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Introduction

High-content screening (i.e., image-based descriptions of a 
cellular or organism’s phenotype) has become an important 
tool for drug discovery.1 This has been highlighted by the 
observation that most first-in-class drugs were discovered 
by phenotypic screening, which is heavily reliant on image-
based assays.2 Image-based assays now have a role in all 
aspects of drug discovery and development, including help-
ing to identify novel targets or mechanisms of action,3 
screening for novel treatments, and safety assessment.4

A wide range of automated microscopes and laser scanning 
cytometers can generate image-based results. Each imager is 
accompanied by its own proprietary software for image analy-
sis. Unfortunately, this makes it very difficult to compare the 
performance of different image analysis approaches even if the 
same assay is being monitored. This challenge has fueled the 
development of vendor-independent, open-source image anal-
ysis packages from several research groups.

In addition, and especially in the pharmaceutical industry, 
the volume of images generated has dramatically increased by 

the adoption of high-density plate formats and/or the emer-
gence of instruments that generate time series and Z-stacks of 
image fields.5,6 In such cases, the time required to process tens 
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of thousands of images on a standalone PC workstation is pro-
hibitive. High-performance compute (HPC) clusters can pro-
vide the required speed to satisfy these increased demands. 
However, using an HPC cluster presents challenges for most 
laboratory scientists. Screeners are not accustomed working 
with Linux, parallel computing, or a command line interface 
and prefer the comfort of familiar desktop systems with rich 
user interfaces. We are now providing a practical solution by 
combining two, best-of-breed, open-source tools, CellProfiler 
and Jenkins-CI, into a user-friendly, novel HPC platform for 
image analysis at scale.

CellProfiler7 is an open-source image analysis software 
developed over a number of years and widely accepted in the 
scientific community.8–10 It provides a modular set of image-
processing functions accessible through a graphical user inter-
face. CellProfiler is supported by the Broad Institute (www.
cellprofiler.org) and by a community of academic and indus-
trial users and developers.11 Importantly, CellProfiler can be 
executed without the graphical user interface, using command 
line instructions (i.e., “headless mode”) for use on an HPC 
cluster. In this mode, CellProfiler delivers fast, cost-effective 
performance by processing in parallel large image sets without 
the limitations of restrictive and expensive licenses typical of 
commercial software.

Jenkins-CI (https://jenkins.io/) is a leading, open-source 
continuous integration server.12 Continuous integration (CI) 
is an established practice in the field of software engineer-
ing that supports the development of complex software pro-
grams from independently built components. A continuous 
integration server is designed to automatically or manually 
trigger complex workflows to build, test, and deploy soft-
ware components. Typically, such platforms also provide 
process monitoring, testing, and validation tools. Despite its 
original focus on building software systems, Jenkins-CI can 
be easily extended (there are more than 800 plugin exten-
sions for Jenkins) and adapted for processing sequences of 
computational tasks of arbitrary complexity. The BioUno 
project was one of the first to recognize and introduce the 
application of Jenkins-CI for bioinformatics.13,14

A core concept within Jenkins-CI is that of a “Project,” rep-
resenting a sequence of computational tasks that process and 
transform input data into well-defined outputs. A “Project” 
contains well-defined core elements (e.g., parameters, triggers, 
build steps, actions) that are extensible. As a result, Jenkins-CI 
projects can model a wide variety of scientific computational 
workflows. Jenkins-CI conforms to the software design pattern 
of “loose coupling,”15 where a software system can access 
functions of another without knowledge of its internal work-
ings. Through loose coupling, Jenkins-CI allows the integra-
tion of local, as well as remote, scientific applications (such as 
CellProfiler) into scalable workflows that can be parallelized 
on a compute cluster. This greatly enhances the speed and 
throughput of the analysis that can be performed.

Here we describe how Jenkins-CI can be configured to 
execute processing of large-scale image data from 

high-content screening (HCS). We document how one can 
easily combine capabilities from the Jenkins-CI plugin 
“ecosystem,” domain-specific applications, such as 
CellProfiler, and custom scripting to build a laboratory 
image- and data-processing platform that is easy to install, 
maintain, extend, and adapt to fit the informatics and data 
requirements of a typical screening laboratory.

