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Abstract: To extract fault features of rolling bearing vibration signals precisely, a fault diagnosis
method based on parameter optimized multi-scale permutation entropy (MPE) and Gath-Geva
(GG) clustering is proposed. The method can select the important parameters of MPE method
adaptively, overcome the disadvantages of fixed MPE parameters and greatly improve the accuracy
of fault identification. Firstly, aiming at the problem of parameter determination and considering the
interaction among parameters comprehensively of MPE, taking skewness of MPE as fitness function,
the time series length and embedding dimension were optimized respectively by particle swarm
optimization (PSO) algorithm. Then the fault features of rolling bearing were extracted by parameter
optimized MPE and the standard clustering centers is obtained with GG clustering. Finally, the
samples are clustered with the Euclid nearness degree to obtain recognition rate. The validity of the
parameter optimization is proved by calculating the partition coefficient and average fuzzy entropy.
Compared with unoptimized MPE, the propose method has a higher fault recognition rate.

Keywords: rolling bearing; fault recognition; parameter optimized multi-scale permutation entropy;
skewness; GG fuzzy clustering

1. Introduction

As the core component of rotating machinery, the state of rolling bearing directly
affects the use of the equipment [1]. Vibration signals collected by the sensor are often
contaminated by noise and thus unusable for direct machine faults diagnosis [2]. How to
identify the state of rolling bearing quickly and effectively has become a focus of current
research. Fault feature extraction and pattern recognition are key links in the fault diagno-
sis of rolling bearing [3,4]. At present, for the non-stationary complex signal, the feature
extraction method mainly applies traditional time-frequency analysis [5] and filtering. Its
statistical characteristics in time and frequency domain change with time, such as root
mean square (RMS) [6], kurtosis [7], and shape factor [8]; however, these indicators will
change whether the fault location occurs in the bearing outer ring, bearing inner ring or
rolling element when a bearing fails. Relying solely on these eigenvalues cannot effectively
distinguish and identify the fault location. Fast Fourier transform (FFT) [9], Wavelet trans-
form [10], and ensemble empirical mode decomposition (EEMD) [11] are commonly used
to signal denoising in feature extraction of fault diagnosis. Fault types are determined by
comparing current fault features with standard or existing fault features [12,13]. However,
due to the factors such as friction, vibration, and load in the process of mechanical opera-
tion, the vibration signal of mechanical system often shows nonlinear behavior. Using the
method of time-frequency analysis to decompose the signal into stable signal inevitably
has some limitations and difficulties [14].

Entropy 2021, 23, 1040. https://doi.org/10.3390/e23081040 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1352-9774
https://orcid.org/0000-0001-7114-0797
https://doi.org/10.3390/e23081040
https://doi.org/10.3390/e23081040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23081040
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23081040?type=check_update&version=1


Entropy 2021, 23, 1040 2 of 22

The method of nonlinear analysis can directly extract the fault information hidden in
the vibration signal of mechanical system without decomposing the original signal [15].
For the nonlinear complex signal of equipment fault, its complexity is different in different
states. The complexity analysis methods commonly used in fault diagnosis are approxi-
mate entropy [16], fuzzy entropy [17], sample entropy [18], and permutation entropy [19].
However, the above methods are based on the single scale analysis of time series. Multi
scale analysis [20,21] has been applied in the field of mechanical fault diagnosis because it
can reflect complex features and obtain more feature information of signals. The Approx-
imate Entropy algorithm is used to detect cracks in a rotating shaft in the reference [22].
Zheng [23] applied the concept of multi-scale fuzzy entropy (MFE) to the fault diagnosis
of bearing and achieved good results. However, the calculation amount of MFE is large,
and the selection of the number of characteristic parameters lacks a certain standard. The
multi-scale sample (MSE) analysis was applied to the turbulence data and successfully
captured two important features of the turbulent soap films [24]. However, MSE method is
slow in calculation of long data, poor in real-time performance, and is greatly affected by
abrupt signal. Aziz et al. [25] put forward the concept of multi-scale permutation entropy
(MPE), which is used to measure the complexity and randomness of time series at different
scales, to enhance the robustness. It has advantages including simple calculation, strong
anti-noise ability, short time required to obtain stable system eigenvalues, and suitable for
online monitoring [14]. In references [26–30], multi-scale permutation entropy (MPE) is
applied to fault diagnosis of rolling bearing respectively. However, the above research did
not study the parameters of the MPE, Table A1 of Appendix A compares the differences
between their research contents and that of this paper. Because the result of multi-scale
permutation entropy value is affected by its own parameters, if the parameters are set
unreasonably, the best processing effect will not be achieved. Reference [31] proposed a
method to determine the permutation entropy parameters based on reconstructing the
optimal phase space of time series, studied the methods to determine the embedding
dimension and delay time, but ignored the length of time series. In reference [14], the
length of time series was determined by observing the permutation entropy of Gaussian
white noise with different lengths. Although the method can achieve a certain processing
effect, the number of given data length values is fixed, and it is difficult to accurately
reflect the characteristic information of original signal with Gaussian white noise. Through
analysis, the setting delay time t of MPE has little influence but the embedding dimension
m and the length L of time series have a great influence on the final processing result. If the
parameter setting is unreasonable, the best processing effect will not be achieved, therefore,
the parameter influence analysis and optimization of the MPE are studied in this paper.

