly not

so for the FL LINEs. Along with the fact that there is a higher

number of outlier summary statistics and more distance from

the null distributions for short LINEs versus long LINEs, there

surprisingly seems to be an inverse relationship between se-

lective effect and LINE length for anole. The stickleback results

are more ambiguous, with selection seemingly present for the

short LINEs but a lack of convincing evidence to reject the null

hypothesis for the long LINEs. Conversely, the human popu-

lations were almost wholly compatible with the null demo-

graphic background, with the CEU long LINEs the only

convincing case of selection (and mostly at the 10 haploids

sampling projection). Notably, all outlier empirical values were

more negative for Tajima’s D and more positive for the sin-

gleton allele frequency class with respect to the according null

distributions, except for the stickleback short LINE data sets

where the opposite was true, suggesting purifying selection in

the former cases and positive selection on the stickleback

short LINEs. Importantly, there were instances when results

varied nonnegligibly between the two sampling projections,

especially in human populations where the disparity in num-

ber of haploids was greatest, hence the importance of having

a common sampling of individuals for comparative purposes.

Additionally, when the simulated distributions, which include

PC values, were compared with corresponding SNP data sets,

the empirical datapoint near-universally fell within the central

95% density and in fact was usually contained within the

central 50% density as well (supplementary table S5,

Supplementary Material online). This demonstrates that the

null demographic model, based on simulations from the pos-

terior, has a reasonable predictive fit to the empirical data.

Selection Modeling on LINE Data

Model-based inference of selection directionality and magni-

tude, based on model choice and parameter estimation, re-

spectively, was overall largely compatible and complementary

with the summary statistic null distribution results (fig. 5,

table 4, and supplementary table S6, Supplementary

Material online). Specifically, each of the mouse LINE data

sets heavily supported the negative selection model based

on Akaike’s relative weights across CL inferences as well as

ABC model posterior probabilities, with purifying selection

exclusively favored (i.e., Akaike’s relative weight or ABC

model posterior probability of 1.000) in most cases.

Additionally, t estimates demonstrate a distinct positive cor-

relation with LINE size across both sampling projections, indi-

cating increasing deleterious effect with longer length. For

anole, the surprising negative correlation between selection

signal and LINE length implied by the null distributions is un-

equivocal here. The short LINE data sets highly favored neg-

ative selection, the long LINE data sets weakly supported

negative selection, and the FL LINE data sets converged to

the null demographic background of the SNP data.

Estimates for t further corroborate this relationship.

Conversely, no selection was generally inferred for stickleback

and human populations among all size filters and sampling

projections based on Akaike’s relative weights across CL

Table 1

Number of Whole-Genome SNPs and LINEs for SFS Construction

Population Sampling Projection of Haploids SNPs Short LINEs Long LINEs FL LINEs

Stickleback 10 38,439 667 502 N/A

Stickleback 12 11,636 716 543 N/A

Anole 10 86,599 479 348 120

Anole 14 8,658 567 407 134

Mouse 10 192,291 23,138 6,536 7,861

Mouse 20 155,158 32,002 9,240 12,432

Human (YRI) 10 18,501 65 34 37

Human (YRI) 50 28,769 86 48 58

Human (CHJ) 10 22,579 43 20 23

Human (CHJ) 50 29,935 57 33 30

Human (CEU) 10 19,854 60 49 37

Human (CEU) 50 28,378 60 40 46
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FIG. 2.—Observed SFS for SNP and LINE data. In the second row, 12 haploids refer to stickleback, 14 haploids refer to anole, and 20 haploids refer to

mouse.
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inferences, with three exceptions where purifying selection

was supported: YRI short and FL LINEs at 50 haploids, though

with low corresponding t estimates; and CEU long LINEs at 10

haploids, which was near-exclusively in favor of negative se-

lection with accordingly high t estimates and corroborated by

the ABC model posterior probability. There were also several

S�ckleback Anole Mouse

Human
(YRI)

Human
(CHJ)

Human
(CEU)

