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Abstract
Background: The main goal of ultrasound therapy is to have clinical effects in the tissue without damage 
to the intervening and surrounding tissues. Treatments have been developed for both in vitro and in clinical 
applications. HIFU therapy is one of these. Non-invasive surgeries, such as HIFU, have been developed 
to treat tumors or to stop bleeding. In this approach, an adequate imaging method for monitoring and 
controlling the treatment is required. Methods: In this paper, an adaptive compressive sensing representation 
of ultrasound RF echo signals is presented based on empirical mode decomposition (EMD). According to 
the different numbers of intrinsic mode functions (IMFs) produced by the EMD, the ultrasound signals is 
adaptively compressive sampled in the source and then adaptively reconstructed in the receiver domains. 
In this paper, a new application of compressive sensing based on EMD (CS-EMD) in the monitoring of 
high-intensity focused ultrasound (HIFU) treatment is presented. Non-invasive surgeries such as HIFU 
have been developed for various therapeutic applications. In this technique, a suitable imaging method is 
necessary for monitoring of the treatment to achieve adequate treatment safety and efficacy. So far, several 
methods have been proposed, such as ultrasound radiofrequency (RF) signal processing techniques, and 
imaging methods such as X-ray, MRI, and ultrasound to monitor HIFU lesions. Results:In this paper, a 
CS-EMD method is used to detect the HIFU thermal lesion dimensions using different types of wavelet 
transform. The results of the processing on the real data demonstrate the potential for this technique in 
image-guided HIFU therapy. Conclusions: In this study, a new application of compressive sensing in the 
field of monitoring of the HIFU treatment is presented. To the best of our knowledge, so far no studies on 
compressive sensing have been carried out in the monitoring of the HIFU. Based on the results obtained, 
it was showed that the number of measurements and Intrinsic Mode Functions have the function of noise 
reduction. In addition, results were shown that the successful reconstruction of the compressive sensing 
signals can be gained using a threshold based algorithm. To this end, in this paper it was shown that by 
selecting an suitable number of measurements, the sparse transform, and a thresholding algorithm, we can 
achieve a more accurate detection of the HIFU thermal lesion size.
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Introduction
Ultrasound therapy is a field with many 
clinical applications. The main goal of 
ultrasound therapy is to have clinical 
effects in the tissue without damage to 
the intervening and surrounding tissues. 
Treatments have been developed for 
both in  vitro and in clinical applications. 
High‑intensity focused ultrasound  (HIFU) 
therapy is one of these. HIFU exposures 
create lesions of therapeutic benefit in tissue 
through rapid temperature elevation in the 
focal region. Noninvasive real‑time HIFU 
thermal lesion detection and monitoring are 
keys to the success and widespread usage 
of this technique in clinical applications. 

The ideal thermal lesion detection and 
monitoring method must possess desired 
characteristics to provide accurate real‑time 
localization of the tissue target region and 
to differentiate quantitatively between 
the areas of thermal coagulation and 
surrounding nontreated tissue.

The advantages of this noninvasive 
technique are its ability to penetrate deep 
tissue in the body and give the amount of 
heat or mechanical energy specific to the 
tissue. In this method, due to the presence of 
blood capillaries that act as heat wells and 
surface fat layers which divert ultrasound 
beams, this system requires suitable 
monitoring methods to solve both these 
problems and improve the performance 
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of the treatment.[1,2] So far, several methods have been 
proposed such as radiofrequency  (RF) signal processing 
techniques and imaging methods such as X‑ray, magnetic 
resonance imaging  (MRI), and ultrasound to monitoring 
HIFU lesions.[3‑6] MRI allows tissue contrast for localization 
of target volume, characterization of diffusion, temperature 
detection, and enabling detection of tissue damage. 
However, low image acquisition speeds (low temporal 
resolution) and high costs have restricted the use of MRI for 
HIFU treatment monitoring. One of the techniques based on 
ultrasound, developed so far in the field of HIFU monitoring, 
is measuring the acoustic characteristics of the tissue using 
ultrasound RF echo signals, which is based on processing 
backscattered RF signals from the region of interest  (ROI) 
in tissue for estimating the tissue characteristics in that 
region. Quantitative tissue properties such as coefficient 
of attenuation, nonlinear parameter  (B/A), speed of sound, 
and tissue vibration are calculated in these methods.[3,7,8] 
Coussios et al. indicated that focal cavitation activity could 
lead to an increment in the tissue acoustic absorption 
and further enhance treatment efficacy.[9] However, this 
process can be effectively used to monitor the HIFU. 
A  variety of different ultrasound‑based techniques have 
been developed to noninvasively monitor therapy progress 
by estimating changes in temperature.[10] However, these 
temperature tracking methods were developed under 
treatment conditions employing subablative intensities and 
the range of temperature rise was limited to a maximum of 
10°C–20°C above body temperature.

