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Abstract: We propose a novel effective framework for the analysis of the shared genetic background
for a set of genetically correlated traits using SNP-level GWAS summary statistics. This framework
called SHAHER is based on the construction of a linear combination of traits by maximizing the
proportion of its genetic variance explained by the shared genetic factors. SHAHER requires only
full GWAS summary statistics and matrices of genetic and phenotypic correlations between traits as
inputs. Our framework allows both shared and unshared genetic factors to be effectively analyzed.
We tested our framework using simulation studies, compared it with previous developments, and
assessed its performance using three real datasets: anthropometric traits, psychiatric conditions and
lipid concentrations. SHAHER is versatile and applicable to summary statistics from GWASs with
arbitrary sample sizes and sample overlaps, allows for the incorporation of different GWAS models
(Cox, linear and logistic), and is computationally fast.

Keywords: GWAS; shared genetic component; linear combination of traits; shared heritability;
proportion of heritability explained by SGF

1. Introduction

There is a growing interest in studying the shared genetic background between ge-
netically correlated traits [1–5] (see, for example, the number of PubMed search results by
year for keywords related to “shared genetic background”). Studying the shared genetics
between traits can help with the discovery of pleiotropic interactions, common genes and
pathways, and identify genetic effects that are specific for each trait.

The problem of the decomposition of the variance of several traits into the shared/
unshared genetic and environment components were first formulated by S. Wright in
1921 [6]. There are widely used classic twin designs to address this problem. They are based
on structural equation modelling; in particular, multivariate pathway models assuming the
existence of the genetic influences common for all traits and specific for each trait [7]. These
designs are implemented only for the variance decomposition, but not for the identification
of the genetic factors that determine these genetic effects.

There are several terms for these common and specific genetic impacts. We will call
them the “shared genetic impact” (SGI) and “unshared genetic impacts” (UGI). The genetic
factors that determine these impacts will be called “shared genetic factors” (SGF) and
“unshared genetic factors” (UGF), respectively. The heritability of each trait explained by
SGF and UGF will be called “shared heritability” and “unshared heritability”, respectively.
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Note that the term “unshared” for every trait means the rest other than the “shared”. For
any incomplete set of traits, UGFs can be partially overlapping.

The application of different methods of multivariate analysis in genome-wide asso-
ciation studies (GWAS) allows the problem of SGF and UGF identification to be partially
solved [8–13]. The multivariate methods involve complicated genetic or/and phenotypic
correlation structures of traits in the analysis. In most cases, this increases the power of
detection of the loci associated with several traits due to pleiotropic effects. If the detected
locus has a pleotropic effect on all studied traits, the locus could potentially be attributed
to SGF, and if not, to UGF. However, a pleiotropic effect of the locus on all studied traits
is necessary but insufficient for inclusion of this locus in SGF (at least effects should be
also collinear between traits; see the model description below). Moreover, this approach
of SGF identification assumes a manual classification of loci, which prevents the use of
more sophisticated modern in-silico approaches for genetic analysis, for example, the ones
that rely on GWAS summary statistics [14]. To our knowledge, there is no specific method
that could be good for both variance component decomposition and identification of SGF
and UGF.

We had previously developed a method for obtaining genetically independent phe-
notypes (GIPs) [2]. This method is based on the calculation of the principal components
using genetic rather than phenotypic correlations. We applied this method to genetically
correlated pain phenotypes and aging related phenotypes and showed that the first GIP
component, GIP1, that explains the largest proportion of the genetic variance probably
could be interpreted as SGI [2,15]. This makes GIP promising for the identification of loci
attributed to SGF. However, this method was not designed specifically for SGI analysis.
In addition, no specific experiments have been performed to validate the approach or to
estimate its statistical properties.

Here, we present a novel general framework for the estimation of shared and unshared
heritability and identification of the shared and unshared genetic factors using the summary
statistics of original traits. The essence of our approach is to find the optimum linear
combination of traits which has the maximum proportion of its genetic variance explained
by the SGF. We validated our framework using simulation studies under different scenarios
by comparing it with the developed GIP approach, and assessed its performance using
three real datasets: anthropometric indices, psychiatric disorders and conditions, and lipid
concentrations.

