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Abstract 

Background: In biological systems, metabolomics can not only contribute to the discovery of metabolic signatures 
for disease diagnosis, but is very helpful to illustrate the underlying molecular disease-causing mechanism. Therefore, 
identification of disease-related metabolites is of great significance for comprehensively understanding the patho-
genesis of diseases and improving clinical medicine.

Results: In the paper, we propose a disease and literature driven metabolism prediction model (DLMPM) to identify 
the potential associations between metabolites and diseases based on latent factor model. We build the disease glos-
sary with disease terms from different databases and an association matrix based on the mapping between diseases 
and metabolites. The similarity of diseases and metabolites is used to complete the association matrix. Finally, we 
predict potential associations between metabolites and diseases based on the matrix decomposition method. In 
total, 1,406 direct associations between diseases and metabolites are found. There are 119,206 unknown associations 
between diseases and metabolites predicted with a coverage rate of 80.88%. Subsequently, we extract training sets 
and testing sets based on data increment from the database of disease-related metabolites and assess the perfor-
mance of DLMPM on 19 diseases. As a result, DLMPM is proven to be successful in predicting potential metabolic 
signatures for human diseases with an average AUC value of 82.33%.

Conclusion: In this paper, a computational model is proposed for exploring metabolite-disease pairs and has good 
performance in predicting potential metabolites related to diseases through adequate validation. The results show 
that DLMPM has a better performance in prioritizing candidate diseases-related metabolites compared with the previ-
ous methods and would be helpful for researchers to reveal more information about human diseases.
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Background
It is an important challenge to reveal the relationship 
between disease phenotype and potential cell dysfunc-
tion in the biomedicine field [1–3]. In the past decades, 
people have been working on gene-based methods to 
identify specific genetic defects. However, most cell 
components perform their functions through complex 
networks involving gene regulation, metabolism and pro-
tein–protein interaction. Although these methods have 
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made great progress in disease treatment, it is still far 
from enough [2, 4, 5]. In clinical practice, metabolites are 
often used as biological indicators for disease diagnosis 
[6]. For example, people have been using small amounts 
of metabolites to assess individual health, such as glucose, 
cholesterol, creatinine, urea and so on. A large number 
of metabolites are also used as biomarkers for the diag-
nosis and treatment of congenital metabolic defects [7]. 
However, in the face of diseases caused by multiple fac-
tors such as type 2 diabetes, metabolic syndrome or neu-
rodegenerative disease, clinical diagnosis and treatment 
urgently need more types of biomarkers [6].

Metabonomics, an important part of system biology, 
is a way to analyze metabolites quantitatively and iden-
tify the relationship between metabolites and physi-
ological and pathological changes. The emergence of 
metabonomics has improved our understanding of 
intracellular metabolites [8]. In addition, in all omics, it 
is considered to be closer to the biological phenotypes, 
so metabonomics is an effective approach to study them 
[9, 10]. For example, metabonomics can be used as a 
powerful tool for human precision medicine [11]. Some 
researchers have selected 80 healthy volunteers for meta-
bonomics research. The results show that the changes of 
metabolites are individual specific and related to genetic 
changes, which can be used for disease risk assessment 
[12]. Therefore, studying the interaction between metab-
olites and disease phenotypes can help people under-
stand more about the regulatory networks in organisms.

In a metabolic network, a metabolite is not only associ-
ated with a sole disease, but also with a variety of diseases 
[13]. Therefore, the adjacent metabolites with functional 
associations are more likely to be related to the same or 
similar diseases [2]. This suggests that functional asso-
ciations between metabolites can be measured by dis-
ease similarity. This paper aims to identify more potential 
disease-related metabolites by analyzing metabolites 
and disease data, and propose a disease-related metabo-
lite prediction method integrating disease and literature 
based on latent factor model.

The contribution of this paper is mainly shown in the 
following aspects:

a) A disease vocabulary is built, by which can further 
expand the application of the disease ontology.

b) The metabolite-related disease similarity and the lit-
erature associations of metabolites are concurrently 
considered. It can better reflect the relationship 
between metabolites and diseases.

c) Using the disease and metabolite similarity to 
identify the unknown association between them 
can effectively avoid the problem of data sparsity 
and improve the prediction accuracy of disease-

related metabolites combining with the matrix 
decomposition method.