In another work, Chen[11] indicated that the harmonic 
motion imaging, a method based on tracking tissue 
vibrations caused by acoustic radiation force, can be used 
for determining tissue elasticity toward controlling and 
monitoring HIFU treatment. In recent years, researchers 
have shown that an optoacoustic imaging technique can be 
used as a real-time and noninvasive. In a different work, 
Chen[11] indicated that the harmonic motion imaging, a 
technique based on tracking tissue vibrations caused by 
acoustic radiation force, can be used for determining 
tissue elasticity toward controlling and monitoring HIFU 
treatment. In recent years, researchers have shown that 
an optoacoustic imaging method can be used as a real-
time and noninvasive method for determining the optical 
characteristics of the tissue during HIFU therapy. In 
a paper, Adams et al.[12] indicated that this methods is 
especially suitable for monitoring nonbubble thermal HIFU 
lesions with a minimal acoustic contrast. In another work, 
Alhamami et al.[13] showed quantitative measurements 
of optical properties of a coagulated HIFU thermal 
lesion versus a native untreated tissue and demonstrated 
an approximately fourfold increase in the amplitude of 
the optoacoustic signal generated in a HIFU-induced 
thermal lesion versus a native untreated tissue. method for 
determining the optical characteristics of the tissue during 
HIFU therapy. In a study, Adams et al.[12] indicated that this 

method is especially appropriate for monitoring nonbubble 
thermal HIFU lesions with a minimal acoustic contrast. 
In another paper, Alhamami et al.[13] showed quantitative 
measurements of optical properties of a coagulated 
HIFU thermal lesion versus a native untreated tissue and 
demonstrated an approximately fourfold increase in the 
amplitude of the optoacoustic signal generated in a HIFU-
induced thermal lesion versus a native untreated tissue.

In the present study, compressive sensing based on 
empirical mode decomposition  (CS‑EMD) method is 
proposed to improve the monitoring of HIFU lesioning. 
In recent years, we have witnessed the ever‑increasing use 
of CS and sparse representation concepts in various signal 
processing applications. To the best of our knowledge, so 
far, no research has been conducted to use CS and sparse 
representation in the monitoring of HIFU and only a 
few research works have been done on reconstruction of 
ultrasound signals or images using compressive sampling. 
Recently, a signal processing method suitable for nonlinear 
and nonstationarity data series, the EMD, has been proposed 
by Huang et al.[14] This method has already received much 
more attention and has been applied to many areas, such 
as the biological and physiological signals,[15] voiced 
speech signals,[16] and the fault diagnosis.[17] It performs 
a time‑adaptive decomposition of a complex signal into 
elementary, almost orthogonal components that do not 
overlap in the frequency. EMD can be as a nonlinear filter 
in time domain. EMD filter can remove unwanted noise of 
short periods and leave fundamentals unchanged. In this 
study, a new application of CS in the field of monitoring 
of HIFU is presented. In the past, we worked on the CS 
based on the threshold algorithm. The results of the study 
showed that the modified CS method could effectively 
detect HIFU thermal lesions in vitro.[18] In the current work 
for enhancement of lesion detection, a new application of 
CS‑EMD is presented. One method of multidecomposition 
that does not require preselection functions unlike wavelet 
transform is the EMD method. This algorithm was first 
introduced by Huang et  al. for the decomposition of 
nonstationary signals that in this method, the fundament of 
decomposition is based on the extremum points of a signal 
and the extraction of its intrinsic mode functions (IMFs). In 
fact, there are two main reasons for combining CS‑EMD 
method. First, the EMD method decomposes each RF echo 
signal into separate frequency components, and then, by 
applying the thresholding algorithm to sparse space of the 
IMFs, it can be expected that when we reconstruct the signal 
from these coefficients, the noise is significantly reduced. 
Second, using the EMD method, a sparse presentation of 
the signal is obtained, so the efficiency of the CS approach 
increases in signal reconstruction. In this paper, we present 
an adaptive CS scheme of RF echo signals based on EMD.

Based on this new method, called the compressive sensing, 
for signals and images with the possibility of sparse 
representation, one can attain reconstruction of these signals 
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with good quality via incoherent measurements. The number 
of these measurements can be much less than the number of 
samples commonly taken in the traditional sampling method 
(known as the Nyquist rate), which has been developed in 
the area of information theory and signal processing. In 
recent years, we have witnessed increasing development 
of utilizing the concept of CS and sparse representation in 
various signal and image processing applications, including 
pattern recognition and machine vision.[18-21]

Generally, signal reconstruction from compressive 
measurements is done by optimization algorithms. In many 
engineering applications, the signal is contaminated with a 
variety of noises. Noise does not only corrupt the signal 
but also has an effect on the reconstructed signal. To this 
end, CS theory can be introduced as a method for reducing 
noise if the sparse space of the signal is known.[22,23] In 
this study, all experiments and results were performed in 
ex vivo porcine muscle tissue. Simulation results show the 
effectiveness of the proposed method in the detection of 
HIFU thermal lesion. This article has been organized as 
follows. In Materials and Methods, the content of the data 
acquisition and the CS‑EMD method are presented, and in 
Suggested Method, the proposed algorithm is presented. 
The results of simulations and conclusions are presented in 
Results and Discussion and Conclusion, respectively.