2. Materials and Methods
2.1. Shared Heredity Model

We adopted a commonly used multivariate pathway model [7] in terms of SGF and
UGF. We call it the “shared heredity model”. For simplicity, we consider SGF and UGF
as biallelic SNPs and consider a sample of N unrelated individuals measured for K traits
and genotyped for M SNPs. For a standardized normal trait, y (N × 1), the traditional
polygenic (null) model takes the form: y = Gβ + ε, where G is an (N × M) matrix of
standardized genotypes; β (M × 1) and ε (N × 1) are genetic and non-genetic random
effects, respectively; β ~ N(0, h2IM) and ε ~ N(0, (1 − h2)IN), where 0 is a null mean vector,
h2 is the trait heritability, and I is an identity matrix of the given dimension. For unrelated
individuals, we expect y ~ N(0, IN).

We propose to divide M SNPs into two non-overlapping SNP sets with sizes M0 and
M1 (M0 + M1 = M). The set of M0 SNPs called “SGF” includes only those SNPs whose
effects on all traits are collinear. The set of M1 SNPs consists of the other SNPs which do not
have shared joint influence on all traits at once, this set being called “UGF”. In accordance
with M, G is divided into two matrices, G0 (N ×M0) and G1 (N ×M1). To decompose every
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trait into components explained by SGF and UGF, we rewrote the traditional polygenic
model in terms of G0 and G1

yi = G0b0i︸ ︷︷ ︸
due to SGF

+ G1b1i︸ ︷︷ ︸
due to UGF

+ εi. (1)

Here, the first and second terms are genetic components explained by SGF and UGF,
respectively, which are assumed to be independent. In the first term, b0i is an (M0 × 1)

vector of non-zero SGF effects, which can be presented as β0wi

√
h2

i , where β0 is an (M0 × 1)

non-zero vector that is the same for all traits, β0 ∼ N
(
0, IM0

)
, and w2

i h2
i is the heritability

of the i-th trait explained by SGF. Here wi is a non-zero trait-specific multiplier: wi
2 denotes

the proportion of hi
2 explained by SGF; and the value of wi can be positive and negative,

indicating the direction of the SGF effect on the i-th trait. G0β0 is the so-called shared
genetic impact or SGI. In the second term of Model (1), b1i is an (M1 × 1) vector of UGF

effects, which can be presented as b1i = β1i

√(
1− w2

i
)
h2

i , β1i ∼ N
(
0, IM1

)
. In contrast to

β0, β1i are different for different traits, and they are not collinear. For illustrative purposes,
we rewrote Equation (1) as:

yi = G0β0︸ ︷︷ ︸
SGI

wi

√
h2

i

︸ ︷︷ ︸
due to SGF

+ G1β1i

√
1− w2

i

√
h2

i︸ ︷︷ ︸
due to UGF

+ εi. (2)

2.2. Overview of the SHAHER Framework

For analyses of SGI and UGI on a set of correlated traits, we propose an effective
multi-stage framework named SHAHER (see Figure 1). The concept of the framework is
first to partition the genetic basis of each original trait into two components: one shared
by all the original traits and one not shared by all the original traits, and then to identify
the SNPs that contribute to these genetic components. To do this, we propose to construct
new traits: (1) an SGIT as a linear combination of original traits, which has the maximum
possible heritability explained by SGF, and (2) UGITs as linear combinations of the original
traits, which are obtained by adjusting the original traits for SGIT. This means that the
genetic basis of UGITs is predominantly determined by UGF.
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Our framework requires matrices of phenotypic correlations (Uphen) between the
original traits, the matrices of genetic correlations (Ugen) between the original traits, the
heritabilities of the original traits, and GWAS summary statistics of the original traits
as inputs. It is worth noting that Uphen, Ugen and heritabilities could be estimated using
GWAS summary statistics of the original traits, for example, by the LD score regression
method [16].

SHAHER starts with a preliminary stage, which verifies the presence of SGI in a given
set of traits. This is achieved by checking the following requirements for Ugen: it must
be positive definite; the absolute values of its elements must be significantly more than
a given threshold, and the rank of the correlation matrix derived from Ugen by rounding
its elements to extremal correlation values, either −1 or 1, must be equal to one. If the
requirements are met, we turn to the basic stages of SHAHER.