Results
In the paper, we propose a disease and literature driven 
metabolism prediction model (DLMPM) to identify the 
potential associations between metabolites and diseases 
based on latent factor model. The workflow of the com-
putational model is shown in Fig. 1.

The disease and literature driven metabolism predic-
tion model (DLMPM) is proposed to predict the asso-
ciation between diseases and metabolites by using the 
known disease similarity and the related metabolite 
literature correlation scores. Firstly, the disease terms 
are extracted from the experimental data that is pre-
processed. A disease vocabulary is constructed by the 
synonym mapping between the disease terms. Then, 
according to the disease vocabulary and the associations 
between known diseases and metabolites, the mapping 
between disease ontology items and metabolites is estab-
lished; Based on the mapping, the unknown associa-
tions between diseases and metabolites are identified by 
using the disease similarity and the literature association 
score of metabolites, and a predictive association matrix 
of diseases and metabolites is constructed. Finally, the 
metabolites related to diseases are classified by matrix 
decomposition method and the metabolites potentially 
associated with disease are predicted.

Metabolites and diseases
A total of 8,704 DO terms are integrated and a dis-
ease vocabulary containing 68,838 terms is built. Then, 
1,406 associations between metabolites and diseases are 
found by using the disease vocabulary and the mappings 
between metabolites and diseases provided, including 
248 disease terms and 600 metabolites.

The literature association scores between metabolites 
from STITCH are extracted and taken as the metabolite 
similarities. Finally, 27,558 associations of 492 metabo-
lites are obtained from STITCH. Meanwhile, a total of 
37,846 associations between 229 diseases are obtained 
when the disease similarities are calculated.

In total, there are 1,406 direct associations between 
diseases and metabolites. On this basis, the similarity 
calculation of diseases and metabolites is used to pre-
dict the unknown associations between diseases and 
metabolites in the relational matrix. There are 119,206 
unknown associations between diseases and metabolites 
predicted with a coverage rate of 80.88%. The distribution 
of the predicted associations based on disease similarity 
and metabolite similarity is shown in Fig.  2. When the 
unknown associations in the matrix are predicted, the 
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number of predicted associations based on both disease 
and metabolite similarity is 25,408. It is 88,175 when the 
associations predicted by the disease similarity and the 
number when the metabolite similarity used is 5,623.

Performance
In the previous study [14], we designed a validation 
scheme to extract test sets based on data increment from 
the database of disease-related metabolites. Data incre-
ment means that the volume and quality of the data in the 
disease-related metabolite database continue to expand 
and improve because the data is updated regularly. So the 
differences between the versions of the databases can be 

used to collect test data. Here the formal definition of the 
test set is given as follows:

Definition 3 Existing a bipartite graph MDG = (M, D, 
MAP), where M is the collection of metabolites and D is 
the collection of diseases, Map: MD is the collection of 
associations between diseases and metabolites. Given 
MDG1 and MDG2, for ∀d ∈ D1, if ∃m ∈ M1 ∩ M2, satisfy-
ing (m → d) ∈ Map1 and (m → d) ∈ Map2, then metabo-
lite m is one of detection targets for disease d. For ∀ 
m* ∈ M1 ∩ M2, satisfying (m* → d) ∈ Map2, then metabolite 
m* is a positive example in the test set of disease d.

The associations between metabolites and diseases 
can be seen as a bipartite graph. According to Defi-
nition 3, test data can be extracted to validate the 

Fig. 1 Schematic of metabolite prediction based on disease and literature association
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prediction model. Specifically, the prediction method 
is firstly performed by using the data in the version 
2017 of HMDB and then the test data can be extracted 
based on the version 2018. The validation process is 
shown in Fig.  3.  By comparing the different versions 
of the data, 19 diseases meet the conditions for vali-
dation. The 19 diseases and their related metabolites 

are used to assess the performance of predicting dis-
ease-associated metabolites. The average AUC value 
of DLMPM reaches 82.33%, indicating that the model 
for predicting potential disease-related metabolites 
proposed in this paper have a good performance to 
identify potential associations between diseases and 
metabolites.