τ = 25,732
ε = 0.511

Ne = 68,844

τ1 = 7,344
ε1 = 0.132

τ2 = 8,271
ε2 = 7.419

Ne = 71,561

τ1 = 10,878
ε1 = 0.201

τ2 = 38,080
ε2 = 64.488

Ne = 27,716

τ1 = 4,641
ε1 = 0.277

τ2 = 6,387
ε2 = 4.621

Ne = 5,840

τ1 = 2,923
ε1 = 0.702

τ2 = 3,215
ε2 = 9.452

Ne = 19,305

τ1 = 4,668
ε1 = 0.332

τ2 = 4,856
ε2 = 5.968

Ne = 14,714

FIG. 3.—Null demographic background CL inference. The three-epoch bottleneck-expansion model was selected for all populations except for stick-

leback, which favored the two-epoch expansion model across both sampling projections. For comparative purposes, parameter estimates here are from the

10 haploids sampling projection. The symbols s, e, and Ne represent time in number of generations, proportion of instantaneous size change, and current-

day effective haploid population size, respectively. The numerical suffixes delineate the demographic event (i.e., expansion or bottleneck) and are in reverse

chronological order (e.g., s1¼ time of the more recent expansion event). Note that e is scaled to the effective population size immediately following the

instantaneous change, such that e1�1.000 (i.e., expansion) and e2�1.000 (i.e., bottleneck) must be true.

Table 2

Null Demographic Background CL Model Selection via Akaike’s Relative Weight

Stickleback Anole Mouse

Selected Model Two-epoch expansion Three-epoch bottleneck-expansion Three-epoch bottleneck-expansion

Akaike’s relative weight

(10 haploids)

0.852 1.000 0.214

Akaike’s relative weight

(higher sampling)

0.641 (12 haploids) 1.000 (14 haploids) 0.701 (20 haploids)

Human (YRI) Human (CHJ) Human (CEU)

Selected Model Three-epoch bottleneck-expansion Three-epoch bottleneck-expansion Three-epoch bottleneck-expansion

Akaike’s relative weight

(10 haploids)

0.182 1.000 1.000

Akaike’s relative weight

(50 haploids)

1.000 1.000 1.000
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contradictory ABC results, most notably stickleback short

LINEs supported positive selection at both samplings, and all

but one of the CHJ data sets were consistent with selection.

ABC cross-validation confusion matrices and mean poste-

rior probabilities suggest adequate power to differentiate the

selection models for the nonhuman populations (supplemen-

tary table S7, Supplementary Material online). Specifically, the

confusion matrices establish that false-positive rates are lower

than false-negative rates, such that accuracy was highest

when the true model was no selection coupled with near-

absent misclassification between the negative and positive

selection models. Model choice is much more problematic

for the human populations though, where LINE sampling

was drastically decreased (table 1). High error is especially

apparent in the confusion matrices for the YRI and CHJ

data sets under the 10 haploids sampling projection, where

there was minimal inference of no selection. Moreover, bias

toward purifying selection is showcased in the confusion ma-

trices for the YRI and CHJ data sets at 50 haploids. Across

confusion matrices for all organisms, samplings, and LINE

sizes, negative and positive selection models were more likely

to be misclassified under the no selection model than each

other (except for YRI and CHJ at 10 haploids), while biased

error toward purifying selection is exhibited when the true

model included no selection (except for the human data

sets with 10 haploids). Additionally, the correct mean poste-

rior probability is almost always higher for the negative and

positive selection models than the no selection model.

Furthermore, there is evident power for t parameter estima-

tion in stickleback, mouse, several data sets of anole, and YRI

given 50 haploids (though seemingly biased toward underes-

timation), whereas accurate t estimation was lacking in the

Table 3

Simulated Null Distributions against Empirical LINE Data for Select Summary Statistics

Short LINEs Long LINEs FL LINEs

TE value Null 2.5% Null 97.5% TE value Null 2.5% Null 97.5% TE value Null 2.5% Null 97.5%

Stickleback

Tajima’s D �0.132 �0.454 �0.164 �0.283 �0.462 �0.144 N/A N/A N/A

CL score 1.33E-04 6.60E-05 1.23E-04 1.07E-04 6.46E-05 1.27E-04 N/A N/A N/A

PC1 �0.034 �0.043 0.046 0.007 �0.050 0.051 N/A N/A N/A

AFC1 0.427 0.426 0.502 0.464 0.419 0.506 N/A N/A N/A

Anole

Tajima’s D �0.729 �0.245 0.154 �0.473 �0.260 0.174 �0.105 �0.392 0.315

CL score 2.61E-05 9.93E-05 1.85E-04 6.88E-05 9.42E-05 1.90E-04 1.22E-04 5.95E-05 2.13E-04