The MaxSH stage. To determine the α and γ coefficients for the linear combinations
of the original traits to build SGIT and UGITs, we developed the MaxSH method, which
is based on the correlation component model given below. This model partitions the
phenotypic correlation matrix, Uphen, into environmental and genetic components, Uenv
and Ugen, respectively, the latter being further subdivided into two components caused by
SGF and UGF:

Uphen =
√

H2Ugen
√

H2︸ ︷︷ ︸
genetic component

+
√

I − H2Uenv
√

I − H2︸ ︷︷ ︸
environmental component

Ugen = W11TW︸ ︷︷ ︸
due to SGF

+
√

I −W2Uunsh

√
I −W2︸ ︷︷ ︸

due to UGF

(3)

Here W is a diagonal matrix, whose i-th diagonal element is wi; Uunsh is a matrix of
genetic correlations explained by UGF; H2 is a diagonal matrix, whose i-th diagonal element
is hi

2, and 1 is a (k × 1) vector of units. Using this model, MaxSH solves several tasks.
First of all, using only the genetic correlation matrix, Ugen, we estimate the proportion

of heritability of every trait explained by SGF (W). To do this, we minimize the difference
between Ugen and the auxiliary matrix V. This matrix is built using Formula (2), with the
identity matrix used instead of Uunsh. The second task is to determine the α-coefficients,
which is solved by maximizing the shared heritability of SGIT. This task is analytically
solved as

a =
U−

1
2

phenHW1√
1TWHU−1

phenHW1
(4)

It requires Uphen, H2 and W as input data.
After determining the α-coefficients and building SGIT, we build a UGIT for every

trait using the residual regression equation UGITi = yi − SGIT*ci, where ci is the impact of
SGIT on the i-th original trait, defined as

ci =
covgen(yi, SGIT)

h2
SGIT

. (5)

Here covgen denotes a genetic covariance. Note that we should use genetic rather
than phenotypic covariances, as our goal is to adjust only the genetic components of the
original traits.

Since SGIT is the linear combination of the original traits, UGITs are linear combina-
tions of the original traits, as well. The coefficients of these linear combinations called the
γ-coefficients form the matrix of the γ-coefficients Γ =

(
IK − αcT), where the i-th column

of Γ corresponds to the linear combination coefficients for building the i-th UGIT.
The sumCOT stage. This stage is aimed at obtaining GWAS summary statistics for

SGIT and UGITs using the previously determined α and γ coefficients, GWAS summary
statistics (Z-scores, allele frequencies and sample sizes for each SNP) for the original traits
and the matrix of phenotypic correlations. The method can use Z scores obtained from
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any regression model and allows for varying sample sizes and sample overlap between
traits. This sample overlap is incorporated into the estimation of the matrix of phenotypic
correlations. In short, the SNP effects for combined traits are calculated by summing effect
estimates from the individual trait GWASs, each multiplied by their corresponding linear
coefficient (α or γ), and standardized by the expected variance. The standard errors of
the SNP effect are calculated using variance-covariance arithmetic, taking into account the
phenotypic covariance between GWAS results to adjust for the sample overlap. Effective
sample sizes are then estimated based on the median Z statistic and allele frequencies by
solving Equation (1) in [17].

At the final stage, SHAHER checks for the correctness of the output. In particular,
we anticipate that UGITs do not have a shared genetic basis. This is verified by applying
MaxSH to the matrix of correlations between UGITs.

To summarize, our framework estimates shared and unshared heritabilities for each
of the studied original traits and produces GWAS summary statistics for SGIT and UGITs
as outputs.

The full details and mathematical formulae of SHAHER are in Supplementary Methods.

2.3. Simulation Study

Under different scenarios, we designed simulations to assess the performance of
MaxSH. We (1) assessed the accuracy of w estimates, (2) assessed the proportion of SGIT
heritability explained by SGF to the total heritability of SGIT (the Q-value), and (3) com-
pared the analytically predicted total and shared heritabilities of SGIT and GIP1 with
respect to the loss function. The design of our simulation experiment is shown in Figure 2
To generate the input for the MaxSH and GIP approaches, we used a six-parameter simu-
lation model, in which K is the number of traits; W0

2 is a (K × K) diagonal matrix, where
the i-th diagonal element is wi

2 (the proportion of heritability explained by SGF); s is the
proportion of zeros in the matrix Uunsh; d1 is the amplitude of the uniform distribution for
non-zero values of Uunsh and d2 is the amplitude of the uniform distribution for Uenv; H2 is
the diagonal matrix with diagonal elements equal to the trait heritabilities. The parameter
values used are given in Figure 2.
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For each fixed number, K, of the original traits and fixed heritability, hi
2 (i = 1, . . . , K),

of each trait, we simulated Ugen. To do this, we separately modelled two of its compo-
nents caused by SGF and UGF as W11TW and

√
I −W2Uunsh

√
I −W2, respectively (see

the “Model” box in Figure S1 in Supplementary Methods). Here 1 is a (K × 1) vector
of units, and Uunsh is a (K × K) matrix randomly generated using the parameters s and
d1 (see Supplementary Methods). We then randomly generated the trait-trait correla-
tion matrix Uenv explained by the environmental factors, by giving the parameter d2 (see
Supplementary Methods). Finally, we modeled a matrix of phenotypic correlations by
using Model (2) with regard to simulated values W0.