The pattern recognition can make substantive discrimination to fault types [32]. The
selection of recognizer can be based on classification [33] idea or clustering [34] idea.
The typical representative of classification idea is SVM [35]. However, the calculation
process of SVM needs the participation of relevant existing empirical parameters, mainly
including kernel parameters and penalty factors. The selection of these two parameters
which play an important role in SVM is usually based on the user’s existing experience,
which greatly reduces the universality of SVM model. Cluster analysis is also one of the
important methods of pattern recognition. This kind of algorithm does not need difficult
parameter selection process and is widely used. Fuzzy C-means (FCM) [36], Gustafson-
Kessel (GK) [37], and Gath-Geva (GG) [38] are commonly used. Generally, The FCM is only
applicable to the data sets with spherical distribution. GK algorithm introduces adaptive
distance norm and covariance matrix, which can reflect the dispersion degree of data along
any direction or subspace, but does not change the clustering state of clustering algorithm
which is similar to sphere [39–42]. GG clustering algorithm is the improved result of FCM
and GK clustering algorithm [38], because it measures the distance between samples by
introducing fuzzy maximum likelihood estimation method and can reflect the data of
different shapes and directions [43,44], which has stronger adaptability.
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Based on the above reasons, this paper proposes a method which combines parameter
optimized MPE and GG clustering algorithm to extract fault features and recognition
pattern of rolling bearing. The effectiveness of the proposed method is verified by several
rolling bearing fault experiments.

2. The Proposed Method
2.1. MPE Theory

The MPE is to calculate the permutation entropy of time series at different scales, that
is to consider the characteristics of time series at multi scales. The calculation steps are as
follows. For the time series X = [xi, i = 1, 2, · · ·N], the coarse-grained time series yj

(s) are
obtained by coarse-grained processing [25],

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi, (j = 1, 2, · · · , [N/s]) (1)

where s is the scale factor of X and N is the length of X.
The phase space of each coarse-grained sequence is reconstructed, the lth reconstruc-

tion component is

Yl
(s) = {y(s)l , y(s)l+t, · · · y

(s)
l+(m−1)t}, (l = 1, 2, · · · , N − (m− 1)t) (2)

where m is the embedding dimension and t is the delay time.
By arranging the elements of each reconstruction component in ascending order, a

group of corresponding symbol sequence symbol(α) can be obtained

symbol(α) = (j1, j2, · · · jm), (α = 1, 2, · · · γ; γ ≤ m!) (3)

Calculating the PE of each coarse-grained sequence at different scales, we get the MPE
of time series X

HD = −
γ

∑
α=1

ρα lnρα (4)

where ρα is the probability of each symbol(α).

2.2. Parameter Selection for MPE

In order to analyze the general trend of a group of data, the first step is to find the
mean value. However, the mean value alone cannot fully represent the overall situation of
a group of data, so the skewness of the data can be obtained [45]. The smaller the absolute
value of skewness is, the more reliable the value is.

The MPE value of X (X = [xi, i = 1, 2, · · · , N]) from all scales constitutes the sequence
HD(X)

HD(X) = {HD(1), HD(2), · · · , HD(s)} (5)

The skewness of HD(X) is skew

skew = E[HD(X)− Have
D (X)]3/[Hstd

D (X)]3 (6)

where Have
D (X) and Hstd

D (X) are the average value and standard deviation of the HD(X),
E(*) stands for expectation.