Fig. 2 Distribution of the predictive associations between diseases and metabolites

Fig. 3 The validation scheme of DLMPM
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In addition, Leave One Out Cross Validation (LOOCV) 
is used to further validate the generalization ability of 
DLMPM for predicting disease-related metabolites. 
Specifically, after removing any association between 
a disease and a metabolite, DLMPM is built based on 
the other known associations and then validated with 
the removed one. We performed LOOCV for each pair 
of a disease and a metabolite and the average AUC of 
DLMPM can reach 86.83%, as shown in Fig.  4. It indi-
cates that DLMPM has a good generalization ability for 
exploring potential disease related metabolites.

Discussion
DLMPM uses the similarity of diseases and metabolites 
to complete the association matrix for the disease-related 
metabolite prediction, so an experiment is designed to 
verify the necessity of introducing disease and metabolite 
similarity. We build DLMPM_init based on direct asso-
ciations between diseases and metabolites, DLMPM_D 
based on the disease similarity, DLMPM_M based on 
the metabolite similarity. Then the test set from these 19 
diseases is used to validate these prediction models as 
shown in Fig. 5. DLMPM_init can effectively predict the 
potential association between metabolites and diseases 
with an average AUC value of 66.04%. The performance 
of DLMPM_M is better than DLMPM_init and reaches 
68.12%. Based on the disease similarity, DLMPM_D has 
an average AUC value of 73.08%. Compared with these 
methods, the prediction ability of DLMPM is greatly 
improved and its average AUC reaches 82.33%.

In addition, we compare the differences of prediction 
results with different matrix decomposition methods. 

Here we implement SVD-based recommendation algo-
rithm and LFM_NR method. SVD-based method uses 
matrix decomposition to obtain feature vectors and 
predicts the associations between diseases and metabo-
lites based on dimensionality reduction data. LFM_NR 
is similar to LFM in principle, except that there is no 
regularization in the optimization function. Then the 
test scheme based on data increment is used to validate 
these prediction models as shown in Fig. 6. SVD method 
can effectively predict the potential association between 
metabolites and diseases with an average AUC value of 
69.69%. The performance of LFM_NR is better than SVD 
and reaches 77.91%. It is clear that the predictive power 
of DLMPM is outstanding compared with these methods.

We compare DLMPM with the existing method 
FLDMN [14] that has proposed to predict potential 
disease-related metabolites. In FLDMN, a spatial vec-
tor with disease as the dimension was used to calcu-
late the similarity of metabolites and a model-based 
collaborative filtering algorithm was used to predict 
disease-related metabolites. We use the two prediction 
models to predicting potential metabolites associated 
with these 19 diseases. As shown in Fig. 7, DLMPM has 
a better performance than FLDMN in identifying dis-
ease-related metabolites. The predictive power for 13 
of these diseases is improved significantly. For example, 
for disease “Fanconi syndrome” (DOID:1062), the aver-
age AUC of FLDMN is 69.58% while DLMPM has an 
average AUC of 94.72%. In addition, the average AUC 
of the DLMPM-based prediction model for 16 diseases 
is more than 70% and more than 90% for 7 diseases. 
By comparison, the performance of FLDMN for 13 

Fig. 4 Performance of DLMPM with LOOCV
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diseases is more than 70% and more than 90% for 3 dis-
eases. In general, the average AUC of FLDMN is 76.03% 
and the AUC of DLMPM can reach 82.33%, which has a 
better performance in predicting potential associations 
between diseases and metabolites.

We found that DLMPM has outstanding ability to predict 
metabolites associated with certain diseases. For example, 

the average AUC reaches 99.32% based on DLMPM for 
disease “aromatic L-amino acid decarboxylase deficiency” 
(DOID:0,090,123). Similarly, the AUC value for disease 
“methylmalonic acidemia” (DOID:14,749) is also more than 
99%. But the experimental results show that DLMPM is 
not capable of predicting certain disease. For disease “type 
2 diabetes mellitus” (DOID:0,090,123), the AUC values of 