PC1 0.147 �0.055 0.056 0.100 �0.060 0.061 �0.023 �0.100 0.099

AFC1 0.546 0.358 0.455 0.501 0.354 0.458 0.395 0.319 0.487

Mouse

Tajima’s D �0.593 �0.574 �0.447 �0.691 �0.584 �0.432 �1.328 �0.579 �0.436

CL score 5.62E-05 5.60E-05 7.46E-05 4.53E-05 5.42E-05 7.68E-05 4.28E-06 5.49E-05 7.62E-05

PC1 0.029 �0.013 0.020 0.058 �0.018 0.023 0.241 �0.017 0.021

AFC1 0.533 0.495 0.524 0.559 0.491 0.527 0.721 0.492 0.525

Human (YRI)

Tajima’s D �0.128 �0.594 0.370 �0.123 �0.762 0.601 �0.284 �0.717 0.506

CL score 1.26E-04 2.50E-05 2.15E-04 1.24E-04 0.00Eþ00 2.38E-04 9.27E-05 0.00Eþ00 2.29E-04

PC1 �0.009 �0.142 0.140 �0.015 �0.200 0.201 0.027 �0.179 0.185

AFC1 0.413 0.286 0.540 0.406 0.250 0.594 0.447 0.263 0.579

Human (CHJ)

Tajima’s D �0.034 �0.326 0.836 0.220 �0.504 1.077 �0.102 �0.394 1.025

CL score 1.43E-04 4.08E-05 2.80E-04 2.10E-04 0.00Eþ00 2.81E-04 1.01E-04 0.00Eþ00 2.80E-04

PC1 0.066 �0.154 0.173 0.043 �0.211 0.229 0.053 �0.206 0.214

AFC1 0.386 0.182 0.477 0.350 0.150 0.500 0.391 0.130 0.522

Human (CEU)

Tajima’s D �0.259 �0.344 0.623 �0.936 �0.420 0.662 �0.076 �0.489 0.710

CL score 9.48E-05 4.28E-05 2.53E-04 2.46E-05 3.49E-05 2.58E-04 1.09E-04 0.00Eþ00 2.62E-04

PC1 0.090 �0.143 0.134 0.296 �0.154 0.152 �0.014 �0.169 0.186

AFC1 0.450 0.241 0.483 0.640 0.240 0.500 0.368 0.211 0.526

NOTE.—All for 10 haploids sampling projection. Bold values are outside the 95% null distribution intervals. Underlined values are outside the 50% null distribution intervals
but within the 95% intervals.

PC1, principal component 1; AFC1, allele frequency class 1 (i.e., singletons).
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remaining cases (supplementary fig. S1 and table S7,

Supplementary Material online). Overall, inferring t is usually

more difficult under purifying selection than the positive se-

lection model.

Discussion

Using population resequencing data and demographic

modeling of selection processes, we discovered LINE se-

lection dynamics to vary greatly among four model verte-

brate species that differ in total abundance of LINE

insertions across the genome as well as number of active

families. However, the comparative pattern of selection

signal does not seem to be related to these differences

nor evolutionary proximity between the species. For ex-

ample, purifying selection against LINE polymorphisms is

very strong within anole whereas there was no such evi-

dence of negative selection for stickleback, despite their

genomes likewise containing several sets of a few highly

related copies. Similarly, LINEs were estimated to be much

more deleterious in mouse than in human, which are both

mammals with genomes dominated by an extremely large

number of L1 elements.

Strong Purifying Selection against L1 Inserts in Mouse and
Anole Lizard

We identified a strong signature of purifying selection against

L1 in mouse, with stronger selection against long elements

than short ones and FL insertions the most deleterious. This is

consistent with previous analyses in human (Boissinot et al.

2006; Song and Boissinot 2007) and fruit fly (Petrov et al.

2003). Such a strong bias against longer elements may have

three nonexclusive explanations. First, it could be due to the

increased ability of longer elements to mediate ectopic recom-

bination and thus cause deleterious chromosomal breaks

(Dray and Gloor 1997), which is supported by experimental

evidence that showed elements in mouse shorter than 1.2 Kb

are unlikely to mediate ectopic recombination events (Cooper

et al. 1998). Second, FL insertions are the source of further

transposition, which in turn can be deleterious to the host.