Materials and Methods
Ultrasound radiofrequency echo data acquisition and 
high‑intensity focused ultrasound systems

Data used for analysis in this work are achieved in the 
Advanced Biomedical Ultrasound Imaging and Therapy 
Laboratory, in the Department of Physics at Ryerson 
University, Toronto, Canada.[8] To gather the necessary 
information, HIFU exposures were performed on porcine 
muscle tissue in vitro. An ultrasound imaging system (Sonix 
RP scanner, Ultrasonix Inc., Richmond, BC, Canada), with 
an endocavity array probe of 128 elements, operating at a 
center frequency of 7 MHz and bandwidth of 3 MHz, was 
used to record B-mode images and RF backscattered data.[18]

Detailed description of the image-guided HIFU system 
used in this work has been given elsewhere.[8] A typical 
HIFU exposure used in this paper was 40 s of 45W 
acoustic power delivered with a 77% duty cycle. The HIFU 
exposures induced thermal lesions in the pork muscle 
tissue in vitro. The RF data frames were captured before, 
during, and 10 min after each HIFU exposure. All RF data 
processing and image formation were performed in the 
Cartesian system of coordinates. Each image frame included 
70 RF lines, and each line contained 4680 samples equal 
to 90.1 mm tissue depth. The data acquisition sampling 
frequency was 40 MHz.[18] The total HIFU treatment time 
was 40 s for total acoustic power  (TAP) levels of 34, 37, 
39, 44, and 49 W. Figure  1 illustrates the thermal lesions 
induced at TAPs ranging from 34 to 49. As illustrated in 

Figure  1, the depth of lesions from the tissue surface was 
measured. For the HIFU transducer, the free‑field (in water) 
spatially averaged intensity, ISA, was computed by[24]

I P
DSA 2= 0 867. � (1)

Where P was the TAPs measured using the calibrated 
acoustic power meter at the surface of the transducer 
and D is the focal beam width at full width at half 
maximum  (FWHM) measured using the calibrated 
hydrophone. Table 1 shows a summary of the input electric 
powers with the corresponding TAP  values and free‑field 
spatially averaged intensities. ISA was estimated using Eq. 
1 for a duty cycle of 77% and maximum beam width at 
FWHM of 2 mm.

Compressive sensing

The traditional method of reconstructing signals and 
images from measured data is based on the Shannon–
Nyquist sampling theory, according to which the 

Figure 1: Tissue slices revealing high-intensity focused ultrasound lesions 
in their middle parts at acoustic powers of 34, 37, 39, 44 and 49 W

Table 1: Total acoustic powers and ISA calculated at 
corresponding input electric power levels

Input electric power (W) Total acoustic power (W) ISA (W/cm2)
70 34 737
75 37 801
80 39 845
90 44 961
100 49 1068
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minimum number of samples necessary for sampling 
to reproduce without error from the signal is twice the 
maximum frequency in the sample. This theory is the 
mainstay of most of the existing technology equipment, 
including analog‑to‑digital converters, medical imaging 
devices, or electronics, and video and audio equipment. 
The new CS theory, also known as compressive sampling, 
essentially provides a new method for data collection 
and replaces the Shannon method. This technique was 
introduced in 2006 to reconstruct signals that have 
samples less than the Nyquist rate.[23] It claims that an 
unknown sparse signal could be reconstructed with a 
number of measurements below the Nyquist rate. In 
fact, the CS theory uses a Ψ transformation matrix and a 
randomized matrix Φ for every sparse signal (x) to obtain 
a vector of samples for y.[23,25] In mathematical terms,

y x An n m m n m m m m n m m× × × × × × × ×= = =1 1 1 1Φ Φ Ψ θ θ � (2)

Where θ Ψ= −1x  is the sparse representation of x, with the 
assumption that the signal x is k sparse and x is a vector 
with at most k nonzero elements. In solving Eq. 1, one 
might consider having infinite number of solutions for 
the reconstruction of vector x from y, since the number 
of equations, n, is less than the number of variables, m. 
However, an initial knowledge of the sparse signal, which 
is applicable in many cases, limits the set of solutions, 
and L1‑norm minimization  (basis pursuit) and reverse 
conversion, making the reconstruction feasible. There 
are many algorithms for finding solutions to a sparse set 
of over‑complete equations, including matching pursuit 
algorithms, which are fast, but inaccurate, and the family 
of basic pursuit algorithms, which are developed based on 
L1‑norm minimization to obtain the solution to the sparse 
equations as shown by

argmin s t yL θ ΦΨθ
1

. = � (3)

Where the L1 norm is θ θL
i

n

i1
1

=
=
∑ .

