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BACKGROUND

Coronaviruses (CoV) are important human pathogens. During epidemics, CoVs contribute to 

up to 20% of community-acquired respiratory infections in adults (1). These viruses also 

play a major role in children—indeed, the endemic CoVs (CoV-NL63, 229E, HKU1, and 

OC43) are the third most common virus pathogen among infants hospitalized for 

bronchiolitis (“severe bronchiolitis”) (2). These endemic CoVs continuously circulate in the 

human population and have annual peaks of activity in winter (3). Furthermore, a novel CoV

—severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—is the cause of the 

coronavirus disease 2019 (COVID-19) pandemic (1).

CoVs, a family within the Nidovirales order, are enveloped positive-stranded RNA viruses.

(4) In human CoVs, its subfamily is classified into two major genera: alpha (NL63 and 

229E) and beta (HKU1, OC43, Middle East respiratory syndrome coronavirus [MERS-
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CoV], and SARS-CoV-1/2) (4). The sparse literature on severe respiratory infections by 

endemic CoVs in children and adults is conflicting, with the clinical severity found to be 

differ by virus type in some studies (5,6) but not others (7). Furthermore, the novel CoVs 

(MERS and SARS-CoV-1/2) are known to cause fatal acute respiratory infection in some 

populations (1). Despite the clinical and research importance, little is known about how 

different endemic CoVs interact with the host and bacterial community in the airway niche 

which contributes to downstream molecular pathways and pathobiology. Metabolome and 

microbiome profiling address this knowledge gap by comprehensively profiling functional 

small molecules and bacteria in the airway.

In this context, by using prospectively-collected multicenter cohort data, we investigated the 

between-genus (alpha vs. beta) CoV differences in clinical characteristics, nasopharyngeal 

airway metabolome, and microbiome profiles among infants with severe bronchiolitis.

METHODS

This is an analysis of data from the 35th Multicenter Airway Research Collaboration 

(MARC-35) cohort study—a multicenter prospective cohort study of infants with severe 

bronchiolitis. The details of the study design, measurements, and analysis are described in 

the Online Supplement. Briefly, we enrolled 1,016 infants (aged <1 year) hospitalized with 

bronchiolitis—according to the American Academy of Pediatrics guidelines (8)—in 17 sites 

across 14 U.S. states (Table E1). Investigators collected nasopharyngeal airway samples 

within 24 hours of hospitalization using a standardized protocol (9). These samples 

underwent A) real-time PCR to test for respiratory viruses (2), B) ultra-performance liquid 

chromatography–tandem mass spectrometry to profile the metabolome (10), and C) 16S 

rRNA gene sequencing to profile the microbiota (11).

In the current analysis, focused on severe CoV bronchiolitis, we grouped infants into two 

mutually-exclusive CoV genus categories: alpha (NL63, 229E) and beta (HKU1, OC43). To 

derive metabolites that best discriminate the alpha and beta CoVs, we performed a sparse 

partial least squares discriminate analysis (sPLS-DA) with Lasso penalization and cross-

validation to minimize potential overfitting, using R mixOmics package (12). For the 

downstream analyses, we selected the top 30 metabolites that had a high variable 

importance. Next, we computed Spearman’s correlations between viral genomic load 

(measured as the inverse cycle threshold) and intensity of these selected 30 discriminatory 

metabolites. We then tested for the association of CoV groups (alpha genus as the reference) 

with each metabolite by constructing multivariable linear regression models adjusting for 

four potential confounders (age, co-infection, CoV genomic load, and batch of 

metabolomics testing) and patient clustering within hospitals to account for within-hospital 

patient clustering. To detect biologically meaningful pathways, we also performed a pathway 

analysis (metabolite-set enrichment analysis) using MetaboAnalyst 4.0. To ensure that 

metabolomic signatures are not fully driven by respiratory syncytial virus (RSV) 

coinfections, we also repeated sPLS-DA model to compare solo-RSV and CoV/RSV 

infections. We also examined the association of CoV groups with four distinct 

nasopharyngeal microbiota profiles according to a clustering method as previously described 

(11). The data were analyzed using R version 3.6.1 (R Foundation, Vienna, Austria). The 
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institutional review board at each of the participating hospitals approved the study. Informed 

consent was obtained from all parents or guardians.