Materials and Methods

Image Acquisition

Cell images for small interfering RNA (siRNA) screening 
were captured using the IN Cell 2000 (GE Healthcare, 
Buckinghamshire, UK) using a 10× objective. The DAPI 
exposure time was 0.1 s, and the FITC exposure time was 
0.7 s. Flat-field correction was used for both channels. For 
the phosphoprotein detection assay, images were acquired 
using an IN Cell 2000 with a 20× objective and DAPI (80-
ms exposure) and FITC (1000-ms exposure) channels with 
a binning factor of 1 × 1.

Software Systems

Jenkins-CI version 1.532.1 was downloaded from http:// 
jenkins-ci.org and installed on a HP Compaq 8000 Elite work-
station (Hewlett-Packard, Palo Alto, CA, USA) with 12 Xeon 
3.33-GHz processor cores (Windows 7 64-bit OS with 16 GB 
RAM). Jenkins-CI was set up to run as a scheduled task rather 
than as a Windows service. All indicated Jenkins-CI plugins 
were downloaded and installed using the Jenkins-CI Plugin 
management console. CellProfiler version 2.1.2 for Linux was 
downloaded from http://cellprofiler.org. CellProfiler was 
deployed on a Red Hat Enterprise Linux v6.6 cluster (Red Hat 
Entereprise, Raleigh, NC, USA). The cluster infrastructure has 
over 480 nodes (and 3 submit nodes). Each node has between 
16 and 28 Intel Xeon cores (2.6 GHz or higher) and between 
96 GB and 192 GB of RAM. All nodes connect over the 
Network File System, a shared file system spanning over 16 
PB. The cluster schedules and queues jobs using the Univa 
Grid Engine scheduler v8.2.1 (Univa, Lisle, IL, USA). Custom 
data-processing scripts were implemented using Groovy v2.1 
(available at groovy-lang.org; Apache Software Foundation, 
Forest Hill, MD, USA), a dynamic scripting language for the 
Java Virtual Machine.16 All code and Jenkins job configura-
tions were managed using a corporate SVN repository.

Jenkins-CI Workflow Orchestration

Jenkins-CI integrates and orchestrates scientific data- and 
image-processing tasks after image acquisition. A summary 
of the main components of a typical Jenkins-CI installation 
augmented by specific compute and data architecture ele-
ments of our implementation is shown in Figure 1. The data 
architecture we have adopted to facilitate HPC image 
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processing uses high-capacity networked data shares 
mounted to multiple operating systems and is further dis-
cussed under Results. Finally, Supplemental Table S1 pro-
vides a mapping of Jenkins terminology to more commonly 
used business process and workflow concepts.

Jenkins-CI Projects and Plugins

All projects are instances of the Jenkins-CI “free-style, param-
eterized build” project type. Individual Jenkins-CI projects are 
composed of a defined sequence of build steps. Functionality 
for each build step (such as data copying, archiving, executing 
commands, and custom scripts) is provided by a corresponding 
Jenkins plugin. Required custom code is scripted in Groovy 

and can be executed using the Groovy plugin. We chain sev-
eral jobs together with the Parameterized Trigger plugin to 
form multistage pipelines. Multistage pipelines execute 
CellProfiler, monitor a cluster run, and merge output data. We 
visualize workflow pipelines and interact with individual 
stages using the Build Pipeline plugin. Table 1 provides a sum-
mary of the Jenkins plugin we use.