Using simulation data Uphen, Ugen and H2, we estimated West and calculated its squared
relative difference with the simulated values of W0 (∆W). We revealed a dependence of ∆W
on the loss function (Loss). The Loss value characterizes the difference between Ugen and
the auxiliary matrix V.

We then estimated α in three ways: (1) using MaxSH and W0, (2) using MaxSH and
West, and (3) using the GIP method [2]. Based on these estimates, we formed three traits
being the linear combinations of the original traits. For these combined traits, we calculated
the total heritability and the heritability explained by SGF.

The simulated experiments were repeated 10,000 times for each set of parameters. The
model parameters and formulas for all calculated values are shown in Figure 2.

2.4. Application to Real Data
2.4.1. Data Sets

We used three publicly available real data sets: anthropometric traits, psychiatric
conditions and lipid concentrations, which contain five, four and three traits, respectively.

The group of anthropometric traits consisted of UK Biobank GWAS summary statistics ob-
tained from the Neale lab (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-
of-phenotypes-for-337000-samples-in-the-uk-biobank, accessed on 1 September 2020) for peo-
ple of European ancestry: BMI (N = 336,107), weight (N = 336,227), hip (N = 336,601), waist
circumference (N = 336,639) and whole body fat mass (N = 330,762).

The second dataset reflecting psychometric traits was constructed from GWAS results pro-
vided by the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/download-
results/, accessed on 1 September 2020) for bipolar disorder, BIP (N cases = 20,352;
N controls = 31,358) [18], major depressive disorder, MDD (N cases = 43,204; N controls = 95,680;
without UK Biobank and 23andMe data) [19] and schizophrenia, SCZ (N cases = 36,989; N
controls = 113,075). Summary statistics for the fourth trait–subjective well-being
(N = 110,935)—were derived from UK Biobank data from the Neale lab. All psychometric
trait GWASs were conducted using samples from white Europeans.

The last dataset corresponding to lipid traits was formed using GWAS data for Eu-
ropean participants from the Global Lipid Genetics Consortium (http://csg.sph.umich.edu/
willer/public/lipids2013/, accessed on 1 September 2020) for LDL cholesterol (N = 173,082),
triglycerides (N = 177,860), and total cholesterol (N = 187,365).

Summary statistics for the three data sets were integrated and quality controlled by the
GWAS-MAP platform developed by our group [20]. The GWAS-MAP database contains
implemented software for quality control of GWAS results, the estimation of phenotypic
correlations, and LD Score regression (LDSC) [16].

We conducted the quality control of all data and unified them within the GWAS-
MAP platform [20]. We filtered all summary statistics by minor allele frequencies ≥ 0.01.
Additionally, we filtered GWAS results for BIP by imputation qualities ≥ 0.9. We did not
apply this filter to the other traits due to the absence of imputation quality in summary
statistics data. Finally, using GWAS-MAP, we performed a correction for genomic control
for all traits (including the original traits, SGIT and UGITs) with an LDSC intercept greater
than 1 [16]. Thus, we corrected all traits from the psychometric dataset apart from MDD,
all original anthropometric traits and their SGIT and lipid SGIT, as their LDSC intercept

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
http://csg.sph.umich.edu/willer/public/lipids2013/
http://csg.sph.umich.edu/willer/public/lipids2013/
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exceeded 1 (see Supplementary Table S2a–c). Moreover, all SNPs with a p-value equal to 0
were excluded from analysis.

2.4.2. Genetic Analysis

Pairwise phenotypic correlations between traits were computed using the GWAS-MAP
platform described above. The used method is based on correlations between insignificant
z-statistics for independent SNPs as previously described in [9]. SNP-based heritability and
genetic correlation coefficients were estimated using the LD Score regression software [16]
embedded in the GWAS-MAP platform. The significance threshold for genetic correlations
was set at 4.5 × 10−4 (0.05/112, where 112 is the number of pairwise combinations between
all original traits, their SGIT and UGITs in each dataset–between 11, nine and seven traits
for anthropometry, psychometric and lipid traits, respectively).