This family of algorithms is more accurate than matching 
pursuit algorithm but has more computational complexity.[23]

Empirical mode decomposition

The EMD method is proposed for the first time in 
fluid mechanics and is used in various fields of signal 
processing. The main idea of this method is based on 
the decomposition of the main signal on a series of 
bases obtained from the original signal. If the signal 
is decomposed in terms of the Fourier series, the basic 
foundations are linear in terms of sinusoidal and cosine 
functions, which are true only for linear signals. In the 
EMD method, the bases are nonlinear and they come 
straight from the main information. In other words, we can 
use an IMF, provided that it is an IMF signal that[14]  (i) in 
the whole data set, the number of extrema and the number 
of zero crossings must be same or differ at most by one, 

and  (ii) at any point, the mean value of the envelope 
defined by the local maxima is zero.

The steps to get the IMF from the signal X(t) are as follows: 
Step 1: First, two soft splines are drawn up to connect each 
and every one of the maximum and minimum points. Thus, 
the upper and lower extremities are obtained by XUP(t) and 
Xlow(t), respectively. Step 2: To reduce the average of the 
two of the main signals until the X(t) signal is obtained.

XL(t) = X(t) – (XUP + Xlow)/2� (4)

Step 3: Repeat Steps 1 and 2 for the signal XL(t) until the 
signal obtained meets the IMF criteria. Performing these 
three nonlinear and nonstationary signal operations is known 
as sifting. Therefore, after repeating Steps 1 and 2 on the 
signal X(t) repeatedly, the signal CL(t) is obtained that 
satisfies the two conditions of the IMF. The signal CL(t) is 
called the first IMF signal X(t), which has a mean value of 
zero. The remaining RL(t)  (t) = X(t) − CL(t) is also obtained 
as new information for the IMF.[14] The steps are repeated 
until the domain is less than a predetermined level or that 
the remainder of the oscillating state is exited. To reconstruct 
the X(t) signal, we can use the following equation:

X t j N( ) = ( )+
=
∑
I

N

C t R t
1

( ) � (5)

Where N is the number of bases of the IMF and RN(t) of 
the final remaining, which can be either trend or fixed. The 
functions Cj(t) are, in addition to the orthogonality, of the mean 
zero. In this method, the signal is decomposed into a main N, 
each of which has a different timescale. In other words, the 
first one is the smallest time scale that relates to the fastest 
changes in the original signal. When the parsing signal operation 
goes ahead, the time scale increases. Therefore, the average 
frequency is also reduced, because this kind of analysis is based 
on local information on a time scale and the bases are obtained 
comparatively, this method can be used for nonstationary signals.

Suggested Method
In our suggested method, using the EMD algorithm, 
the RF echo signal is decomposed into a number of 
IMFs, then, by applying the thresholding algorithm to 
the IMFs sparse coefficients in the CS algorithm, the RF 
signal is reconstructed. In the proposed method, each 
of IMF is considered as a signal, and using the CS, the 
reconstruction of the IMFs is done separately. Sparsity has 
important role for the quality of CS and we must design 
a set of dictionaries to make the RF signal be sparse. For 
example, wavelet transform is a very suitable tool for 
representing ultrasound signals. When ultrasound signal is 
wavelet transformed, we will observe the sparsity: Most 
of the wavelet coefficients are very small and they can be 
discarded without too much effects on the reconstruction 
of ultrasound signal. To improve the wavelet property, we 
can decompose the ultrasound signal into IMFs with EMD. 
Since EMD is a dyadic filter bank, the different IMFs 
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have their own characteristics and so can be transformed 
separately.

An example of RF echo signal decomposition is shown 
in Figure  2. Figure  2 indicates RF signal and its eight 
IMFs. The sparsity of IMFs coefficients is obvious. In the 
proposed method, with regard to the structural difference 
of the lesion area with other areas and the increase in the 
amplitude of the ultrasound backscattered signals in the 
lesion area and the reduction of noise of the proposed 
method, the accuracy of the diagnosis of the lesion region 
improves. In the proposed algorithm, a random sampling 
matrix, various wavelet transforms, and the basis pursuit 
(L1‑minimization) reconstruction algorithm, are used.[23]

In this technique, universal thresholding been used to 
determine the threshold level. This type of thresholding uses 
a constant threshold method[26] which can be calculated by

THR NUNI = σ 2log( ) � (6)

Where N denotes the number of sampling point in one scale 
and σ is the noise variance, which can be used to estimate noise 
when the information is not primarily available about noise. 
One of the most important and most widely used estimators is 
the median absolute deviation estimator, which is given in[26]

σ = ( )median cDj / .0 6745 � (7)

Where cDj is the high‑frequency coefficient on the scale of 
the j level and the coefficient of normalization is 0.6745. 
After setting threshold values, then the soft threshold 
function can be applied to the wavelet transform coefficients.