Fig. 5 Average AUC of the metabolite prediction models

Fig. 6 Average AUC of prediction models based on different matrix decomposition methods
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DLMPM and FLDMN are less than 60%. The lack of rec-
ognition ability for this disease is related to the known 
associations between diseases and metabolites collected 
in the process of building the prediction model. The pre-
vious study has shown that metabolites associated with 
“type 2 diabetes mellitus” are different in different versions 
of HMDB. The difference is that the number of candidate 
metabolites to be identified is 1, but the number of disease-
related metabolites in different versions of HMDB is the 
same. The detailed data can be found in table 1 of the lit-
erature [14]. Therefore, it can be seen as a correction for 
disease-related metabolites and the prediction based on 
incorrect information may affect the result.

Case study
We use several diseases as examples to predict potential 
associations between them and candidate metabolites by 
DLMPM based on the latest data from HMDB. Alzhei-
mer’s disease (DOID:10,652) is a neurodegenerative dis-
ease characterized by memory impairment, aphasia and 
executive dysfunction. The etiology of Alzheimer’s dis-
ease is still unknown. In the list of predicted metabolites 
for Alzheimer’s disease, nine of the top ten metabolites 
are highly associated with Alzheimer’s disease accord-
ing to the literature, but they have not been included in 
HMDB. The specific information can be seen in Table 1. 
For example, the study [15] has discussed the role of 

Fig. 7 Performances of the metabolite prediction models based on 19 diseases
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hydrogen peroxide (HMDB0003125) in the aetiology of 
Alzheimer’s disease. The toxicity of the  H2O2 molecule 
may be closely linked with the role of heavy metals in 
Alzheimer’s disease pathology.

We also use DLMPM to predict candidate metabo-
lites for type 1 diabetes mellitus (DOID:9744) and 
breast cancer (DOID:1612) respectively. L-Arginine 
(HMDB0000517) and Ethanol (HMDB0000108) are 
ranked in the top five of candidate metabolites for type 
1 diabetes mellitus. Their associations with type 1 dia-
betes mellitus have been documented [28, 29]. In the 
list of candidate metabolites for breast cancer, L-Argi-
nine (HMDB0000517), Glycine (HMDB0000123) and 
L-Lysine (HMDB0000182) are in the top five, while there 
have been several studies on their roles in breast cancer 
research [24–27]. For examples, researchers have found 
that L-arginine can stimulate host defenses in patients 
with breast cancer.

Conclusions
Metabolite, as the link between genotypes and pheno-
types, can be used to explain the underlying molecular 
disease-causing mechanisms. Therefore, we propose a 
novel prediction method DLMPM to identify candidate 
metabolites related to diseases based on latent factor 
model. We first build the disease glossary with disease 
ontology and MeSH and establish the mapping between 
diseases and metabolites. The unknown elements in the 
association matrix of diseases and metabolites are filled 
with the similarity of diseases and metabolites. Finally, 
we predict potential associations between metabolites 
and diseases based on the matrix decomposition method. 
The result shows that DLMPM is proved successful in 

predicting novel metabolic signatures with an aver-
age AUC value of 82.33%. Compared with the previous 
method, DLMPM has been greatly improved and would 
be helpful for researchers in metabolomics.

Methods
Data integration
Human Metabolome Database(HMDB) is a standard 
metabolomic resource containing detailed informa-
tion about small molecule metabolites found in the 
human body [30]. The disease information related to 
human metabolites can be extracted from the XML 
file provided by HMDB. However, there is no uni-
form representation of disease names in the extracted 
information. It hinders the establishment of mappings 
between diseases and metabolites because the cor-
respondence among different disease names cannot 
be determined. Therefore, it is necessary to establish 
a glossary rich in disease vocabulary and then anno-
tate the disease terms with it. In this study, there are 
two disease data sources for the disease term integra-
tion: Disease Ontology(DO) [31] and MEDIC [32]. 
DO, as a standardized human disease ontology, pro-
vides a unified description of disease terminology for 
biomedicine, including human disease terminology, 
phenotypic characteristics and disease-related medi-
cal concepts. By cross-mapping with MeSH [33], ICD 
[34], NCI Thesaurus [35], SNOMED [36] and OMIM 
[37], DO integrates a large number of diseases and 
medical vocabulary semantically. MEDIC is a disease 
vocabulary maintained by CTD [38]. It contains more 
than 9,700 diseases and more than 67,000 disease terms 
and synonymous descriptions. Although MEDIC is not 