Jenkins-CI CellProfiler Parallel Job Arrays

The Jenkins-CI CellProfiler project integrates CellProfiler in a 
Jenkins pipeline and orchestrates all the required steps for par-
allelizing and launching CellProfiler on the Red Hat Linux 
cluster. CellProfiler job parallelization is accomplished with 

Figure 1. Architecture of Jenkins-CI configured as a scientific data-processing platform. A typical Jenkins-CI installation (shown 
in the center) integrates computational resources (blue rectangles) and local and remote data (green file folders) and makes them 
accessible to end users via a standard web portal. A Jenkins-CI project configuration template defines the parameters, environment, 
and actions executed by a project build and drives the generation of the user interface. Installed Jenkins-CI plugins and local scripts 
and applications execute on the Jenkins-CI server and provide an extensible set of data management and processing functions. High-
performance parallel computing tasks (such as image processing) can be easily integrated into Jenkins-CI projects using standard SSH 
access provided by the SSH plugin. The projects build history stores build metadata, transient analysis data, and reusable components 
such as pipelines and image lists. The instruments data shares store large data/image sets, shared between multiple OS systems 
(Windows/Linux). Instrument data shares act as the final secure repository for important analysis data.
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the Univa Grid Engine Distributed Resource Management 
(DRM). The required grid engine task array script is generated 
by Jenkins using a Groovy build step. Using the Jenkins 
“SSHBuilder” plugin, we execute a series of shell commands 
on the remote Linux cluster to set up the environment for 
CellProfiler to run in “headless mode” (i.e., from the command 
line without a user interface), pass the required CellProfiler 
command line arguments, and launch the job array. Image lists 
are divided in groups of 12 image sets. Each image set is pro-
cessed by a single grid engine CellProfiler job using the first 
and last image set command line arguments to select the range 
of images in the image list to be processed (see also 
“Supplemental Materials Integrating External Software in 
Jenkins-CI Workflows” for additional details).

Development of User Interfaces

Project-specific web user interfaces were designed using 
the Jenkins native support for parametrized “free-style proj-
ects” and Jenkins plugin extensions available through the 
public Jenkins update site (see Supplemental Materials 
“Development of User Interfaces” for additional details).

Data Management and Annotation

Typical image-processing measurement files range in size 
from a few megabytes to tens of megabytes. Due to their 

potentially large size, these files are not stored in the 
Jenkins-CI workspace but rather on a network drive. A for-
malized naming convention generates result folders whose 
names (such as 2013-05-16_14-10-10) match the corre-
sponding Jenkins-CI BUILD_ID, a unique timestamp-
based identifier generated by the Jenkins-CI server each 
time an image-processing run is executed.

Availability of Supporting Data

Scripts and associated Jenkins-CI project configuration 
files will be made available through the Novartis public git 
repository at https://github.com/orgs/Novartis.

Results

Data Architecture to Support HPC

In the development of the Jenkins-CI CellProfiler HPC 
platform, we sought to minimize data movement and repli-
cation. To achieve this goal, it is important that image file 
operations are supported across several operating systems. 
For example, most scientific imagers are operated and 
images recorded via Windows-based software. However, 
for HPC image processing, images are processed on the 
Linux cluster. To allow these operations without copying 
the data between the two operating systems, we have set up 

Table 1. Selected Jenkins Plugins Supporting Data- and Image-Processing Tasks.

Jenkins Plugin Name Category Utility

Parameterized Trigger Task Orchestration Triggers new builds when your build has completed, with various ways of 
specifying parameters for the new build

Conditional-buildstep Task Orchestration A build step wrapping any number of other build steps, controlling their 
execution based on a defined condition

Associated Files Data Management Associates files or directories outside of Jenkins as related to a build. 
Associated files are deleted when the build itself is deleted

Build Pipeline User Interface
Task Orchestration

Renders upstream and downstream connected jobs and allows the user to 
interact with them

Environment Injector Parameters
Task Orchestration

Inject variables at a build step

Extended Choice Parameter User Interface
Parameters

A rich dropdown selection box with many options for defining the list of 
available selections

HTML Publisher Reporting Publishes HTML reports
Summary Display Reporting Allows generation of rich summary reports based on a standardized XML 

template. Report styles include sections, tables, tabs, and accordion
Groovy, Groovy Postbuild Code execution Adds the ability to directly execute Groovy code
Scriptler Code Execution Creates a shared script catalog. Scripts can be used as Jenkins build steps
Jenkins SSH Code execution 

(remote)
Executes shell commands remotely using the SSH protocol. This plugin is 

used to submit parallel CellProfiler job arrays to the compute cluster
Build-name-setter User Interface

Data Management
Sets the display name of a build from a variable

Rebuild Build Execution Allows users to rebuild a parametrized build without entering the 
parameters again. It also allows the user to edit the parameters before 
rebuilding
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high-capacity network shares that are mounted on both 
operating systems shares (Instrument Data Shares, Fig. 1).