Therefore, this paper selects the square function of skewness as the objective func-
tion [42] to calculate the minimum value and optimize the maximum value of the F(X)

F(X) =
1

skew2 + 1
(7)
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2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) [46] regards the individuals in the population as
particles without mass and volume in the multi-dimensional search space. Each particle has
its own position and velocity, in the solution space, the fitness evaluation function is used
to continuously aggregate to its personal best historical position pbest and the group best
historical position gbest in the whole field to realize the evolution of candidate solutions.

The special memory function of PSO makes it possible to dynamically track the current
search situation and adjust its search strategy. The evolution process of particle swarm
optimization is as follows{

veσ+1
i = w · veσ

i + c1r1(pσ
i − poσ

i ) + c2r2(gσ
i − poσ

i )

poσ+1
i = poσ

i + veσ+1
i

(8)

where σ is an evolutionary algebra, vei
σ is the flight velocity of particle i, poi

σ is the position
vector of particle i, pσ

i is the best position experienced by particle i and gσ
i is the best position

of the whole particle swarm to experience in the solution space. r1 and r2 are random
numbers between [0, 1], c1 and c2 are learning factors, w is the inertia weight factor. While
poi and vei meet the following condition,

poi ∈ [pomin, pomax]
vei ∈ [vemin, vemax]
vemax = δpomax

(9)

where δ is the proportional coefficient between the maximum velocity vemax and the
maximum search space pomax.

When the position or velocity of a certain dimensional variable exceeds the bound-
ary range, the boundary absorption strategy is adopted, that is, the particle falls on the
boundary of the search space in the next iteration.

The parameters of PSO algorithm in this paper are set as follows: population size
group = 20, maximum iterations Tmax = 10, acceleration constant c1,2 = 1.5, and inertia
weight w = 0.5. The process of MPE parameter optimization using PSO is shown in
Figure 1.

2.4. GG Algorithm

The specific algorithm given in the reference [47] is as follows.
(1) Suppose a sample set Ω = (ψ1, ψ2, · · ·ψk, · · ·ψn) has a z(2 ≤ z ≤ n) common class,

ψk = [ψk1, ψk2, · · · , ψkd] representing d features of the kth(1 ≤ k ≤ n) sample.
(2) Initialize membership matrix U = [uik]z×n, uik is objective function, which indicates

the degree of the kth sample belonging to the ith (1 ≤ i ≤ z) category. V = [v1, v2, · · · , vz] is
cluster center vector, z is the number of clusters.

(3) Update cluster center vi

vλ
i =

n
∑

k=1
(uλ−1

ik
)

β
ψk

n
∑

k=1
(uλ−1

ik
)

β
(10)

where λ is the iterations, β is fuzzy exponent and generally taken as 2.
(4) Calculate the distance measure DMik

DMik =
(det(Ai))

1/2

qi
exp(

1
2
(ψk − vλ

i )
T

A−1
i (ψk − vλ

i )) (11)

qi =
1
n

n

∑
k=1

uik (12)
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where DMik is the maximum likelihood estimation distance and Ai is the covariance matrix
of the ith cluster center, qi is the prior probability of the ith cluster being selected.

(5) Update membership matrix U

uλ
ik
=

n
∑

k=1
uλ−1

ik

z
∑

j=1
(DMik(ψk, vi)/DMjk(ψk, vj))

2
β−1

(13)

where if the condition ‖Uλ −Uλ−1‖ < ε (ε is the termination tolerance) is satisfied, the
operation will be terminated, otherwise, λ = λ + 1, until the condition is satisfied.
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2.5. Evaluation Index of Clustering Effect

The clustering effect of GG fuzzy clustering can be made quantitative assessment with
partition coefficient (PAC) [48] and partition entropy (PAE), which are as follows

PAC =
1
n

z

∑
i=1

n

∑
k=1

u2
ik

(14)

PAE = −
z

∑
i=1

ζi
n
(

`

∑
τ=1

ζiτ
ζi

log2
ζiτ
ζi

) (15)

where ζi, ζiτ are the number of all members in cluster i and the number of members
belonging to class τ, respectively. ` is the number of category from cluster i.
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Suppose the sample set Ω = (ψ1, ψ2, · · ·ψk, · · ·ψn) is composed of the sample set
called θ and the set ϕ, n is the number of samples in Ω, Euclidean closeness [49] is used to
fault recognition in this paper, then the Euclid closeness between θ and ϕ is

Euclid(θ, ϕ) = 1− 1√
n

√
n

∑
k=1

[θ(ψk)− ϕ(ψk)]
2 (16)

where θ(ψk) and ϕ(ψk) are membership functions of θ and ϕ, respectively.