Table 1 Prediction of potential related metabolites with complex diseases

Disease Metabolite Term HMDB ID Ranking Evidence

Alzheimer’s disease Adenosine triphosphate HMDB0000538 1 Ref [16]

Ethanol HMDB0000108 2 Ref [17]

L-methionine HMDB0000696 3 Ref [18]

Ammonia HMDB0000051 4 Ref [19]

Hydrogen peroxide HMDB0003125 5 Ref [15]

Sucrose HMDB0000258 6 Ref [20]

Uric acid HMDB0000289 8 Ref [21]

Norepinephrine HMDB0000216 9 Ref [22]

Guanosine triphosphate HMDB0001273 10 Ref [23]

Breast cancer L-Arginine HMDB0000517 3 Ref [24]

Glycine HMDB0000123 4 Ref [25, 26]

L-Lysine HMDB0000182 5 Ref [27]

Type 1 diabetes mellitus L-Arginine HMDB0000517 3 Ref [28]

Ethanol HMDB0000108 4 Ref [29]
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a medical ontology, it plays a huge role in establishing 
links of diseases and toxicological genomics. MEDIC 
integrates the disease terms from OMIM in accordance 
with the disease hierarchy of MeSH.

Because both DO and MEDIC contain a large num-
ber of disease words with the same meaning, disease 
synonyms can be extracted from DO and MEDIC 
respectively. Based on the mapping of diseases in DO 
and MeSH provided by DO, disease synonyms are used 
to annotate disease terms in DO. In this way, the dis-
ease vocabulary can be expanded, as shown in Fig. 8.

Finally, 82,921 terms in MEDIC were annotated into DO 
and the vocabulary of DO is expanded by 45,495 items 
based on the mapping of diseases in DO and MeSH. Then, 
the integrated disease glossary is used to annotate the 
metabolite-related diseases in HMDB. The associations 
between metabolites and diseases are established while DO 
serves as a unified representation of the disease in this study. 
Due to the expansion of the disease vocabulary, the naming 
characteristics of various diseases can be recognized in the 
process of disease name matching. The naming characteris-
tics can be roughly divided into the following 5 cases.

• Singular, plural and possessive nouns in disease 
terms. The disease names may be singular or plural, 
but they all refer to the same disease term. For exam-
ple, “Leukemia, Myelocytic” and “Leukemias, Myelo-
cytic” represent the same disease term (DOID:8692); 
“Disease, Hodgkin’s” and “Disease, Hodgkin” repre-
sent the disease term (DOID:8692).

• Special symbols in disease terms. There may be 
some semantic irrelevant cases such as "-" or blank 
space in the disease terms. For example, “chicken-
pox” (DOID:8659) in DO is named as “Chicken Pox” 
(MESH:D002644) in MEDIC.

• Abbreviations in disease terms. Some disease names 
are abbreviated in the disease vocabulary. For exam-

ple, both “Anorexia Nervosas and “AN” represent the 
same disease term (DOID:8689)

• Order of words in disease terms. In some disease 
names, the word order is reversed. For example, “type 
1 diabetes mellitus” and “Diabetes Mellitus, Type 1” 
represent the same disease term (DOID:9744); “Neo-
plasm, Orbital” represents the same disease term 
(DOID:4143) as “Orbital Neoplasm”.

• Synonyms in disease terms. Some disease terms have 
synonyms. For example, “malignant tumor of lingual 
tonsil” and “malignant neoplasm of lingual tonsil” 
have the same meaning (DOID:8649).

The disease terms can be annotated to the maximum 
with the integrated disease glossary. A total of 1,406 asso-
ciations between diseases and metabolites are obtained 
by matching the disease terms, including 600 human 
metabolites and 248 diseases.