This data architecture results in significant efficiencies 
as we collect, read, and maintain the data from a single 
physical storage location. The Jenkins-CI workflow auto-
mation is again important as it handles the network map-
ping between Windows and Linux image paths transparently 
for the users.

We have also selected to separate Jenkins-CI output files 
from build metadata and configuration files. By default, 
Jenkins-CI uses a temporary project workspace to store all the 
output files (yellow rectangle in Fig. 1). Workspace files can 
be archived to the “Project Build History” folder for perma-
nent storage. This folder maintains the run input parameters, 
metadata, log files, and data generated by the project. However, 
given the large amount of images, CellProfiler-generated mea-
surements, and the need for data security (back up, authorized 
access, etc.), the output is stored on the instrument data shares. 
The imaging instruments from different groups in our organi-
zation are assigned different folders for storing acquired 
images. The Jenkins-CI account has authorized access to each 
of these folders, and the cluster nodes (when running under this 
account) can directly access the required image data to acceler-
ate image processing. In turn, the Jenkins-CI workflows auto-
detect the origin of the input image data and store image 
measurements in prescribed folders in the corresponding 
instrument data share. As a result, analysis data are accessible 
only to groups authorized to access the instrument data share.

User Access to Software, Data, and Computing 
Resources

A key deliverable of the work described in this report was to 
enable laboratory scientists to access and use HPC resources 
for image processing in an easy and direct manner with 
minimal understanding of the technical details of the HPC 
computing platform.

Users access the HPC platform through a secure 
Jenkins-CI web portal and are able to execute and manage 
tasks and orchestrated computational workflows for image 
and data processing by simply filling and submitting web 
forms (Suppl. Fig. S2). Web-based platforms for accessing 
software, data, and computing resources have the distinct 
advantages of not requiring any software installation on the 
user’s computer and controlling software upgrades/patches 
from one central location. A Jenkins-CI server installation 
provides an out-of-the-box web-accessible portal where all 
Jenkins-CI jobs can be configured, executed, monitored, 
and managed. By default, jobs can be organized in a multi-
tab user interface, with each tab easily customizable to con-
tain a set of related or interacting jobs (Fig. 2).

Jenkins-CI provides a built-in user management system 
that provides not only authentication but also granular, role-
based access to all system functions, including browsing 

and data retrieval. We have configured Jenkins-CI to act as 
an intelligent data broker, accessing and writing data in a 
way that ensures that only the primary image data owners 
(as controlled by corporate access and authorization per-
missions) have access to measurements generated from 
these images.

Finally, as described in more detail in the “Parallel Image 
Processing Using CellProfiler” section, Jenkins-CI com-
pletely isolates users from the technical requirements for 
using CellProfiler on the HPC Linux cluster. Users are sim-
ply responsible for selecting in a web form the image data 
to be processed and the appropriate CellProfiler image- 
processing pipeline (Fig. 3, step 3). Once the form is submit-
ted, Jenkins-CI takes care of the technical details of distribut-
ing subsets of images for parallel processing, monitoring and 
reporting on the progress of the parallel runs, and finally 
aggregating CellProfiler measurements generated from 
these distributed runs.

Data Preparation for Image Processing

When CellProfiler is used in a “batch” mode for parallel pro-
cessing, it requires as input to the pipeline an image list that 
conforms to a prescribed format and metadata naming con-
ventions. Initially, the manual (and often error-prone) process 
for generating correctly formatted image lists presented an 
obstacle to the adoption of CellProfiler for image processing. 
We then implemented a Jenkins-CI job to transform the 
image list generation process into a simple, user-driven, and 
reproducible task (Fig. 3, step 1 and Suppl. Fig. S2). This 
enabled users to generate correctly formatted lists by simply 
pointing to a directory containing images from one or more 
assay plates (Suppl. Fig. S2). Generated image lists are 
archived on the Jenkins server and can easily be used with the 
desktop version of CellProfiler. This is made possible by the 
ability of CellProfiler to open an image list from a URL and 
by the ability of Jenkins to serve any managed file as an 
HTTP request. This has proven to be a powerful feature that 
allows us to easily reuse and share image data among multi-
ple users.