First, all of the high‑frequency coefficients whose values of 
the magnitudes are lower than the thresholds are taken to 
be equal to zero, and then, other coefficients are squeezed 
around zero so that the threshold value of the coefficients 
is lower than that.[26] This is expressed as follows

cD
sgn cD cD -THR if cD >THR

0 Otherwise
j

j j j j j=
( )( )





� (8)

Where cDj is values of coefficients in scale j and THRj is 
the threshold level.

In this work, a set of recorded data has been used to 
demonstrate the effectiveness of the proposed method for 
monitoring HIFU lesioning. In this study, all experiments 

Figure 3: Block diagram of the proposed algorithmFigure 2: A ultrasound signal and its eight intrinsic mode functions
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were performed in ex vivo porcine muscle tissue. The block 
diagram of the proposed algorithm is shown in Figure 3.

Results
In this section, the processing results are shown on a set 
of posttreatment data with acoustic powers of 34, 37, 39, 
44, and 49 W. To study the effects of changing the TAP of 

the HIFU transducer, 18 lesions were created with different 
TAPs. Table 2 shows the lesion numbers and related acoustic 
powers. The first frame of each data acquisition (post‑HIFU 
B‑mode images) has been used for processing. The ROI in 
this frame was separated for processing.

Table 3 compares the detected size of lesion (depth × length) 
with the actual size of the lesion from physical examination 

Figure 4: Results related to Tissue#4: Lesion#3: (a) pre-high-intensity focused ultrasound, (b) post-high-intensity focused ultrasound exposure, and 
(c) proposed algorithm image using 85 % of the data in total acoustic power of 34 W and average focal intensity of 737 W/cm2 at the high-intensity focused 
ultrasound treatment site

cba

Figure 5: Results related to Tissue#6: Lesion#3: (a) pre-high-intensity focused ultrasound, (b) post-high-intensity focused ultrasound exposure, and 
(c) proposed algorithm image using 85 % of the data in total acoustic power of 37 W and average focal intensity of 801 W/cm2 at the high-intensity focused 
ultrasound treatment site

cba

Figure 6: Results related to Tissue#1: Lesion#2: (a) pre-high-intensity focused ultrasound, (b) post-high-intensity focused ultrasound exposure, and 
(c) proposed algorithm image using 85 % of the data in total acoustic power of 39 W and average focal intensity of 845 W/cm2 at the high-intensity focused 
ultrasound treatment site

cba

Figure 7: Results related to Tissue#2: Lesion#2: (a) pre-high-intensity focused ultrasound, (b) post-high-intensity focused ultrasound exposure, and 
(c) proposed algorithm image using 85 % of the data in total acoustic power of 44 W and average focal intensity of 961 W/cm2 at the high-intensity focused 
ultrasound treatment site

cba
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using the proposed method. After processing all acquired 
data, the tissue was cut and unfolded from middle. Figure 1 
shows the depth and the length of the lesions and transducer 
is set such that it presents an image to a depth of 9 cm and 
its focus was set at 8  cm, since the lesion occurred at this 
depth. According to Figure 1, the actual size of the thermal 
lesion was measured from the experimental results.

It is seen that this method can effectively detect the actual 
lesion. Figures  4‑8 show the results of processing on 
lesions with acoustic powers of 34–49 W. These figures 
can be compared with the lesions identified in Figure  1. 
By increasing the acoustic power, the lesions are clearer 
in figures. It should be noted that the images in figures 
are in the Cartesian system of coordinates. As seen in the 
figures, the proposed algorithm can detect the lesion area 
with good accuracy at acoustic powers of 34–49 W. As 
shown in Figure  6, the proposed algorithm cannot detect 
the lesion area with good accuracy for acoustic power of 
39 W. In fact, there are two main reasons for it. First, there 
are artifacts near the boundary and also at the bottom of 
the lesion which is due to tissue vibration that generally 
happens at the time of ultrasound data recording. Second, 
various studies show that sometimes after the creation of 
lesions, shadow regions right behind the induced lesions 
were expected to appear. The reason lied in the fact that the 
lesions represented high attenuation regions  (with respect 
to the surrounding normal tissue) surrounded by normal 
tissue. Consequently, all the backscattered ultrasound 
pulses coming from the regions right behind the lesions 

would have to travel through the lesions (high attenuation 
regions) as well and therefore be attenuated resulting in 
shadow regions.