Disease‑metabolite association matrix construction
As one of the most successful technologies for recom-
mender systems [39], collaborative filtering has been 
developed and improved over the past decade. In this 
study, we define associations between metabolites and 
diseases based on Collaborative Filtering and build the 
association matrix. The process of constructing the 
association matrix between diseases and metabolites 
is shown in Fig. 9. Firstly, the initial association matrix 
of diseases and metabolites is constructed based on 
the known associations between diseases and metabo-
lites. Because it is a 0–1 matrix and its data is sparse, 
the unknown associations between metabolites and 
diseases can be calculated with disease similarities and 
metabolite similarities. As a result, we can get an asso-
ciation matrix of diseases and metabolites.

We firstly define the association matrix of diseases 
and metabolites as follows:

Definition 1 Matrix MDR = [mdr(m,d)]|M||D| is the asso-
ciation matrix of diseases and metabolites, where |M| 

Fig. 8 Schematic of expanding disease terms



Page 10 of 13Wang et al. BMC Genomics          (2022) 23:269 

represents the number of disease-related metabolites and 
|D| is the number of metabolite-related diseases; mdr(m, 
d) is the association degree of metabolite m and disease d.

Based on the known mapping between diseases and 
metabolites, we can get the initial association matrix 
MDRinit, the initial association degree mdrinit(m, d) of 
metabolite m and disease d can be defined as follows:

where Dm represents the set of diseases related to 
metabolite m. If there exists any association between 
metabolite m and disease d, the association degree is 1; 
otherwise, it is 0.

It can be seen from Definition 1 that the number of 
diseases |D| is 248, the number of metabolites |M| is 
600. But |M| ×|D| is much larger than the number of 
associations between diseases and metabolites. In other 
words, the initial association matrix is very sparse.

In order to solve the problem of data sparsity in the 
matrix, the disease similarities and metabolite similari-
ties are used to complete the unknown associations in 
the matrix. In this paper, FNSemSim [40], which we 
previously developed, is used to calculate disease simi-
larities. This method calculates disease similarities by a 

(1)mdrinit(m, d) =

{

1

0

d ∈ Dm

otherwise

fused gene functional network composed of HumanNet 
[41] and FunCoup [42]. The results show that FNSem-
Sim has a good performance for calculating similarities 
between diseases. Now, given the disease d1 and disease 
d2, if d1 ∈ D and d2 ∈ D, where D is the set of disease terms 
related to metabolites, then the similarity between dis-
ease d1 and disease d2 can be calculated by FNSemSim, 
denoted as FNSim(d1, d2).

We extract the text mining scores from STITCH [43] 
as the similarities of metabolites in this study. In the 
compound network of STITCH, the text association 
between compounds is quantified as a statistical score 
through corpus collection, word segmentation, name 
recognition, entity relationship integration. Here we 
extract these text scores between compounds. Based 
on the mapping between compounds and metabolites 
from HMDB, the text score between metabolite m1 
and metabolite m2 can be denoted as ST(m1, m2). So 
the literature similarity between metabolite m1 and 
metabolite m2 is defined as follows:

where STmax and STmin represent the maximum and 
minimum scores among all metabolites respectively. 

(2)MSim(m1,m2) =
STmax − ST (m1,m2)

STmax − STmin

Fig. 9 Schematic of the predictive associated matrix for diseases and metabolites
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The standardized score is considered as the similar-
ity between metabolites. After obtaining similarities 
between diseases and metabolites, we complete the 
unknown associations in the initial matrix MDRinit.

There are some diseases not associated with metab-
olite m in the matrix, but some connections between 
them and diseases associated with metabolite m can be 
built based on the disease similarities. So for ∀m ∈ M, 
d ∈ D, the association between metabolite m and dis-
ease d based on disease similarity is defined by For-
mula (3):

where Dm is the set of diseases related to metabolite 
m, and Dm ⊆ D, 1 ≤ i ≤|Dm|. Disease di represents any 
disease in Dm.

In the same way, the metabolite similarities are used 
to build connections between disease d and those 
metabolites not related to disease d in the matrix. So 
for ∀d ∈ D, m ∈ M, the association between metabo-
lite m and disease d based on metabolite similarity is 
defined by Formula (4):

where Md is the set of metabolites related to disease 
d, and Md ⊆ M, 1 ≤ j ≤|Md|. Disease mj represents any 
disease in Md, which satisfies mdrinit(mj, d) = 1.