Third, a toxic effect of FL active insertions producing RNA or

proteins deleterious to the host may be a contributing factor

(Nuzhdin 1999). Recent analyses demonstrating that L1 activ-

ity in somatic tissue could have a deleterious effect with re-

spect to aging or oncogenesis provide a mechanism for

selection to act specifically against FL insertions (Faulkner

and Garcia-Perez 2017).
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sampling projection. Only anole and mouse are displayed here since these are the populations that demonstrated a clear signal of selection.
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Strong purifying selection on LINEs in anole is consistent

with previous studies (Tollis and Boissinot 2013; Ruggiero

et al. 2017), though the detection of stronger selection

against short LINEs compared with longer ones as well as FL

elements appearing neutral is surprising. This result may be

due to anole FL LINEs being so deleterious that most are

quickly eliminated from the population, and thus only very

weakly deleterious or neutral FL LINEs segregate in popula-

tions (Nielsen 2005). Importantly, exponential growth as

deployed in our model would not reproduce very strong neg-

ative selection signatures (Williamson et al. 2005), and thus

would not account for an extremely deleterious effect.

Counter-intuitively, a signature of purifying selection would

thus remain readily detectable for short LINEs because of a

lessened deleterious effect of those insertions compared with

longer elements.

LINE Insertions Possibly Neutral in Human and Stickleback

Most of the analyses for human, across populations and L1 of

different length, indicated neutral dynamics, which is surpris-

ing since it had been previously demonstrated that FL L1 are

selected against, though truncated insertions behave like neu-

tral alleles (Boissinot et al. 2006). A possible explanation for

this discrepancy may reside in the type of insertions examined.

The Boissinot et al. (2006) study focused on Ta-1, which is the

most recently active subset of L1 and accounts for the vast

majority of novel insertions (Boissinot et al. 2000; Brouha et al.

2003). Conversely, the present study applied to all types of L1

polymorphisms such as Ta-0, which amplified long before Ta-

1 and thus has low present activity, yet still has segregating

alleles that tend to be at higher population frequencies than

Ta-1 polymorphisms (Boissinot et al. 2000). It is likely that Ta-0

deleterious insertions have already been eliminated and only

nearly or fully neutral elements remain. Hence, the absence of

a clear selection signature here is plausibly due to heteroge-

neity of insertion ages, with Ta-1 negatively selected in pre-

sent populations and the more ancient Ta-0 having already

gone through the sieve of purifying selection. Unfortunately,

we are unable to distinguish Ta-1 from Ta-0 here, but this

hypothesis is consistent with the results for YRI under CL in-

ference and CHJ under ABC inference, which differed across

the widely disparate sampling projections and accordingly

temporal resolutions (Keinan and Clark 2012; Robinson

et al. 2014; Xue and Hickerson 2015). Specifically, the older

and more neutral Ta-0 polymorphisms may be predominant

in the data sets for 10 haploids, whereas the newer and more

deleterious Ta-1 insertions could have higher representation

at 50 haploids. Surprisingly, the opposite pattern is ob-

served for CEU, where there was strong evidence of pu-

rifying selection on long LINEs, yet only at the lower level

sampling. In this case, the negative selection model was

favored with high t point estimates under both CL and

ABC inference, including a near-exclusive Akaike’s relative

weight (i.e., approaching 1.0) and very high model pos-

terior probability that far surpasses the according cross-

validation mean posterior probability, as well as additional

support from several null distribution outliers. This per-

haps indicates idiosyncratic dynamics occurring specifi-

cally within the CEU population, on L1 of this particular

length range, and/or at a given period of time, which may

be a consequence of biological, environmental, and/or

stochastic conditions. However, interpretation should be

tempered since discriminatory power is limited here given

the low sampling of LINEs. Nonetheless, this interesting

result warrants further investigation.

A similar process to that proposed in human could explain

the apparent neutrality of LINEs in stickleback. It is well known

that TE amplification tends to occur in waves, where periods

of intense amplification alternate with periods of low activity

(Pascale et al. 1990; Furano 2000; Khan et al. 2005; Sookdeo

et al. 2013). The fraction of segregating insertions under neg-

ative selection then depends on which part of the amplifica-

tion wave a species is experiencing. For instance, a species

experiencing a high rate of transposition (i.e., top of the wave)

will incur many deleterious insertions, generating a stronger

signal of negative selection, as is likely the case in anole and

mouse. In contrast, a species presently undergoing a low rate

Table 4

Selection Directionality CL Model Choice via Akaike’s Relative Weight

Short LINEs Long LINEs FL LINEs Short LINEs Long LINEs FL LINEs Short LINEs Long LINEs FL LINEs