RESULTS

Of 1016 infants enrolled in the MARC-35 cohort, CoV was detected in 65 infants. Of these, 

we excluded 4 infants who had both alpha and beta CoV detection and 1 infant who had 

insufficient sequence depth for the microbiome testing. The remaining 60 infants with severe 

bronchiolitis—31 alpha CoVs (NL63, 229E) and 29 beta CoVs (HKU1, OC43)—comprised 

the analytic cohort. Overall, the median age was 3 months, 65% were male, 75% were co-

infected with RSV, and 22% underwent intensive care treatment. Between the two CoV 

groups, there were no significant differences in most patient characteristics or clinical 

outcomes—except for the proportion of breastfed infants (P=0.049)—in this sample of 

infants with severe bronchiolitis (Table 1).

The nasopharyngeal metabolomic profiling identified a total of 285 metabolites from 76 sub-

pathways within 7 super-pathways. Based on the sPLS-DA, the overall metabolome profiles 

in each of these two CoV groups clustered with a partial overlap (Figure 1A). The sPLS-DA 

selected 30 discriminatory metabolites—primarily involved in lipid metabolism—such as 

lysoplasmalogen, lysophospholipid, and phospholipid metabolism (Figure 1A). In the 

multivariable models adjusting for potential confounders (e.g., coinfection status), the 

between-virus differences remained significant for 11 metabolites (P<0.05; Table E2). For 

example, compared to the alpha CoV group, the beta CoV group had a significantly higher 

intensity of glycerol-phosphoethanolamines (GPEs), glycero-phosphocholines (GPCs), and 

glycosylphosphatidylinositol (GPI). In contrast, the beta CoV group had a significantly 

lower intensity of phosphocholine. These differences between the qualitative virus status 

were consistent with the correlations between quantitative virus status (genomic RNA load) 

and metabolite intensity (Figure 1B). Consistently, the metabolite-set enrichment analysis 

also identified 11 enriched pathways—e.g., sphingolipid, phosphatidylcholine, and 

phosphatidylethanolamine metabolism pathways (P<0.05; Table E3). Additionally, the 

sensitivity analysis that compares solo RSV and CoV/RSV infections showed differences in 

correlations of genomic load with metabolite intensities, suggesting that RSV co-infection 

alone cannot explain the CoV-specific metabolomic signatures (Figure E1). In the 

comparison of nasopharyngeal airway microbiota, compared to infants with alpha CoV, 

those with beta CoV bronchiolitis had a significantly higher proportion of Haemophilus-

dominant profile (10% vs. 31%, P=0.04; Figure E2 and Table E4).

DISCUSSION

In this multicenter prospective cohort of infants with severe CoV bronchiolitis, with 

comprehensive profiling of the nasopharyngeal airway metabolome and microbiome, we 

investigated potential differences between endemic alpha- and beta-CoVs. We found that, 

compared to alpha CoV infection, infants with beta CoV bronchiolitis had a distinct 

metabolomic signature that was primarily characterized by upregulated lipid mediators. 

Additionally, we also found between-CoV differences in the nasopharyngeal microbiota 

profile. To the best of our knowledge, this is the first investigation that has examined the 
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relations of CoV genera with the metabolome and microbiota among children with acute 

respiratory infection.

Although bronchiolitis has been conventionally considered a single disease entity that has 

similar mechanisms and clinical characteristics (8), concordant with the current study, recent 

studies demonstrate important between-virus (respiratory syncytial virus vs. rhinovirus, 

including different species) differences in the upper airway metabolome (9,13) and 

microbiome (14,15) profiles. The current study corroborates these prior reports, and extends 

them by demonstrating between-CoV differences in these molecular characteristics among 

infants with severe bronchiolitis. Our data showed that infants with beta CoV bronchiolitis 

had a higher intensity of lysoplasmalogens—e.g., 1-(1-enyl-oleoyl)-GPE. These lipids are 

known to function as anti-inflammatory mediators and have protective effects against 

oxidation of lung surfactant lipids (16)—a composite of phosphatidylcholine, 

phosphatidylinositol, and phosphatidylethanolamine which metabolism pathways were also 

differentially enriched in our data. Additionally, research has demonstrated a decreased level 

of plasmalogens in premature infants with bronchopulmonary dysplasia (17). We also found 

that phosphocholine—an essential substrate of sphingolipids—is a discriminatory 

metabolite. Sphingolipids are not only major structural component of cellular membranes 

but also lipid mediators that play important roles in immune response and inflammation 

(18). In addition to the between-CoV differences in the airway metabolome, we found that 

infants with beta-CoV bronchiolitis had a higher likelihood of Haemophilus-dominant 

microbiota profile, which has been associated with upregulated TH2 and TH17-type 

inflammatory response in the airway (11). While the identification of exact mechanisms 

underlying the CoV-airway metabolites-microbiota relationship is beyond scope of the 

current study, these findings will help to advance research into the integrated role of 

different CoVs, host immune response, and microbiome in the pathobiology of acute 

respiratory infection.