The SHAHER analysis included checking if there was an SGI or not, the application
of MaxSH, and conducting SGIT and UGIT GWASs. The threshold for confirming the
existence of an SGI at the first stage was empirically set to 0.2.

For each dataset, we visualized the full genetic correlation matrices using the corrplot()
function from the corrplot R package (v.0.84) [21]. We also placed the SNP-based heritability
estimates on the diagonal and crossed out non-significant values.

Finally, we compared the GWAS results obtained for SGIT by MaxSH and GIP (the
principal component analysis on the matrix of genetic covariances) [2].

2.4.3. Gene set and Tissue/Cell Type Enrichment Analyses

We performed a gene set enrichment analysis and a tissue/cell type enrichment
analysis combined with a gene prioritization using the Data-driven Expression Priori-
tized Integration for Complex Traits (DEPICT) tool v.1.1, release 194 [22]. We selected
genome-wide significant SNPs (p-value < 5 × 10−8) from summary statistics before the
genomic control and applied the DEPICT software with default parameters (https://data.
broadinstitute.org/mpg/depict/, accessed on 1 September 2020). The MHC region was
excluded from analysis.

Next, for the gene set enrichment results, we calculated the number of significant
enriched gene sets (FDR < 5%) and constructed an overlapping matrix in which each cell
represents the number of overlapping gene sets for each pair of traits. For each pair of traits,
we scaled the number of overlapping gene sets by the minimum number of significant gene
sets for this pair of traits. The resulting matrix was visualized using the corrplot R-package,
as descried above.

2.4.4. The Number of Original Traits Associated with SGIT Loci

We performed a clumping procedure to search for loci associated with each of the
original traits, SGIT and UGITs at a genome-wide significance level of 5 × 10−8. The
associated locus was defined as a genomic region spanning 500 kb in either direction of the
lead SNP. Those loci that were significantly associated with SGIT, but not with the original
traits, were assumed to be new loci.

We expected that the loci associated with all the original traits used to obtain SGIT
were likely to be SGF. To test this expectation, for each dataset we selected all independent
loci that were significantly associated with at least one of the original traits and calcu-
lated the number of the original traits significantly associated with these loci. For the
original anthropometric and lipid traits, we empirically set the significance threshold at
p-value = 1 × 10−5. For the psychometric traits, it was set at 1 × 10−3. We then analyzed
the SGIT p-values for the selected loci and constructed boxplots of −log10 for them with
regard to the number of the original traits significantly associated with these loci.

https://data.broadinstitute.org/mpg/depict/
https://data.broadinstitute.org/mpg/depict/
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3. Results
3.1. Simulation Study

To assess the MaxSH performance, we conducted simulation studies. We (1) assessed

the accuracy of w estimates (using ∆W metrics estimated as
(

w0−west
wo

)2
, where w0 and

west are modeled and estimated w, respectively) with respect to the loss function given
in Figure 2; (2) assessed the proportion of the shared heritability to the total heritability
of SGIT (the Q-value) with respect to the loss function; and (3) compared the analytically
predicted total/shared heritabilities of two traits: SGIT and the first component, GIP1,
obtained by the GIP method [2]. The Q-value can be interpreted as the specificity metrics
of SGIT: the closer the Q-value to 1, the lower the share of unshared heritability in the total
heritability of SGIT. The simulation scenarios were based on six varying parameters that
describe the properties of the genetic and phenotypic correlation matrices. Under each
scenario, we considered two situations where all traits have the same w2 and different w2s.
To distinguish between these situations, we will hereinafter write either “w2” or “different
w2s”. In total, we performed 10,000 iterations of simulations for each of 288 scenarios.

The full results are presented in Figures S1–S18 in Supplementary Results. For all
scenarios, there are few general patterns: (1) the higher simulated w values, the higher the
accuracy of the w estimates, (2) the accuracy of the w estimates and the Q-value increase
with an increasing in the number, K, of traits, (3) for all scenarios with w2 > 0.8, ∆W was
very low (<0.025) and the Q-value was more than 90%.

For all scenarios with three traits, the accuracy of the w estimates was generally low:
∆W was not higher than 0.7 for scenarios with w2 = 0.2 and 0.3, although at w2 equal to
or higher than 0.4, ∆W was less than 0.2. The Q-value was higher than 60% for almost all
scenarios with w2 ≥ 0.4.

For the scenarios with four and five traits, the accuracy of w estimates was higher:
∆W < 0.15 for w2 ≥ 0.4 and ∆W < 0.05 for w2 ≥ 0.5. For the scenarios with w2 ≥ 0.5, the
Q-value was more than 70% for four traits and more than 80% for five traits.