2.6. The Process of Bearing Fault Pattern Recognition

The framework of the proposed method is shown in Figure 2. The general implemen-
tation procedure is summarized as follows

(1) Carry out the experiment and collect the vibration experiment data.
(2) For the signal, the initial parameters of MPE are optimized by PSO algorithm. The

optimal parameters (m, L) of MPE is determined.
(3) The optimized parameters are reset to MPE, the entropy of signal is calculated by

PSO-MPE and the eigenvalue matrix is established.
(4) Input eigenvalue matrix into GG clustering classifier to realize clustering.
(5) The Euclidean distance between the samples to be identified and the clustering center

is calculated to realize the classification and recognition.
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3. Parameter Influence Analysis of MPE

In order to study the influence of different parameters on MPE, the experimental
data of rolling bearing in Case Western Reserve University [50] is used for analysis. The
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test stand is shown in Figure 3, which is composed of a 2 hp motor (left), a torque trans-
ducer/encoder (center), a dynamometer (right), and control electronics (not shown). The
test bearings support the motor shaft. Single point faults were introduced to the test bear-
ings using electro-discharge machine. Vibration data was collected using accelerometers,
which were attached to the housing with magnetic bases. The rolling bearing near the
drive end is tested in the experiment. Its type is 6205-2 RSJEMSKF.
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Taking the normal vibration signal of the drive end bearing as an example when the
motor speed is 1797 r/min, the sampling frequency is 12 kHz. The values of data length L
are 128–4096, respectively. The values of embedding dimension m are 3–8, delay time t is
1–6 and scale factor s is set from 1 to 12. Figure 4 shows the amplitude variation of MPE
from samples in each state under different lengths, different embedding dimensions, and
different delay time.

It can be seen from Figure 4 that for the normal vibration signal of the bearing, when
m = 6, t = 1, the value of L changes from small to large, the entropy increases obviously.
So different L values have a greater impact on the entropy, it is necessary to select the
appropriate value of L. Fixed L = 1024, t = 1, m values from small to large change, with the
increase of m, the entropy decreases obviously, different m value has a different entropy, so
it is necessary to select the appropriate value of m.

Fixed m = 6, L = 1024, as can be seen from Figure 4c, with the increase of delay time
t, the entropy value does not increase or decrease obviously at different scales, which
indicates that it has little effect on the entropy value, so the fixed value of t is 1 in this
paper. When m value is too small, the ability of the algorithm to detect signal mutation is
low, but the larger m value is, the larger the amount of calculation is, and the longer the
running time of the algorithm is. In summary, selecting the appropriate data length L and
embedding dimension m is necessary.



Entropy 2021, 23, 1040 8 of 22

Entropy 2021, 23, x FOR PEER REVIEW 8 of 23 
 

 

Taking the normal vibration signal of the drive end bearing as an example when the 
motor speed is 1797 r/min, the sampling frequency is 12 kHz. The values of data length L 
are 128–4096, respectively. The values of embedding dimension m are 3–8, delay time t is 
1–6 and scale factor s is set from 1 to 12. Figure 4 shows the amplitude variation of MPE 
from samples in each state under different lengths, different embedding dimensions, and 
different delay time. 

It can be seen from Figure 4 that for the normal vibration signal of the bearing, when 
m = 6, t = 1, the value of L changes from small to large, the entropy increases obviously. So 
different L values have a greater impact on the entropy, it is necessary to select the appro-
priate value of L. Fixed L = 1024, t = 1, m values from small to large change, with the in-
crease of m, the entropy decreases obviously, different m value has a different entropy, so 
it is necessary to select the appropriate value of m. 

 
(a) m = 6, t = 1 

 
(b) L = 1024, t = 1 

 
(c) m = 6, L = 1024 

Figure 4. The multi-scale permutation entropy of different parameters. 