Parallel Image Processing Using CellProfiler

Configuring CellProfiler to process images in parallel on a 
compute cluster results in a high-performance, cost-effective 
image-processing system. However, without the aid of an 
automated workflow system, the process is cumbersome, 
manual, and accessible only to experts familiar with the 
Linux operating system. Prior to building an integrated 
Jenkins-CI workflow to use CellProfiler in parallel mode, 
the process involved contacting a local Linux expert, iden-
tifying the image data to be processed, and then waiting for 
several days (depending on the workload of this expert) for 
the process to be completed through a series of manual 
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steps. After implementing the Jenkins-CI workflow for par-
allel image processing (Fig. 3, Suppl. Fig. S2), we have 
observed that many users can execute the entire workflow 
unassisted and are able to complete the image processing 
and primary data analysis in less than a day after acquisition 
of the assay images. This has resulted in greater efficiency 
and accelerated feedback to the biology and chemistry 

project teams. Data management and annotation have also 
improved significantly. Each Jenkins-CI image-processing 
run organizes and annotates results in a consistent way, 
cleans up intermediate run files, and generates a final 
HTML report that includes important analysis metadata and 
links to the location of the intermediate and final merged 
results (Fig. 4).

Figure 2. Jenkins-CI web portal for access to high-performance compute (HPC) computational tasks and workflows. A default 
installation of Jenkins-CI provides customizable tabbed views that group the available Jenkins-CI projects. Displayed tabs include (1) 
the “Help” tab with helpful shortcuts and guides in the use of the various Jenkins-CI projects; (2) the “Image Lists” tab for generating 
and managing CellProfiler-formatted image lists for various high-content screening instruments; (3) the “CellProfiler Pipelines” tab for 
the management and sharing of CellProfiler image-processing pipelines; (4) the “CellProfiler Windows” and (5) “CellProfiler Linux 
Cluster” tabs for launching CellProfiler on the Windows and HPC platforms, respectively; and (6) the “CellProfiler Helpers” tab 
containing a variety of custom utilities for formatting and processing measurement files generated from CellProfiler.
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In addition, parallel image processing on the cluster with 
CellProfiler offers time savings that are significantly ampli-
fied as the amount of image data to be processed increases. 
We will now offer two usage examples and explain how the 
availability of computing resources and our strategy for 
parallel image processing contributes to this effect. For par-
allel processing, we divide the total number of images to be 
processed into groups of 12 images. We have calculated that 
for most image-processing pipelines of average complexity, 
each such group can be processed by a single CellProfiler 
computational thread (job) in about 10 min.

In the first example, a screen to monitor the location of a 
transcription factor in response to treatment by siRNAs17 
(Suppl. Fig. S1), CellProfiler was used to process images in 
parallel using a Windows 7 workstation with twelve 3.3-GHz 
processor cores (only 10 of which were available for image 

processing) and 16 GB of RAM memory. A 384-well plate 
(imaged at a single field per well) generates a total of 32 image 
groups, thus requiring 32 separate CellProfiler jobs to com-
plete. Since only a maximum of 10 jobs are allowed to run in 
parallel, about two-thirds of the jobs are waiting in the queue 
when the run is launched. As the first 10 jobs complete, more 
of the jobs in the queue are launched until all jobs are pro-
cessed. Under this configuration, processing of all 384 images 
was completed in approximately 60 min, giving us an effective 
processing performance of 6.4 images per minute.