The best result of simulation on lesions shows that the 
proposed method based on the soft threshold method with 
universal threshold parameter and wavelet transform of db4 
can detect the actual size of the lesion with a good accuracy. 
Comparing the estimated size of the thermal lesion using 
the proposed method with the estimated size obtained[8] (for 
the same data) shows that this method will be better.

For quantitative comparison of the B‑mode image with 
the reconstructed image using the proposed algorithm, 
contrast‑to‑speckle ratio  (CSR) parameter, according to the 
definition given in Eq. 9, was used.[27]

CSR
S Si

i

=
−

+
0

0
2 2σ σ

� (9)

Where Si is the average measured signal inside the cyst and 
So is the average measured signal outside the cyst, and σ0

2  
and σi

2  are the signal variances outside and inside the cyst, 
respectively. The absolute values of CSR computed for 18 
lesions are shown in Figure  9. The estimated CSR values 
using the proposed algorithm are significantly larger than 
those obtained from B‑mode images. These results show that 
using EMD‑based CS, the HIFU thermal lesion detection 
contrast is significantly higher than the B‑mode image.

Discussion and Conclusion
In this study, a new application of CS in the field of 
monitoring of the HIFU treatment is presented. To the best 
of our knowledge, so far, no studies on CS have been carried 
out in the monitoring of the HIFU. Based on the results 
obtained, it was showed that the number of measurements 
and IMFs have the function of noise reduction. In addition, 
results were shown that the successful reconstruction of 
the compressive sensing signals can be gained using a 
threshold based algorithm. The results of simulations on 
different data indicated that the conventional CS technique 
is not as accurate as the proposed algorithm in detecting 
the thermal lesion area, because the standard CS method 
only estimates the main image with a limited ability with 
regard to noise reduction.

Figure 9: The estimated contrast-to-speckle ratio values of B-mode imaging 
and the proposed method for detecting 18 thermal lesions induced by 
high-intensity focused ultrasound

Figure 8: Results related to Tissue#3: Lesion#1: (a) pre-high-intensity focused ultrasound, (b) post-high-intensity focused ultrasound exposure, and 
(c) proposed algorithm image using 85 % of the data in total acoustic power of 49 W and average focal intensity of 1068 W/cm2 at the high-intensity 
focused ultrasound treatment site

cba
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In the EMD method, due to the lack of strong mathematical 
principles, it is difficult to predict the behavior of the 
algorithm on different signals. Furthermore, since this 
algorithm is based on the use of extremum points, so these 
points are strongly affected by noise and sampling. As a 
conclusion the proposed work of the future, we can use the 
combination of CS and variational mode decomposition to 
further improve the performance of the EMD method for 
monitoring the HIFU.[28]

To use the proposed method for monitoring the HIFU 
treatment in  vivo, the vibration of tissue due to ultrasound 
radiation and the effects of blood flow that create significantly 
different backscattering characteristics than soft tissues should 
be considered. In addition, the CS method (given the need to 
reduce the amount of data required and to increase the speed 
of data acquisition) can be used for higher dimensional data 
such as three‑dimensional (3D) and 4D ultrasound.

Acknowledgments

We thank P. Rangraz from Department of Biomedical 
Engineering, Islamic Azad University, Tehran, Iran, for her 
help in data processing.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

References
1.	 Clement  GT. Perspectives in clinical uses of high‑intensity 

focused ultrasound. Ultrasonics 2004;42:1087‑93.
2.	 Lafon C, Inserm L, Bouchoux G, Souchon R, Chapelon JY. 

Monitoring and Follow up of HIFU Lesions by Ultrasound. In: 
4th IEEE International Symposium on Biomedical Imaging: From 
Nano to Macro. Arlington 2007. p. 1068‑71.

3.	 Zheng  X, Vaezy  S. An acoustic backscatter‑based method 
for localization of lesions induced by high‑intensity focused 
ultrasound. Ultrasound Med Biol 2010;36:610‑22.

4.	 Tavakkoli  J, Sanghvi  NT. Ultrasound‑guided HIFU and 
thermal ablation. In: Frenkel  V, editor. Therapeutic Ultrasound: 

Mechanisms to Applications. Hauppauge, NY: Nova Science 
Publishers; 2011. p. 137‑61.

5.	 Damianou C, Pavlou M, Velev O, Kyriakou K, Trimikliniotis M. 
High intensity focused ultrasound ablation of kidney guided by 
MRI. Ultrasound Med Biol 2004;30:397‑404.

6.	 Khokhlova  TD, Canney  MS, Lee  D, Marro  KI, Crum  LA, 
Khokhlova  VA, et  al. Magnetic resonance imaging of boiling 
induced by high intensity focused ultrasound. J Acoust Soc Am 
2009;125:2420‑31.

7.	 Zhang S, Wan M, Zhong H, Xu C, Liao Z, Liu H, et al. Dynamic 
changes of integrated backscatter, attenuation coefficient and 
bubble activities during high‑intensity focused ultrasound (HIFU) 
treatment. Ultrasound Med Biol 2009;35:1828‑44.