M
PE

M
PE

M
PE

Figure 4. The multi-scale permutation entropy of different parameters.

4. Experimental and Comparative Analysis
4.1. Case 1: CWRU Data Analysis

When the motor speed is 1797 r/min, four types of vibration signals are analyzed,
including normal (NR) bearings, outer ring fault (ORF) bearings, inner ring fault (IRF)
bearings and ball fault (BF) bearings. Figure 5 shows a part of time waveform of the
vibration signal collected by sensors in four states, the horizontal axis is the time, the
vertical axis is the acceleration amplitude of the vibration signals, their units are second
and m · s−2 respectively. Intercept each state signals from the original signal according to
different lengths to obtain four state samples. The number of samples is 30 for each state, a
total of 120 feature vectors can be obtained, and each feature vector has 12 dimensions.
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Firstly, every sample is analyzed by MPE to extract the features, the effectiveness of
parameter optimization of PSO algorithm is verified compared with the parameters in
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reference [32]. The vibration signals of four states of the bearing are analyzed, and the
change of fitness value in the optimization process is shown in Figure 6.
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The optimized parameters of MPE for various state samples are shown in Table 1. The
MPE values and cluster results before and after the optimization of vibration signal in four
states are shown in the Figures 7 and 8 respectively.
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Table 1. The parameters of MPE.

Fault Types
Parameters of MPE from

Reference [32] Parameters of MPE with PSO

m L m L

NR 6 2048 7 1732
ORF 6 2048 7 3152
IRF 6 2048 5 1559
BF 6 2048 6 3251

It can be seen from Figure 7b that the MPE with optimized parameters can better
distinguish the four different states of bearings, and is better than the effect of fixed
parameters in Figure 7a. The parameter optimized MPE can distinguish the four states
of the bearing more obviously, it can be used as the feature vector to further classify and
identify the bearing fault modes.

In Figure 8, PC1 and PC2 are two vectors in two-dimensional space after data visu-
alization, they have the same meaning in the following similar figures. As can be seen
from Figure 8b, the samples are distributed around four clustering centers according to
fault types after processed by the proposed method, the distance between different classes
becomes larger and the distance within classes becomes smaller compared with Figure 8a.
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In order to further illustrate the effectiveness of this research method, the PAC, PAE,
and fault recognition rate are used to evaluate quantitatively. Corresponding to Figure 8,
the performance comparison of the two recognition methods is shown in Table 2. It can be
seen that

(1) The closer the PAC is to 0, the better the clustering effect. Although the PAC value of
MPE and PSO-MPE are all 1, the PAE decreases gradually. The closer the PAE is to 0,
the better the clustering effect.

(2) The fault recognition rate of PSO-MPE with GG clustering reaches 100%, which is
consistent with its clustering performance.

(3) It can be seen that the PSO-MPE method proposed by the author can effectively extract
the fault feature information of rolling bearing and accurately identify different fault
types of rolling bearings.

Table 2. Performance comparison of two recognition methods.

Classifier Evaluating Indicators MPE PSO-MPE

GG
PAC 1 1
PAE 0.2624 0

Recognition rate 84.17% 100%

4.2. Case 2: A Freight Locomotive Wheelset Bearing Signal

To further demonstrate the performance of the proposed method, a fault experiment
is carried out in this section. The experimental setup and the tested wheelset bearing
are shown in Figure 9. RD2 wheel set and 197,726 double row tapered roller bearing are
installed on the test bench. The fault bearings are shown in Figure 10. The wheelset bearing
defections are natural damages generated during the operation of the railway freight
vehicles, which are located in the outer raceway, inner raceway and ball, respectively.
The experimental device includes three DASP data processing software of CA-YD-188
piezoelectric accelerometer, signal amplifier and INV36DF signal acquisition instrument.
The sensors are installed on the test bench in turn, and the position is shown in Figure 9.
The sampling frequency is 25.6 kHz.
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Figure 10. The fault locations: (a) The slight dent fault on the outer raceway; (b) a fatigue spall fault
on the inner raceway; (c) the scratch fault on the rolling ball.