When the same data set was submitted to the HPC Linux 
cluster for parallel processing, it was similarly split among 
a total of 32 CellProfiler jobs for processing. However, in 
contrast to our local workstation, all 32 jobs start executing 
simultaneously with no queuing time. This is due to the fact 
that the typical number of available processing cores on the 

Figure 3. Jenkins-CI workflow for parallel image processing using CellProfiler on the Linux cluster. (1) The user uploads (contributes) a 
working CellProfiler image-processing pipeline. (2) The user generates a CellProfiler-formatted image list from one or more primary image 
acquisition folders. Image lists contain metadata required for data grouping operations as well as for downstream import into our corporate 
results database. Contributed pipelines and image lists are annotated and stored in the Jenkins-CI project build history, from where they can 
be re/used for image analysis by multiple users. (3) The user completes the cluster image-processing submission form by selecting the image-
processing pipeline and an appropriate image list. The form contains additional annotation fields and options for restricting the processing 
to a subset of the images. (4) The user starts the build, which launches a multistage Jenkins-CI workflow (shown as a gray rectangle). The 
workflow includes stages for launching CellProfiler in parallel mode, monitoring the progress of the parallel cluster run, merging well-level 
data (optional), and deleting temporary CellProfiler files and grid engine logs.
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cluster is much larger than the number of processing cores 
we can allocate on a local workstation. Although this num-
ber will vary from run to run and day to day, due to the 
cluster being a shared resource with fluctuating load, on 
average there will be significantly more than just 10 cores 
available for image processing. Under this configuration, an 
assay plate with 384 images completed in approximately 11 
min, giving us an effective processing performance of 35 
images per minute. Thus, the user experienced a 5.5-fold 

performance improvement in image analysis time when the 
HPC cluster was used.

This improvement becomes even more dramatic when the 
number of plates or wells increases as is the case with high-
throughput screening (HTS) assays that use 1536-well plates, 
thus generating many more images. The second example is 
taken from an assay that monitors the phosphorylation of a 
specific protein: a simple two-channel assay with Hoechst 
stain to define nuclei/cell bodies paired with an antibody to a 

Figure 4. (A) Report from a parallel CellProfiler image-processing run. The default section of the build report is outlined in blue. 
An additional section has been appended by the “Associated Files” plugin. The default report displays a variety of build file artifacts 
and metadata. The associated files section displays the location of the intermediate and final results. In addition, the “Associated Files” 
plugin ensures that files from these locations are deleted when their associated build is deleted. (B) Custom summary report of a 
parallel CellProfiler image-processing run. To facilitate the retrieval of the resulting measurements, each CellProfiler image-processing 
run launched through Jenkins generates a custom HTML report. The report displays important analysis metadata and is hyperlinked 
to the pipeline and image list used in the run, as well as various data locations. The report is displayed with the aid of the “HTML 
Publisher” plugin that can display one or more html files in a tabbed format.
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specific phosphorylated protein, localized in the cytoplasm. An 
image set of 6144 images (4 × 1536-well plates) was processed 
on a 3-GHz workstation with 8 GB RAM using a single-
threaded version of the CellProfiler desktop client. Under this 
configuration, the data were processed in approximately 6000 
min (100 h). On the HPC cluster, the same data set completed 
in 37 min, thus delivering a performance improvement of 162-
fold compared with the desktop version of CellProfiler.

Postprocessing of CellProfiler Measurements

Image measurements are typically exported as a CSV file after 
CellProfiler processing for further analysis. When CellProfiler 

is run in parallel, each job generates a measurements file 
uniquely identified by its corresponding metadata (such as 
plate coordinates, image field). As a result, multiple files are 
generated per assay plate (usually as many files as wells). 
These individual, well-level measurement files typically need 
to be merged to a single file representing the data of one or 
more plates for downstream analysis of the screening cam-
paign. These tasks are now included in the typical CellProfiler 
workflow and are automatically triggered as soon as image 
processing completes successfully (Fig. 3, step 4: “Merge Well 
Level Data” processing block, Fig. 5 in Monitor_JCPCluster). 
Furthermore, after merging, intermediate well-level measure-
ment files, job array logs, and CellProfiler intermediate (hdf5) 