8.	 Rangraz  P, Behnam  H, Shakhssalim  N, Tavakkoli  J. 
A  feed‑forward neural network algorithm to detect thermal 
lesions induced by high intensity focused ultrasound in tissue. 
J Med Signals Sens 2012;2:192‑202.

9.	 Coussios  CC, Farny  CH, Haar  GT, Roy  RA. Role of acoustic 
cavitation in the delivery and monitoring of cancer treatment by 
high‑intensity focused ultrasound  (HIFU). Int J Hyperthermia 
2007;23:105‑20.

10.	 Miller NR, Bamber JC, Meaney PM. Fundamental limitations of 
noninvasive temperature imaging by means of ultrasound echo 
strain estimation. Ultrasound Med Biol 2002;28:1319‑33.

11.	 Chen H. Harmonic Motion Imaging in Abdominal Tumor Detection 
and HIFU Ablation Monitoring: A Feasibility Study in a Transgenic 
Mouse Model of Pancreatic Cancer. In: IEEE Ultrasonics 
Symposium. Chicago, IL, New York: IEEE; 2014. p. 923‑6.

12.	 Adams  M, Robin  OC, Ronald  AR. Treatment planning and 
strategies for acousto‑optic guided highintensity focused 
ultrasound therapies. J Acoust Soc Am 2014;135:2267.

13.	 Alhamami  M, Kolios  MC, Tavakkoli  J. Photoacoustic 
detection and optical spectroscopy of high‑intensity focused 
ultrasound‑induced thermal lesions in biologic tissue. Med Phys 
2014;41:053502.

14.	 Huang NE, Shen Z, Long RS, Wu MC, Shih HH, Zheng Q, et al. The 
empirical mode decomposition and the Hilbert spectrum for nonlinear and 
non stationary time series analysis. Proc R Soc Lond 1998;25:903‑95.

15.	 Balocchi R, Menicucci D, Santarcangelo E, 
Sebastiani L,  Gemignani A,  Ghelarducci B, et al. Deriving 
the respiratory sinus arrhythmia from the heartbeat time series 
using empirical mode decomposition. Chaos Solitons Fractals 
2004;20:171-7.

16.	 Bouzid A, Ellouze N. Empirical mode decomposition of voiced speech 
signal. 2004 First international symposium on control. Hammamet, 
Tunisia: Communications and Signal Processing 2004. p. 603‑6.

Table 3: Detected size of high intensity focused ultrasound induced‑lesion using proposal method
Total acoustic 
power (W)

Lesion Actual lesion 
size (mm × mm)

Measured lesion 
size (mm × mm)

Deviation from 
actual size (%)

34 Tissue #4:Lesion #3 8.1×8 7.9×7.3 0.2×0.7
37 Tissue #6:Lesion #3 7.9×7.8 5.4×6.6 2.5×1.2
39 Tissue #1:Lesion #2 7×6.9 ‑ ‑
44 Tissue #2:Lesion #2 10.1×9 8.3×8.4 1.8×0.6
49 Tissue #3:Lesion #1 9×8 8.2×7.3 0.7×0.7

Table 2: Lesion numbers and corresponding total acoustic powers
Lesion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Total acoustic power (W) 34 34 34 37 37 37 37 37 37 39 39 39 39 44 44 44 49 49



Ghasemifard, et al.: HIFU lesion detection using adaptive CS based on EMD

32� Journal of Medical Signals & Sensors | Volume 9 | Issue 1 | January-March 2019

BIOGRAPHIES

Hadi Ghasemifard received the B.S. degree 
in Electrical Engineering from Babol 
Noshirvani University of Technology, Babol, 
Iran, in 2004, the M.S. degree in Medical 
Engineering from Mashhad University, 
Mashhad, Iran, in 2008, the Ph.D. degree in 
Medical Engineering from the Science and 
Research Branch, Islamic Azad University, 

Tehran in 2017. Her research interests include Ultrasound in 
Medicine, Medical signal processing, Ultrasound guided HIFU.
Email: Ghasemifardh1@mums.ac.ir

Hamid Behnam received the B.S. degree 
in Electrical Engineering from Iran 
University of Science and Technology, 
Tehran, Iran, in 1988, the M.S. degree in 
Medical Engineering from Sharif University 
of Technology, Tehran, Iran, in 1992, the 
Ph. D. degree in Applied Electronics from 
Tokyo Institute of Technology, Tokyo, 

Japan in 1998. Since 1998 till 2004, he was a researcher at 
Iran Research Organization for Science and Technology and 
from 2004 he has been a faculty member at Iran University 
of Science and Technology, in Tehran, Iran. Currently he is 
an Assistant Professor of Biomedical Engineering at the 
IUST. His research interests are Ultrasound in Medicine, 
Medical Image processing and Medical signal processing.
Email: behnam@iust.ac.ir

