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A B S T R A C T   

Providing accurate prediction of the severity of traffic collisions is vital to improve the efficiency 
of emergencies and reduce casualties, accordingly improving traffic safety and reducing traffic 
congestion. However, the issue of both the predictive accuracy of the model and the interpret-
ability of predicted outcomes has remained a persistent challenge. We propose a Random Forest 
optimized by a Meta-heuristic algorithm prediction framework that integrates the spatiotemporal 
characteristics of crashes. Through predictive analysis of motor vehicle traffic crash data on 
interstate highways within the United States in 2020, we compared the accuracy of various 
ensemble models and single-classification prediction models. The results show that the Random 
Forest (RF) model optimized by the Crown Porcupine Optimizer (CPO) has the best prediction 
results, and the accuracy, recall, f1 score, and precision can reach more than 90 %. We found that 
factors such as Temperature and Weather are closely related to vehicle traffic crashes. Closely 
related indicators were analyzed interpretatively using a geographic information system (GIS) 
based on the characteristic importance ranking of the results. The framework enables more ac-
curate prediction of motor vehicle traffic crashes and discovers the important factors leading to 
motor vehicle traffic crashes with an explanation. The study proposes that in some areas 
consideration should be given to adding measures such as nighttime lighting devices and 
nighttime fatigue driving alert devices to ensure safe driving. It offers references for policymakers 
to address traffic management and urban development issues.   

1. Introduction 

According to data from the National Highway Traffic Safety Administration (NHTSA), the number of traffic accident fatalities in the 
United States surged by 7.2 % in 2020 compared to the previous year, marking a 13-year high, despite a relatively lower frequency of 
driving occurrences [1]. In aggregate, 38,680 dead succumbed to traffic crashes in the United States in 2020, representing the highest 
figure since 2007. However, the situation is even graver than it sounds, as the mileage driven in the United States decreased by 13 % 
from the previous year. Motor vehicle traffic crashes not only affect the quality of traffic and cause congestion but also lead to sub-
stantial property damage and casualties, imposing a significant burden on families and society [2,3]. By accurately predicting the 
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severity of crashes and analyzing the impact of different characteristic factors on crashes, the losses associated with motor vehicle 
traffic crash severity can be effectively mitigated. 

Due to the significance of predicting and identifying key factors of motor vehicle traffic crash severity, there has been a quantity of 
research investigating the relationship between crash severity outcomes and their related risk factors such as the traffic volume, road 
design, and environmental characteristics, etc [4–6]. Current studies mainly analyze the severity of vehicle collisions from provincial 
or regional perspectives, and the effects of multiple factors on the severity of vehicle traffic crashes have been analyzed through studies 
of regions such as central Taiwan [7], Miami-Dade County [8], California [9], and seven highways in Washington State [10]. However, 
a comprehensive nationwide spatial distribution analysis of vehicle collision severity is lacking. Moreover, substantial variations exist 
in the correlation between collision severity and influencing factors across different regions. The driving environment, time of travel, 
driver characteristics, road design, and vehicle type can all potentially be important factors affecting the severity of collisions [11–14]. 
Traffic flows are usually more intense in areas with higher population densities and higher levels of Gross Domestic Product (GDP) 
development, which will increase the probability of crashes. Thus, regional population density and level of GDP development may also 
become important factors affecting the severity of vehicle traffic crashes. However, existing research rarely includes social factors such 
as population density and GDP development level as predictive indicators. The accuracy of motor vehicle traffic crash severity pre-
diction models has attracted much attention. With the development of computer science, data mining, and machine learning algo-
rithms have emerged, providing an innovative and effective approach for studying the motor vehicle traffic crash severity. This has 
significantly improved the accuracy of predicting the motor vehicle traffic crash severity [15–17]. Machine learning models can extract 
important knowledge from vast amounts of intricate and diverse data, and they have attracted much attention in the field of traffic 
safety due to their outstanding predictive capabilities [18] Among the multitude of machine learning models that are widely employed, 
there are Support Vector Machines (SVM) [19], Back Propagation Neural Networks (BP) [20], Decision Trees (DT) [21], Bayesian 
Networks (BN), Extreme Gradient Boosting (XGBoos) [22], and Random Forests (RF) [23], etc. In recent years, deep learning 
frameworks have emerged based on machine learning to predict motor vehicle traffic crash severity [24,25]. Deep learning is known 
for effectively addressing pattern recognition issues in unstructured data. However, for structured data such as tabular data, traditional 
machine learning models are widely used. Traditional machine learning algorithms are typically more interpretable, allowing us to 
comprehend the inherent relationships that exist in the prediction process. Ziakopoulos et al. [26–29]effectively identified the 
occurrence of accidents using the XGBoost algorithm and elucidated the influence of individual characteristics on accident occurrence 
with the Shapley. Upon this, a network analysis framework based on XGBoost was developed to identify the critical factors influencing 
the severity of accidents. Umer [30] explored the problem of predicting the severity of motor vehicle traffic crashes by comparing an 
integrated tree-based learning model with a traditional statistical model. He concluded that the random forest model exhibited optimal 
performance in terms of classification accuracy. Ramya [31] used the Random Forest algorithm to assess the performance of Artificial 
Neural Networks (ANN) and Decision Trees in predicting the motor vehicle traffic crash severity. It is worth noting that Random Forest 
achieved the best performance in most of the studies, and machine learning models with high predictive accuracy were commonly 
chosen to calculate feature importance. 