Figure 5. View of multistage pipelines used for parallel image processing. This multistage pipeline is used for submitting large data 
sets to the Linux cluster for CellProfiler processing. This custom view is generated with the aid of the Jenkins Build Pipeline Plugin. 
The number of pipeline runs displayed is configurable (in this case, we are displaying the last three). The Jenkins jobs participating 
in the pipeline are shown as blocks with arrows connecting one stage to the next in the sequence. Successfully executed blocks 
are green, and they include various statistics and shortcuts for more detailed inspection of the run logs. The first job (CellProfiler_
JClustSelect) prepares a standard grid engine “job array” script by examining the submitted image list and creating a separate grid 
engine job for each group of 12 images. The next step is performed with the aid of the Jenkins SSH plugin (see Table 1). This plugin 
allows us to connect to the cluster and execute a short (bash) script. The script creates the data folders for writing the image analysis 
results, downloads the job array script from the Jenkins server, and finally launches the grid engine job array to process images using 
the CellProfiler command line mode. The second job (Monitor_JCPCluster) monitors the generation of output files from CellProfiler. 
As measurement files are generated, they are counted and the count compared with the expected number computed from the 
submitted image list. This allows us to construct a simple progress bar that is displayed in the Jenkins console. When all of the 
expected output is accounted for, the well-level data are merged into a single file to facilitate downstream data analysis. At this point, 
the third stage of the workflow is triggered. This third job (CU_CleanThumbnail_Folder) simply deletes any intermediate CellProfiler 
hdf5 databases, well-level data files, and grid engine job log files that were created during the run.
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files are no longer needed and can be safely deleted to conserve 
disk space. This tedious and often forgotten process is now 
automated as part of the image-processing workflow (Fig. 3, 
step 4: “Clean Up Temp Files” processing block, Fig. 5 in 
CU_CleanThumbnail_Folder). Importantly, if any of these 
automated tasks fails, Jenkins-CI will not proceed to the next 
stage, thus allowing for manual intervention and recovery. The 
end result is a single file containing all of the measurements for 
downstream analysis and continuous reclaiming of the disk 
space used by intermediate results.

Improvements in Reproducible Research and 
Collaboration

Data replication and reproducibility have emerged as impor-
tant goals in the field of life science computations and anal-
ysis.18 There is an increasing expectation that published 
analysis results should be reproducible by others, beyond 
the original authors, and that requires at a minimum trans-
parent access to the original data, code, and protocols.19

The Jenkins-CI platform provides a solid foundation for 
implementing a reproducible research environment. The com-
putational workflows, environment, and parameters used to 
generate or process data are archived and can be easily retrieved 
for review. Comprehensive logs and console output are 
maintained for every user session. Generated data are man-
aged in a consistent way (naming, structure, annotation, 
archiving), and multiple users can securely access the portal 
to reuse CellProfiler pipelines, image lists, and image mea-
surements without the need for maintaining multiple indepen-
dent copies. Primary measurements are archived and staged 
for downstream analysis, ensuring maximum reuse and consis-
tency. Developers can easily monitor the status and progress of 
the workflows and can quickly intervene when issues arise.

Discussion

This report describes the implementation of an integrated 
scientific data- and image-processing platform based on 
open-source software packages. CellProfiler provides image-
processing functionality while Jenkins-CI plugins and custom 
utilities provide data and image management, formatting, and 
processing functions and seamless access to high-performance 
computing resources. The platform enables laboratory scien-
tists to perform large-scale, high-performance image process-
ing in a massively parallel mode without the assistance of 
technical experts in high-performance computing. As a con-
sequence, analysis jobs that previously had taken several 
days to complete can now be completed in the span of a 
single workday and frequently within a few hours or even 
minutes.

From a systems development view, Jenkins-CI has 
enabled us to rapidly analyze requirements and prototype 
solutions for image and data processing in an active HCS 

screening organization. We have found this ability to be 
complementary and supportive of the development efforts 
of a dedicated team of engineers and software developers 
that are assisting us in building an enterprise-level analyti-
cal workflow system for HCS data.