In order to observe the time domain characteristics and save the paper space, Figure 11
shows the time domain waveform of the bearing inner ring and rolling ball. We can see
the noise component of the collected signal from this experiment in the Figure 11 is more
than bearing experiment of CWRU in the Figure 5, which increases difficulty of the method
verification.
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There are 30 group samples collected in each state. It can be seen from Figure 12
that without optimizing the parameters of the MPE, the entropy values of the four states
of rolling bearing are intertwined, they are not effectively distinguished, which cannot
effectively distinguish the four states, it is not suitable to use them as the quantitative
features of rolling bearing fault.

GG with parameters unoptimized MPE is directly used for the signal. As shown in
Figure 12a, the entropy value of the four states is not effectively distinguished. The sample
distance of the same class is too large, and the distance between different classes is small
in Figure 12b. Although we can see about four gathering teams, the distinction between
NR and ORF is not obvious, some NR samples are wrongly classified into ORF, when the
signal contains more noise components, it is easy to misjudge.



Entropy 2021, 23, 1040 14 of 22

Entropy 2021, 23, x FOR PEER REVIEW 14 of 23 
 

 

GG with parameters unoptimized MPE is directly used for the signal. As shown in 
Figure 12a, the entropy value of the four states is not effectively distinguished. The sample 
distance of the same class is too large, and the distance between different classes is small 
in Figure 12b. Although we can see about four gathering teams, the distinction between 
NR and ORF is not obvious, some NR samples are wrongly classified into ORF, when the 
signal contains more noise components, it is easy to misjudge. 

 
(a) Parameters unoptimized MPE of four state signals 

 
(b) GG clustering results of the parameters unoptimized MPE 

Figure 12. The results with MPE. 

The Table 3 are the parameters of MPE in various states obtained by PSO. Figure 13a 
shows the PSO-MPE of four state signals, it can be seen that  distance between the en-
tropy curves of different operation states is significantly increased and entropy curves of 
different operation states are obviously separated completely. This is because when the 
rolling bearing has faults, the randomness of vibration signal changes, which changes the 
entropy values in different scales. In the same state, with the increase of scale, the ran-
domness and complexity of coarse-grained sequence decrease, and the change range of 
entropy decreases. 

Table 3. The PSO-MPE parameters. 

Fault Types m L 
NR 6 1339 

ORF 5 3180 
IRF 6 1168 
BF 6 541 

0 2 4 6 8 10 12
s

0.5

0.6

0.7

0.8

0.9

NR ORF
IRF BF

0 0.2 0.4 0.6 0.8 1
PC1

0

0.5

1 NR
ORF
IRF
BF
Cluster center
Contour

Figure 12. The results with MPE.

The Table 3 are the parameters of MPE in various states obtained by PSO. Figure 13a
shows the PSO-MPE of four state signals, it can be seen that distance between the entropy
curves of different operation states is significantly increased and entropy curves of different
operation states are obviously separated completely. This is because when the rolling
bearing has faults, the randomness of vibration signal changes, which changes the entropy
values in different scales. In the same state, with the increase of scale, the randomness and
complexity of coarse-grained sequence decrease, and the change range of entropy decreases.

Table 3. The PSO-MPE parameters.

Fault Types m L

NR 6 1339
ORF 5 3180
IRF 6 1168
BF 6 541
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Figure 13. The results with PSO-MPE.

As can be seen from Figure 13b, after samples are processed by PSO-MPE and GG
clustering algorithm, they are distributed around four clustering centers according to fault
types, the distance between different classes becomes larger and the distance within class
becomes smaller than Figure 13a.

According to Table 4, The fault recognition rate of rolling bearing based on PSO-MPE
and GG clustering is 99.17%, which is higher than the recognition rate of MPE. Moreover,
the PAC and PAE are better than those of parameters unoptimized MPE. It shows that the
proposed method is still effective under relatively difficult experimental conditions.

Table 4. Performance comparison of two recognition methods.

Classifier Evaluating Indicators MPE PSO-MPE

GG
PAC 0.9999 1
PAE 0.3658 0.0409

Recognition rate 81.67% 99.17%

In order to prove the superiority of parameter optimized MPE as signal feature
extraction index, compare it with the feature vector composed of kurtosis and root mean
square. Figure 14 shows the effect of clustering with kurtosis and root mean square (RMS)
as feature vector. Compared with the Figure 13b, it is obvious that the four types of samples
are not effectively distinguished, because these indexes will change no matter which part
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of the bearing fails, it cannot effectively distinguish the fault location only through kurtosis
or root mean square. While the research method in this paper can effectively distinguish
different types of fault samples.