Jahan Tavakkoli obtained a BSc degree in 
Electrical Engineering and a MSc degree in 
Biomedical Engineering, both from Sharif 
University of Tech., Tehran, Iran. He 
obtained a PhD degree with the highest 
honors in Biomedical Physics from 
University of Lyon-1, and research 
laboratory of INSERM, Unit 556, Lyon, 

France, in 1997. He also completed a postdoctoral 
fellowship in Biomedical Engineering at University of 
Toronto, Toronto, Canada, in 1998. He has over 20 years of 
professional experience in both academia and industry in 
biomedical applications of ultrasound in therapy and 
imaging, and in ultrasound modeling and simulation. He 
has been holding R&D positions in several leading high-
tech medical device companies including: Focus Surgery 
Inc., Indianapolis, IN; Visualsonics Inc., Toronto, Canada; 
and Guided Therapy Systems LLC, Mesa, AZ. He is currently 
an Assistant Professor in Dept. of Physics, Ryerson 
University, Toronto, Canada, and an Affiliate Scientist in 
Keenan Research Center, St. Michael’s Hospital, Toronto, 
Canada. Most of Dr. Tavakkoli’s research and development 
projects have been funded by grants from federal and 
provincial funding agencies, and by medical devices 
industry (NIH, NSERC, ORF-RE, etc.). He is the co-founder 
and co-director of “Advanced Biomedical Ultrasound 
Imaging and Therapy Laboratory” in the Dept. of Physics of 
Ryerson University. Dr. Tavakkoli is an active member of 
several professional scientific societies including: IEEE 
Ultrasonics, Ferroelectrics, and Frequency Control; IEEE 
Engineering in Medicine and Biology; Acoustical Society of 
America; Canadian Acoustical Association; International 
Society for Therapeutic Ultrasound; and Ultrasonic Industry 
Association. Among other positions, he is the Associate 
Editor, Journal of Medical Physics; the Associate Editor, Bio-
acoustics, Journal of Canadian Acoustics; and the Member 
of Technical Committee, Biomedical Ultrasound/
Bioresponse to Vibrations, Acoustical Society of America. 
He has published over 80 scientific papers in peer-reviewed 
journals and international conferences in the areas of 
biomedical ultrasound therapy and imaging
Email: jtavakkoli@ryerson.ca

17.	 Yu D, Cheng J, Yang Y. Application of EMD method and Hilbert 
spectrum to the fault diagnosis of roller bearings. Mech Syst 
Signal Process 2005;19:259‑70.

18.	 Ghasemifard  H, Behnam  H, Tavakkoli  J. Toward high‑intensity 
focused ultrasound lesion quantification using compressive 
sensing theory. Proc Inst Mech Eng H 2017;231:1152‑64.

19.	 Liebgott  H, Prost  R, Friboulet  D. Pre‑beamformed RF signal 
reconstruction in medical ultrasound using compressive sensing. 
Ultrasonics 2013;53:525‑33.

20.	 Liebgott H, Basarab A, Kouame D. Compressive sensing in medical 
ultrasound. Lyon, France: IEEE Ultrasonics Symposium; 2012. p. 1‑6.

21.	 Friboulet D, Liebgott H, Prost R. Compressive Sensing for Raw 
RF Signals Reconstruction in Ultrasound. Processing. San Diego, 
California, USA: IEEE Ultrasonics Symposium; 2010. p. 367‑70.

22.	 Wan-Zheng N, Hai-Yan W, Kouame D, Bernard O, Friboulet 
D. The analysis of noise reduction performance in compressed 
sensing. Toulouse, France: IEEE International Conference Signal 

Processing, Communications and Computing (ICSPCC); 2011.
23.	 Donoho  D. Compressed sensing. IEEE Trans Inform Ther 

2006;52:1289‑309.
24.	 Rahimian  S, Tavakkoli  J. Estimating dynamic changes of tissue 

attenuation coefficient during high‑intensity focused ultrasound 
treatment. J Ther Ultrasound 2013;1:14.

25.	 Guangming SH, Danhua LI, Dahua GA, Liu DH, Gao DH, 
Liu Z, et al. Advances in theory and application of compressed 
sensing. Acta Electron Sin 2009;5:1070-81.

26.	 Donoho  D, Johnstone  I. Ideal spatial adaptation by wavelet 
shrinkage. Biometrika 1994;81:425‑55.

27.	 Cobbold  RS. Ultrasound Imaging Systems: Design, Properties 
and Applications, Foundations of Biomedical Ultrasound. 
New York: Oxford University Press; 2007. p. 512‑3.

28.	 Dragomiretskiy  K, Zosso  D. Variational Mode Decomposition. 
IEEE Trans Signal Process 2014;62:531‑44.