Stickleback Anole Mouse

Positive Selection 0.288 0.218 N/A 0.000 0.140 0.207 0.000 0.000 0.000

No Selection 0.522 0.576 N/A 0.000 0.370 0.535 0.001 0.000 0.000

Negative Selection 0.190 0.206 N/A 1.000 0.490 0.257 0.999 1.000 1.000

Human (YRI) Human (CHJ) Human (CEU)

Positive Selection 0.219 0.223 0.213 0.210 0.213 0.193 0.182 0.000 0.196

No Selection 0.571 0.568 0.576 0.572 0.575 0.526 0.498 0.001 0.535

Negative Selection 0.210 0.209 0.212 0.219 0.212 0.281 0.320 0.998 0.270

NOTE.—All for 10 haploids sampling projection. Bold values are for the favored models.
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of transposition (i.e., bottom of the wave) could have the

majority of segregating elements be older, generated when

transposition was stronger and now having already passed

prolonged purifying selection. Interestingly, our ABC infer-

ences coupled with the null distribution outlier results support

low to moderate positive selection on short Maui elements,

which may further suggest that many of these remaining

polymorphic insertions have been co-opted for functional

benefit. As in human, stickleback may have these higher fre-

quency insertions masking the effect of negative selection

acting on a smaller number of recently inserted LINEs. This

process would result in an underestimate of the fitness cost

imposed by LINE activity in current populations since our

model does not consider such temporal change in transposi-

tion rate, thus obscuring comparative analysis. This hypothesis

is supported by the fact that the average divergence among

Maui insertions in stickleback is substantially higher (� 2.2%)

than those for L1 elements in anole (< 1% for 16 of the 20 L1

families) or mouse (� 0.3–1.3%), indicating most insertions in

stickleback are older (Blass et al. 2012). Another important

factor is the use of Maui, which is a family representative of

the L2 clade and was used instead of L1 because of the ex-

tremely small numbers of L1 insertions in the stickleback ge-

nome (Blass et al. 2012). Although L1 and L2 are believed to

replicate by similar biochemical processes (Sugano et al.

2006), L2 seems less efficient in producing FL progenitors

and thus could be intrinsically less deleterious than L1

(Ruggiero et al. 2017). However, it has also been demon-

strated in lizard that the frequency distributions of L1 and

L2 polymorphic insertions were virtually indistinguishable,

suggesting a similar fitness cost (Ruggiero et al. 2017). The

effect of LINEs in fish therefore requires further investigation,

particularly in a model species exhibiting a large number of

recently active families, such as the zebrafish.

Importantly, our modeling effort may be considered more

conservative in estimating the presence of selection since the

uncertainty in demographic inference from the SNP data was

incorporated into the simulations testing for selection.

Therefore, demography alone was allowed to explain a

greater variance in the observed LINE SFS, possibly obfuscat-

ing an effect from selection. Indeed, this is illustrated in our

ABC cross-validation of model selection, where false-negative

rates are consistently greater than false-positive rates.

Relatedly, the number of LINEs was very low in the human

populations, as well as generally so across many of the LINE

data sets in contrast to the corresponding SNP data sets,

which may likewise result in the modeling being too permis-

sive of genetic drift solely effecting SFS differences between

the SNP and LINE data. The detriment of low LINE sampling on

accurate detection of selection is likewise showcased in the

ABC cross-validation, specifically dramatically decreased dis-

ambiguation for the human data sets, which was even further

displayed among human data sets with decreasing numbers

of LINEs. As a result, our model as well as the data are likely to

be less sensitive to capturing weaker selective scenarios, and

thus cannot definitively reject such occurrences. Hence, fur-

ther exploration with more comprehensive TE data sets would

help elucidate these complex dynamics within human and

stickleback.

Why Is Selection against LINE Insertions Stronger in Certain
Organisms over Others?

We found no evidence for purifying selection against LINEs in

stickleback despite support for selection in anole, the other

nonmammalian vertebrate; truncated elements in anole im-

pose a high fitness cost on their host even though short

insertions have been found to be neutral in other species;

and purifying selection against L1 is much stronger in mouse

than in human populations, where we did not detect a clear

signature for selection in most cases. We propose three broad

categories of explanations to generally account for these

species-specific observations.