Entropy 2021, 23, x FOR PEER REVIEW 16 of 23 
 

 

as feature vector. Compared with the Figure 13b, it is obvious that the four types of sam-
ples are not effectively distinguished, because these indexes will change no matter which 
part of the bearing fails, it cannot effectively distinguish the fault location only through 
kurtosis or root mean square. While the research method in this paper can effectively dis-
tinguish different types of fault samples. 

 
Figure 14. The GG clustering results with Kurtosis and RMS. 

4.3. Case 3: A High-Speed Locomotive Wheelset Bearing Fault Signal 
In order to verify whether the method is still effective in more complex working con-

ditions with more noise components, the practical test data from the self-made experiment 
platform is selected for subsequent analysis. In this case, the vibration signal has been 
collected from a high-speed locomotive wheelset bearing. The test rig structure [51] is de-
picted in Figure 15. In order to simulate the load change of wheel set bearing during op-
eration, apply a random force with a frequency of 0.2~20 Hz and an average value of about 
10 kN in the radial direction, a simple harmonic force with a frequency of 1 Hz and a 
maximum value of 10 kN is applied axially on the test rig. 

The field diagram of the test rig and the test bearings are depicted in Figure 16. The 
sensor is located at the top of the end-shield of the test bearing in Figure 16c and the vi-
bration signal is collected by a PCB356A25 accelerometer. The dynamic loads can be ob-
tained by the radical and axial actuators. There is an artificial local defect in the outer race 
of test bearing as plotted in Figure 16d, of which the width is 1 mm and length is 5 mm. It 
can be noted that the artificial defect is relatively slight in comparison with its geometries. 
The sampling frequency is set as 51.2 kHz and the set speed is 2000 r/min.  

0 0.2 0.4 0.6 0.8 1
PC1

0

0.5

1
NR
ORF
IRF
BF
Cluster center
Contour

Figure 14. The GG clustering results with Kurtosis and RMS.

4.3. Case 3: A High-Speed Locomotive Wheelset Bearing Fault Signal

In order to verify whether the method is still effective in more complex working con-
ditions with more noise components, the practical test data from the self-made experiment
platform is selected for subsequent analysis. In this case, the vibration signal has been
collected from a high-speed locomotive wheelset bearing. The test rig structure [51] is
depicted in Figure 15. In order to simulate the load change of wheel set bearing during
operation, apply a random force with a frequency of 0.2~20 Hz and an average value of
about 10 kN in the radial direction, a simple harmonic force with a frequency of 1 Hz and a
maximum value of 10 kN is applied axially on the test rig.
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Figure 15. The structure of the test rig.

The field diagram of the test rig and the test bearings are depicted in Figure 16. The
sensor is located at the top of the end-shield of the test bearing in Figure 16c and the
vibration signal is collected by a PCB356A25 accelerometer. The dynamic loads can be
obtained by the radical and axial actuators. There is an artificial local defect in the outer
race of test bearing as plotted in Figure 16d, of which the width is 1 mm and length is
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5 mm. It can be noted that the artificial defect is relatively slight in comparison with its
geometries. The sampling frequency is set as 51.2 kHz and the set speed is 2000 r/min.
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Figure 16. Railway bearing test bench and bearings: (a) Railway bearing test bench overview; (b) test
bearing; (c) local enlarged test point; (d) partial enlarged view of outer race fault; (e) partial enlarged
view of inner race fault.

Each state collected 30 samples. There were total three kinds of normal signals and
vibration signals at different fault positions. The results solved by the MPE are shown in
the Figure 17 when the L = 2048, m = 6.
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As can be seen from Figure 17, GG clustering cannot effectively cluster the fault feature
samples constructed by MPE. It is difficult for the entropy to represent the different running
states of bearings so further treatment is necessary. The steps are the same as last section, it
will not be repeated here.

The Table 5 are the parameters of MPE in various states, which are obtained by PSO
algorithm. Then GG is used to cluster the samples. The results with PSO-MPE are show in
Figure 18.

Table 5. The PSO-MPE parameters.

Fault Types m L

NR 4 3818
ORF 5 3745
IRF 5 3918
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Figure 18. The results with PSO-MPE.