The selected results of comparison of the shared heritability of SGIT and the shared heri-
tability of GIP1 for scenarios with s = 0.3 are presented in Figure 3. The results with s = 0.8 were
similar to those with s = 0.3. They are presented in Figures S1–S18 in Supplementary Results.
For three traits in almost all cases, the shared heritabilities of SGIT were higher than the
corresponding heritabilities of GIP1, except for the scenarios with h2 = 0.8. For four and five
traits, the shared heritabilities of SGIT were higher than the corresponding heritabilities
of GIP1 under all scenarios, except for the scenarios with h2 = 0.8. In the scenarios with
h2 = 0.8, the shared heritabilities of SGIT were higher than those of the GIP1 at w2 ≥ 0.5. The
patterns of the total heritabilities for all scenarios reproduced the corresponding patterns of
the shared heritabilities (Figures S1–S18 in Supplementary Results).

In summary, the performance of MaxSH was suitable at w2 ≥ 0.5 and when the number
of traits was higher than or equal to four. In the case of small w or three traits, the results of
MaxSH should be interpreted with caution.
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3.2. Real Data Assessment

We applied SHAHER to three datasets: anthropometric (five traits), psychometric
(four traits) and lipid traits (three traits). We should note that the performance of SHAHER
applied to three traits is limited (see simulation results), yet still passable, although the
results should be interpreted with caution. The number of identified loci for each trait for
each data set is given in Table 1. We present SHAHER results for anthropometric traits
in the main text as an example. The full results for the psychometric and lipid traits are
presented in Supplementary Results.

Table 1. Number of significant loci (p-values < 5 × 10−8) identified for each trait applying SHAHER
for three data sets.

Trait Name Number of Significant Loci

Real Trait SGIT * UGIT *

Anthropometric Traits
BMI 289 296 (210) 214 (16)

Weight 348 296 (235) 178 (71)
Hip 262 296 (192) 76 (36)

Waist 209 296 (182) 58 (6)
Fat 266 296 (222) 32 (8)

Psychometric Traits
BIP 12 57 (8) 2 (0)

MDD 3 57 (0) 2 (1)
SCZ 92 57 (26) 2 (0)

Happiness 0 57 (0) 1 (0)

Lipid Traits
LDL 85 97 (69) 43 (31)

Triglycerides 71 97 (26) 59 (30)
Cholesterol 101 97 (84) 51 (21)

* number of loci overlapping with those identified using the original trait is given in parentheses.

At the first step, we confirmed that SGI exists for five traits. At the second step, we
determined the α and γ coefficients and their CI (see Supplementary Table S1a). At the
third step, we applied sumCOT and obtained GWAS results for SGIT and UGITs (see
Supplementary Table S2a for heritability estimates and LD score regression intercepts).
SHAHER results are presented in Figure 4.
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Figure 4. Results of the application of SHAHER to anthropometric traits. (A) The heatmap of genetic
correlations between the original, SGI and UGI traits. The number, color strength and size of the
squares in the matrix show the values of the correlation coefficients between the traits. The diagonal
elements represent heritabilities. Crossed out values indicate insignificant correlations. (B) Boxplots of
−log10(p-value) for the SGIT with respect to the number of the original traits significantly associated
with the locus. Two outliers for loci with −log10(p-value) > 40 are omitted. The number at the top
of the boxplot corresponds to the number of significant SNPs. (C) The heatmap of the numbers
of overlapping loci between traits. The numbers in the cells represent the absolute numbers of
overlapping loci. The color strength and size of the squares in the cells show the relative scaled
number of overlapping loci (on a scale from 0 to 1). The diagonal elements represent the number of
loci found for every trait. (D) The heatmap of the numbers of overlapping gene sets between traits.
The color strength and size of the squares in the cells show the relative scaled number of overlapping
gene sets (on a scale from 0 to 1). The diagonal elements represent the number of gene sets found for
every trait.
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Figure 4A demonstrates genetic correlations between all pairs of the original anthro-
pometric traits, SGIT and UGITs. All the original traits were positively correlated with
r > 0.82. We did not observe any significant genetic correlation between SGIT and UGITs.
Moreover, we did not observe additional SGI among UGITs, which was expected. The
heritabilities of UGITs varied from 0.07 to 0.14.

We revealed a dependence of the SGIT p-value from the number of the original traits
significantly associated with the locus (Figure 4B). It clearly shows that the loci associated
with all the original traits have lower SGIT p-values than the other loci.