Possibly the most important advantage of using open-
source packages is that they offer a consistent platform to 
run image analysis experiments independent of vendor- 
specific hardware or software. In addition, the cost savings 
for licensing software to run on hundreds of nodes of a com-
pute cluster are significant. Finally, in our experience, the 
open-source model for software development has been 
extremely responsive to fixing software issues and provid-
ing functional improvements.

While this report describes the application of Jenkins-CI 
to integrate several independent data- and image-processing 
tasks into a robust high-performance workflow, it should be 
noted that a number of similar tools designed to facilitate 
the design and execution of bioinformatics and imaging 
workflows already exist. For example, Galaxy,20 Taverna,21 
openBIS,22 LONI,23 and Knime24 have all been previously 
described. Each of these systems has unique advantages and 
disadvantages that require careful consideration before a 
suitable workflow platform is selected. Supplemental 
Table S2 provides a comparison of relevant features in 
these packages.

In our experience, the advantages of Jenkins-CI include 
ease of setup and maintenance compared with some of the 
other tools mentioned above. The file-based system for data 
and result management used in Jenkins-CI is simple and 
effective without the effort of maintaining a separate data-
base system. This also adds considerable flexibility at early 
stages of development where requirements are still rapidly 
evolving. Changing task parameters and the structure of the 
workflows is straightforward without complex cascading 
effects. Jenkins-CI also provides features for provenance 
tracking and collaboration. Build histories and logs provide 
a detailed record for tracking and reproducing analytical 
workflows, as well for troubleshooting any issues that may 
arise. Finally, Jenkins-CI is built on a modular architecture 
and is supported by community-contributed plugins and 
custom extensions. This can be leveraged to build an exten-
sible data integration and computational platform finely 
customized for user needs.

However, in comparison to systems specifically 
designed for computational and bio/cheminformatics 
workflows, Jenkins-CI falls short in the availability of 
readymade modules for statistics, data mining, and visual-
ization. Although a variety of external scripts and com-
mand line scientific tools can be easily integrated in a 
Jenkins-CI pipeline, they do not provide the same level of 
convenience, granularity, and control in building a work-
flow as with tools such as Galaxy and Knime. So, in this 
respect, Jenkins-CI has to be considered a tool more 
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appropriate for integrating larger pieces of functional soft-
ware into scientific workflows and less appropriate for 
constructing an analytical process from small analytical 
functions. Search and metadata management are two other 
areas where the out-of-the-box functionality of Jenkins-CI 
would be insufficient for users requiring the tracking and 
searching of research results through tags, controlled 
vocabularies, and full-text searching.

Our experience in integrating Jenkins-CI with CellProfiler 
and the HPC cluster was quite positive and highlights an 
alternate strategy for building domain-specific workflow sys-
tems. Our fully functional image-processing workflow sys-
tem demonstrates that this functionality can emerge from the 
integration of a generic workflow system with domain-spe-
cific software such as CellProfiler. Although Jenkins-CI does 
not natively support image processing, this functionality was 
provided by CellProfiler through its modular architecture. 
CellProfiler pipelines are maintained as separate entities and 
can be used to process one or more suitable image lists using 
CellProfiler in “headless” (command line) mode. Jenkins-CI 
can now support image processing by integrating “headless” 
CellProfiler into a more complete pipeline that includes addi-
tional data formatting, process monitoring, security, high per-
formance, and other features. This approach has the additional 
advantage that a domain-specific tool, in our case the desktop 
version of CellProfiler, can be used to design and test the 
image-processing pipelines before deploying them on the 
cluster.

In the future, we envision integrating the Jenkins-CI 
CellProfiler platform with more structured data storage and 
custom downstream analytics for multiparametric analysis. 
Many of these analytics are written in R, which is already 
supported by the Jenkins-CI R plugin and can also be scaled 
out on a compute grid.

In summary, we have demonstrated that Jenkins-CI, an 
open-source, well-recognized, and supported continuous 
integration system, can form an agile platform for scientific 
image and data integration and processing. With its native 
ease for setup and maintenance, support for multiple operat-
ing systems, and host of prebuild plugins, Jenkins-CI can be 
used in a variety of scientific environments where there is a 
need for integrating and automating scientific computations 
and data management.
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