The underlying mechanisms of virus-metabolome-microbiota relationships in the 

bronchiolitis pathobiology merit further clarification. It is possible that the observed virus-

metabolome-microbiota associations may be causal—that is, specific respiratory virus 

species induces distinct host response and metabolome signature, thereby leading to 

overgrowth of specific bacteria in the airway niche. Alternatively, unique metabolome and 

microbiota profiles in conjunction with airway immune response might have contributed to 

susceptibility to specific virus infection. These potential mechanisms are not mutually 

exclusive.

This study has several potential limitations. First, bronchiolitis involves inflammation of the 

lower airways in addition to the upper airways. The present study was based on the upper 

(nasopharyngeal) airway samples. Although research has shown that upper airway samples 

reliably represent the lung inflammation (19) and microbiome (20) profiles, further 

validation study using lower airways samples (e.g., bronchoalveolar lavage) is desirable. 

Second, the current study did not have “healthy controls.” However, the study objective was 

not to compare the metabolome and microbiome between CoV bronchiolitis and healthy 

controls, but to examine between-CoV differences in these molecular characteristics within 
infants with bronchiolitis. Third, because of the limited sample size, overfitting of data is 
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possible, and this result may not ensure generalizability. Fourth, the majority of infants in 

this cohort were co-infected with RSV, while the sensitivity analysis demonstrated 

differences in the metabolomic signature between solo RSV and CoV/RSV infection groups. 

To specifically investigate the metabolome signature of solo CoV infections, the observed 

findings—albeit biologically-plausible—merit additional investigations using a larger 

sample size of infants with solo CoV infection. Fifth, the inferences from this study using an 

untargeted and hypothesis-free metabolomics approach warrant further validation with the 

use of targeted approaches. Finally, although the cohort consisted of a racially/ethnically- 

and geographically-diverse sample, inferences should be cautiously generalized beyond U.S. 

infants hospitalized for bronchiolitis.

In conclusion, these multicenter data from infants with severe bronchiolitis demonstrated 

that, despite the absence of apparent differences in clinical manifestations and a small 

sample size, alpha versus beta CoV differ in their underlying pathobiology. Compared to 

alpha CoV infection, infants with beta CoV infection had a distinct nasopharyngeal 

metabolome signature (with upregulated biologically-active lipid mediators, even after 

adjusting for coinfections), as well as distinct nasopharyngeal microbiota profiles. Our data 

suggest that infection by beta CoVs (which also includes SARS-CoV-2) elicits unique 

downstream effects in the host airway, thereby contributing to distinct pathobiology. While 

causal inference remains to be elucidated, these findings should facilitate further 

investigations into the complex interplay between different CoVs and host airway response 

in children with acute respiratory infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Associations of coronavirus groups with nasopharyngeal airway metabolites in infants 
with severe bronchiolitis
A. Sparse partial least squares discriminant analysis (sPLS-DA) score plot of 

nasopharyngeal airway metabolome according to alpha (blue) vs. beta (red) CoV infection. 

Each dot represents the nasopharyngeal airway metabolome profile of a single infant, by 

plotting the component scores in the smaller subspace spanned by latent variables of sPLS-

DA. The eclipses are 95% confidence intervals. The arrows start from the centroid of each 

virus group and end for each infant belonging to each group.

B. Heatmap of Spearman’s correlations of the genomic load (measured as the inverse cycle 

threshold value) of alpha and beta CoVs with the 30 most discriminatory nasopharyngeal 

airway metabolites in the corresponding sPLS-DA model (Table E2). Clustering is based on 

Euclidean distance and Ward's minimum variance linkage algorithm. The color bar indicates 

the correlation coefficients—red color indicates a positive correlation while blue color 

indicates a negative correlation. Superpathway of each metabolite is color-coded for each 

function.

Abbreviation: CoV, coronavirus
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