Joint clumping of 11 traits (five original traits, five UGITs and SGIT) resulted in
820 genome-wide significantly associated loci (p-value < 5× 10−8, Supplementary Table S3a).
If a locus was not significantly associated with any of the original traits, it was considered
new. SGIT was significantly associated with 296 SNPs. We detected no new loci among
SGIT loci. The clumping of UGITs revealed 379 loci, of which 246 were new. At the same
time, the clumping of only original traits allowed 574 loci to be detected, of which 187
could not be detected by analyzing SGIT or UGITs. Thus, the joint analysis of SGIT and
UGITs increased the number of associated loci by more than 42.8%. Figure 4C reflects the
overlapping between significantly associated loci for 11 analyzed traits. There is a weak
albeit non-zero overlap between loci for UGITs and SGIT, although the genetic correlation
between them is zero. It could be due to the conservative settings of the clumping pro-
cedure, which tends to clump together closely located loci, and is due to some level of
unspecificity of the SHAHER.

Next, we checked how enriched gene sets overlap between SGIT, UGITs and the
original traits (see Figure 4D). Significant results (FDR < 5%) of enriched gene sets and
tissue enrichment analyses are presented in Supplementary Table S4. As expected, the
heatmap of the overlapping gene sets looks similar to the heatmap of genetic correlations
and the heatmap of the overlapping loci. Moreover, there was almost no overlap between
SGIT and any UGIT. For the original traits, the number of enriched gene sets varied a lot:
from four for the waist to 825 for the hip circumference. For BMI UGIT, the number of
enriched gene sets was 1608, which was almost ten times the value for BMI (192).

Finally, we obtained GIP1 GWAS statistics and calculated the genetic correlations
between SGIT and GIP1. The genetic correlation was higher than 0.97.

4. Discussion

We developed a new fast and efficient framework which allows us to decompose
the heritability of each trait from a given set of traits into two components. One of them
is explained by shared genetic factors common to all traits. Another one is explained
by unshared genetic factors specific for each trait. The framework not only decomposes
heritability but also identifies SNPs associated with the shared and unshared genetic effects.
To our knowledge, this framework is unparalleled. It has an additional advantage: it uses
GWAS summary statistics obtained for original traits and does not require raw genotype or
phenotype data.

We compared the performances of MaxSH and GIP in identifying the shared genetic
components. GIP calculates the linear combination coefficients via the eigenvalues of
the genetic covariance matrix and can be considered a close approximation to MaxSH. In
our simulations, GIP and MaxSH were similar in almost all scenarios, with MaxSH being
somewhat superior in terms of the power (total heritability) and quality (shared heritabil-
ity). If obtaining genetically independent phenotypes is not the aim, we suggest using
SHAHER, because it is more robust and gives additional metrics like SGI contributions to
the heritability of the original traits.

The framework is computationally effective. The stage using sumCOT is the most time
consuming. However, it only takes several minutes for an average computer to conduct a
GWAS of a linear combination of traits with 6M SNPs using a C++ implementation of the
sumCOT. MaxSH, based on numerical optimization procedures, and the other parts of the
framework take seconds.
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The proposed sumCOT method can be applied as an independent tool to address
additional tasks. One of them is making a summary-level adjustment of traits by other
traits using the same scheme as was used for obtaining the UGIT GWAS statistics. This can
be helpful, for example, for ridding the studied trait’s genetic component of the genetic
component that was caused by the confounding or unaccounted effects of assortative
mating or family effects, which is quite a problem in GWAS at the biobank scale [15,23].
Another task is a GWAS for the trait that appears as a linear combination of the original
traits. The sumCOT method is robust to differences in sample sizes used for GWASs of
original traits and is applicable to different GWAS models (Cox, linear or logistic).

The main interest in the application of the SHAHER framework lies in the possibility
of obtaining novel biological insights into a trait’s heritability composition. This can be
achieved by the application of a huge variety of in-silico follow-up techniques to SGIT
and UGITs. SGIT is of interest by itself, but we also emphasize the importance of the
comparison of shared and unshared effects for each trait. In our real data application, the
most remarkable case is BMI in the set of anthropometric traits (see Figure 4C). We found
246 and 1608 significantly enriched gene sets for SGIT and the UGIT of BMI, respectively,
with negligible overlapping between them of size 56. By analyzing BMI only, we would
have detected only 192 enriched gene sets. By analyzing each of the impacts separately,
we dramatically increased the number of observed unique gene sets (1798 in total for both
SGI and UGI). This means that each sub-phenotype controlled by SGF and UGF is less
heterogeneous than the original trait. According to the significant gene sets, UGIT of BMI
(see Supplementary Table S4) controls some structural changes in body compositions and
bone formation, while SGIT is involved in some general signaling pathways and pathways
related to nervous system development and probably to general psycho-social aspects of
BMI, obesity and other anthropometric traits [24]. Note that all new loci were associated
with UGITs. We can speculate that these new SNPs were detected due to the decreased
genetic heterogeneity of UGITs compared to the original traits.