It can be seen from Figure 18a, the proposed method can effectively distinguish
the three states. The values of NR and ORF is obviously separated while they are not in
Figure 17a. Compared with Figure 17b, the samples of each state in Figure 18b are obviously
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separated, classified with its own cluster centers and the distance between different classes
becomes larger and the distance within classes becomes smaller, respectively.

According to Table 6, The fault recognition rate of rolling bearing based on the pro-
posed method is 100%, which improves a lot than the 78.89% of the MPE. Moreover, the
PAC and PAE of PSO-MPE are better than those of MPE, which prove the necessity and
advantage of combination PSO-MPE and GG method, it has better clustering effect and
recognition effect.

Table 6. Performance comparison of two recognition methods.

Classifier Evaluating Indicators MPE PSO-MPE

GG
PAC 0.9841 1
PAE 0.2720 0

Recognition rate 78.89% 100%

In order to prove the robustness advantage of the proposed method, compare it with
the feature vector composed of kurtosis and root mean square (RMS). Figure 19 shows the
clustering effect of kurtosis and root mean square as feature vector. Compared with the
Figure 18b, it is obvious that the three types of samples are not effectively distinguished,
because the experimental environment simulates the working condition of high-speed train
operation, the collected signal is close to the vibration signal of the train running on the
actual line and is seriously disturbed by environmental noise. This index is almost invalid
in this case.
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Figure 19. The GG clustering results with Kurtosis and RMS.

5. Conclusions

In this paper, a rolling bearing fault detection method based on the PSO-MPE and GG
is proposed. The method can select the important parameters of MPE method adaptively,
overcome the disadvantages of fixed MPE parameters and greatly improve the accuracy of
fault identification. The method is verified by several experiments. Some conclusions are
obtained as follows:

(1) To solve the problem of parameter determination of MPE, fitness function is
constructed by skewness of multi-scale permutation entropy, the time series length L and
embedding dimension m are optimized, the effectiveness of the optimization method is
verified by experiments.

(2) Compared with the MPE of fixed parameters, it is proved that parameter optimized
MPE can extract fault features accurately and has better classification and recognition rate
about the rolling bearing typical faults.

(3) The effectiveness and robustness of the proposed method is verified by several
rolling bearing experiments, of which the signals are simple to complex. Meanwhile,
compared with the feature vector composed of root mean square and kurtosis, the proposed
method shows advantages when the vibration signal contains more noise components and
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serious environmental interference, the proposed method has more accurate and stable
performance in fault diagnosis.
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Appendix A

Table A1. Similarities and Differences between This Paper and Other References.

References Similarities Differences

Reference [26]:
LMD-MPE

The MPE of vibration signal is
extracted as the feature for fault

subsequent classification or clustering

The local mean decomposition (LMD) is used to denoise,
then calculate MPE of the product functions, SVM is

used to classify. LMD-MPE and LMD-MPE are
compared to prove the advantages of MPE

Reference [27]:
VMD-MPE-FCM

The variational mode decomposition (VMD) is used to
denoise and obtain intrinsic mode functions (IMF),

calculate MPE of these IMFs, FCM is used to cluster. The
parameters influence of MPE is not considered.

Reference [28]:
MPE-LS-SVM

The MPE of the bearing vibration signal in different
scales is calculated, the Laplacian score (LS) is used to
refine the feature vector, SVM is used to classify. The

parameters of MPE is fixed.

Reference [29]:
EEMD-MPE-SA-SVM

A number of intrinsic
mode functions (IMFs) are obtained using ensemble
empirical mode decompose (EEMD), the multi-scale

IMF permutation entropy are
extracted, SA-SVM is used to classify. The parameters

(m,t) of MPE is fixed.

Reference [30]:
CEEMD-MPE-GK

Complementary Ensemble Empirical Mode
Decomposition (CEEMD) is used to denoise and obtain

intrinsic mode functions (IMF), calculate MPE of the
modal IMF, the GK is used to fault type recognition. The

parameters influence of MPE is not considered.

This paper:
PSO-MPE-GG

The embedding dimension m, delay time t and the
length L of time series sample are considered when

calculate MPE, PSO and skewness are used to determine
the selection of parameters, which increases the

robustness of the MPE. GG is used for cluster of fault
types, which increases the accuracy.
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