First, the deleterious effect of LINE insertions may be intrin-

sically stronger in some species than others. This hypothesis

was originally proposed to account for the higher diversity

and lower abundance of L1 in zebrafish compared with mam-

mals (Furano et al. 2004), and was eventually extended to

other nonmammalian vertebrates such as the green anole

(Novick et al. 2009). Furano et al. (2004) further proposed

that regulatory mechanisms evolved in mammals to prevent

ectopic recombination, thereby reducing the deleterious im-

pact of L1 insertions. This would have rendered mammalian

genomes more tolerant to the accumulation of L1 insertions,

resulting in the extremely high copy numbers for L1 that are

found in those genomes. However, studies have shown that

even within mammals, there is wide variation in recombina-

tion rates (Jensen-Seaman et al. 2004; Winckler 2005). In

contrast, with ectopic recombination being more frequent

in zebrafish and anoles, LINE insertions would be more dele-

terious and rarely reach fixation, hence the large number of

insertions segregating in populations yet small number of

insertions accumulating in those genomes (Ruggiero et al.

2017). Consistent with this notion, we detected strong puri-

fying selection in anole and especially so for truncated ele-

ments, implying that all elements regardless of size could be

capable of mediating chromosomal rearrangements through

ectopic recombination within this lizard species. In contrast,

short L1 insertions as well as Alu elements, which are also

shorter in length, have been shown to behave like neutral

alleles in human (Boissinot et al. 2006; Cordaux et al. 2006)

and not be restricted to low recombining regions of the

genomes to the same extent as long elements (Boissinot

et al. 2001; Myers et al. 2005; Song and Boissinot 2007).

Second, the number of insertions present in a genome can

be a significant factor affecting selection intensity against

novel insertions. Specifically, a TE family becomes deleterious

when it reaches a certain copy number threshold, creating a

Xue et al. GBE
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positive feedback loop where the deleterious impact of a fam-

ily escalates alongside its copy number (Montgomery et al.

1987; Petrov et al. 2003, 2011). This scenario could contribute

to the differences reported here between mouse and human

given that the number of polymorphic insertions is much

larger in the former. A possible explanation for this

frequency-dependence could be that a larger number of seg-

regating insertions throughout the genome increases the

probability of ectopic recombination, which is also believed

to be further exacerbated when insertions are in the hetero-

zygous state (Montgomery et al. 1991). Therefore, when

insertions are numerous across the genome but at low allele

frequencies (i.e., greater chance to be heterozygous), they are

more likely to be deleterious. Moreover, the total number of

insertions in a population is directly related to the rate of

transposition as well, which may be intrinsically higher in

some organisms than others. Periods of high activity often

correlate with the acquisition of novel features by LINE ele-

ments, allowing these elements to bypass the host repressive

machinery and thereby reducing host fitness. This process is

well documented in human where the acquisition of novel

promoter sequences allows L1 to evade the transcriptional

repression of KRAB zinc-finger proteins (Khan et al. 2005;

Jacobs et al. 2014). It is likely that different rates of transpo-

sition occur in the model systems analyzed here, as implied by

the observation that the relative proportion of genetic defect

caused by retrotransposons is larger in mouse than human

(Ostertag and Kazazian 2001).

Third, differences in demographic history could possibly

account for host-specific LINE characteristics. Notably, anole

and mouse experienced expansions of much greater magni-

tude than stickleback and human, and the signature of pop-

ulation expansion is an excess of low frequency SNPs, thus an

increase in heterozygosity (Nielsen 2005). Assuming hetero-

zygosity increases the rate of ectopic recombination

(Montgomery et al. 1991), then higher ectopic recombination

rates are expected in populations with large expansions, thus

yielding more negative selection on TEs. Furthermore, the

greater expansions may imply larger recent population sizes,

where selection is more effective at eliminating deleterious

insertions, whereas genetic drift is more prominent in smaller

populations and thus may permit slightly deleterious

insertions to persist at higher allele frequencies (Lynch

and Conery 2003; Blass et al. 2012; Tollis and Boissinot

2013; Ruggiero et al. 2017). Importantly, although it has

been reported from a number of models that smaller

populations yield a lower efficacy for selection, the

more subtle effect of population expansion has not re-

ceived the same scrutiny. An effect of complex demogra-

phy on the intensity of selection against LINEs is an

intriguing hypothesis and will require further experi-

ments, such as comparing the fitness cost of LINEs in mul-

tiple populations of anole and mouse with different

demographic histories.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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