Because DF and MF are independent of each other, 
the associations between diseases and metabolites in 
the matrix MDR can be defined as follows:

where DFd,m and MFd,m can be taken as the prob-
ability that disease d and metabolite m are related, so 
mdr(m, d) is regarded as the probability that at least 
one of the associations calculated based on different 
similarities exists. Finally, we can obtain an association 
matrix MDR about diseases and metabolites.

Disease‑related metabolite prediction
According to Definition 1, the matrix MDR contains the 
associations between diseases and metabolites. There-
fore, disease-related metabolites can be classified based 
on the Latent Factor Model (LFM), and the connections 
between diseases and metabolites can be built by latent 
features.

In the matrix composed of diseases and metabolites, 
metabolites can be labeled according to the associations 
between diseases and metabolites. The potential associ-
ations between diseases and metabolites are determined 

(3)DFd,m =

{

mdrinit (m, d)

MAX(FNSim(d, di))

d ∈ Dm

di ∈ Dm, d ∉ Dm

(4)

MFd,m =

{

mdrinit (m, d)

MAX(MSim(m,mj))

m ∈ Md

mj ∈ Md ,m ∉ Md

(5)mdr(m, d) = 1− (1− DFd,m)(1−MFd,m)

by these labels. Therefore, the task of predicting poten-
tial associations between diseases and metabolites is to 
find the matrixes composed of diseases, disease-related 
metabolites and latent factors, and then complete this 
matrix of diseases and metabolites by reducing dimen-
sions. The matrixes composed of diseases, disease-
related metabolites and latent factors are defined as 
follows:

Definition 2 Given the set of latent factors F, 
DLF = [dlf(d, f )]|D||F| is the association matrix of diseases 
and latent factors, MLF = [mlf(m, f )]|M||F| is the associa-
tion matrix of latent factors and metabolites, where D 
is the set of diseases and M is the set of disease-related 
metabolites, m ∈ M, d ∈ D, f ∈ F.

Matrix DLF and MLF can be seen as the representa-
tions of diseases and metabolites in the space of latent 
factors with |F| dimensions, respectively. So the matrixes 
defined in Definition 2 can be used to approximate the 
association matrix between diseases and metabolites. 
The approximate representation is defined as follows:

The purpose of figuring out the matrix MDR* is to use 
the representation of diseases and metabolites in the 
latent factor space to maximize the approximation to the 
original association matrix MDR. Thus, the associations 
between diseases and metabolites can be predicted. In 
Formula (6), the predicted values of associations between 
disease d and metabolite m can be calculated as follows:

where F is the set of latent factors. For disease d and 
metabolite m, in order to approximate the predicted 
value MDR*

m,d to the actual value MDRm,d, the cost func-
tion can be defined as follows:

where DFd and MFm are respectively the vectors of 
disease d and metabolite m in the association matrix 
MF and DF with latent factors as dimensions. If the 
predicted value is closer to the actual one, the cost 
function L will be smaller; otherwise, it will be larger. 
To prevent overfitting, L2 regularization is performed 
on the cost function L. λ is the regularization param-
eter, which is used to weigh the regularization effect.

Here the stochastic gradient descent method is used 
to optimize the cost function. After the cost function 
expanded, the direction of the fastest descent is deter-
mined by calculating the partial derivatives of DLFd,f 

(6)MDR∗ = DLF ∗MLFT

(7)MDR∗
m,d =

∑F

f ∈F
DLFd,f MLFm,f

(8)
L =

�

m∈M,d∈D
(MDRm,d −MDR

∗

m,d
)
2
+

�

2
(‖DFd‖

2
+ ‖MFm‖

2
)
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and MLFm,f. Their gradient formulas are expressed as 
follows:

Then, the values in the matrix MF and DF are trained 
based on the stochastic gradient descent method. The 
recursive formulas are defined as follows:

where α is the learning rate. The parameters are con-
stantly optimized through iterative calculation until the 
approximate matrix converges. So for ∀d ∈ D, m ∈ M, 
the association degree between disease d and metabo-
lite m is defined as follows:

where MDR*
m,d is the potential association between 

disease d and metabolite m.
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