To validate the findings of SHAHER, we have compared the association results for
anthropometric and psychometric traits with the biggest publicly available GWAS results
for BMI and MDD. The idea is as follows: if the locus was not significant on the original trait
but was detected on SGIT or corresponding UGIT, it will be detected on the original trait if
the GWAS sample size is increased. For BMI we have used the largest meta-analysis of the
UK Biobank and GIANT GWAS (N = 806,834) to date [25] (see Supplementary Table S3a).
Among 264 loci significant on SGIT and BMI UGIT but not on BMI, 57 loci (22%) became
significantly associated with BMI in the biggest GWAS. If we consider only loci associated
with SGIT, the validation ratio is higher: out of 86 loci, 49 (57%) were significant in the
biggest GWAS. For MDD we have used the biggest meta-analysis of the UK Biobank and
PGC GWAS (N = 500,199) to date [26] (see Supplementary Table S3b). Among 58 loci
significantly associated with SGIT and MDD UGIT but not with MDD, seven (12%) became
significant in the biggest MDD GWAS. The similar validation of lipid loci was not performed
since there was no bigger GWAS available in the open access. The validation of the loci
on the biggest GWAS is not a proper replication, however it still greatly increases the
confidence that detected by SHAHER loci are true positives.

Although SHAHER is effective, it has several limitations. First, when trait-trait genetic
correlations are weak, it is expected that the contributions of these traits to the shared
heritability will be small as well. In this case, MaxSH may overestimate these contributions.
Secondly, the framework is applicable only if the number of traits is no less than three.
In the case of three traits, the performance is limited and the SHAHER results should be
interpreted with caution. We have shown in simulations and real dataset examples that
MaxSH works better at higher numbers of genetically correlated traits being analyzed.
However, an increase in the number of weakly correlated traits leads to a decrease in
the proportion of SNPs associated with all traits simultaneously and to a decrease in the
efficiency of the framework. Thirdly, although the set of SNPs identified by the SGIT
GWAS is enriched for the SGF, each SNP should be interpreted with caution for whether
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it is shared or not, because SHAHER has some level of nonspecificity. Finally, if any
confounding effects were included in the GWAS of the original traits, these effects are
amplified in the SGIT [15]. The confounding effects can be controlled easily using special
methods like LD score regression [16], although this method fails to distinguish a polygenic
component if the trait was measured in the sample with the assortative mating or family
effects. Thus, we suggest a thorough check of the original GWAS for the presence of any
effects of possible confounders before proceeding to SHAHER. In principle, if the LD score
regression intercept was estimated, it is possible to correct for residual inflation by adjusting
the standard errors of the effects by multiplying them by the square root of the intercept.

We should highlight the distinctive specificity of SHAHER which distinguishes it from
existing approaches for multivariate analysis. There are a lot of frameworks that allow
for the incorporation of several correlated traits in one analysis to increase the power of
mapping [8–13]. Our framework is not aimed to increase the power of mapping itself
(although empirically we showed that SHAHER has higher power compared to univariate
analyses). Our framework is aimed to estimate the shared and unshared heritability and to
identify the shared and unshared genetic factors. Therefore, we did not compare the power
of SHAHER with the powers of existing approaches and do not expect it to have the highest
power among them. Moreover, our definition of shared genetic factors is stricter than just
the pleotropicity of all analyzed traits. This is why using multivariate approaches aimed to
increase the power of mapping is not the optimal way to identify shared genetic factors.

In conclusion, we propose a novel effective framework for analysis of the shared
genetic background for a set of genetically correlated traits using GWAS summary statistics.
The framework allows us to obtain novel biological insights into the trait’s genetic impact
composition. By analyzing shared and unshared genetic impacts separately, we increased
the number of identified loci and observed unique gene sets, identified genetic mechanisms
that are common for all traits or specific for every trait. Of note, sumCOT can be used as
a stand-alone method for obtaining GWAS results of the linear combination of the traits
using their summary statistics.
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