The probability of motor vehicle traffic crashes varies spatially and temporally [32,33]. Thus, the temporal and spatial charac-
teristics of motor vehicle traffic crashes must be considered when studying the impact of road traffic safety and transport system 
properties on a specific area and their interrelationships with neighboring areas. GIS technology is favored by scholars for its spatial 
analysis capabilities and powerful visualization functions [34]. GIS enables the visualization of motor vehicle traffic crash distribu-
tions, offering insights into spatial patterns [35,36]. Additionally, by leveraging multiple spatial analysis tools within GIS and inte-
grating data from various sources a comprehensive exploration of the spatial distribution of motor vehicle traffic crashes can be 
conducted [37,38]. This approach allows for a detailed analysis of temporal and spatial characteristics of motor vehicle traffic crash 
severity. 

In summary, based on previous research, this paper aims to develop a framework for predicting the motor vehicle traffic crash 
severity using a Random Forest model combined with Meta-Heuristic Algorithms. The integration of Geographic Information Systems 
(GIS) and machine learning techniques helps address the limitations observed in previous models for predicting motor vehicle traffic 
crash crash severity. This integration enhances the accuracy of prediction models and facilitates a comprehensive analysis of the 
interplay between various influencing factors and the incidence of crashes. We used crash data from 2020 for interstate highways in the 
Contiguous United States (All contiguous areas except Alaska or Hawaii) for our analysis. Raw statistics contain address, time, weather, 
and road attributes in text form and need to be filtered for valid information in the raw data. We used geographic coordinate infor-
mation to pinpoint each crash on the GIS and integrated social factors that influence crashes, such as population density and GDP 
development level. The data were processed by the Synthetic Minority Oversampling Technique (SMOTE) to address the structural 
imbalance of the data. A categorical prediction model using a meta-heuristic algorithm to optimize random forests was employed to 
analyze the prediction of motor vehicle traffic crash severity. The prediction results were then compared with those of a single cat-
egorical prediction model to determine the model with the highest prediction accuracy. According to the ranking of the importance of 
indicators in predicting results, along with the visualization function of GIS, the significant indicators influencing motor vehicle traffic 
crashes are analyzed in an explanatory manner. The study results can be used to predict motor vehicle traffic crashes more accurately 
and discover the important factors leading to motor vehicle traffic crashes with an explanation. It offers references for policymakers to 
address traffic management and urban development issues. 

The rest of the paper is organized as follows. In Section 2, we describe the sample sources and the identification process. The 
method’s structure and computational procedures are described in Section 3. Model application and experimental results are provided 
in Section 4. Section 5 includes conclusions. 
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2. Data description and preprocessing 

2.1. Data description 

For this study, we utilized a dataset of crashes that occurred on interstate highways in the Contiguous United States in 2020. The 
dataset was obtained from Kaggle, a well-known machine-learning competition platform [39]. This dataset was collected in real-time 
using multiple traffic APIs that cover 49 states of the USA. The dataset contains 46 features of information describing each crash. One of 
these features is the crash severity classification (class), while the others can be divided into five sections: basic information about the 
crash (ID, Source, Description, etc.), crash location (Start-Lat, Start-Log, City, etc.), time of crash (Start-Time, End-Time, Sunrise--
Sunset, etc.), environment (Temperature, Humidity, Weather, etc.), and crash roadway (Junction, Traffic-Calming, Traffic-Signal, 
etc.). 

2.2. Data cleaning and transformation 

Preprocessing motor vehicle traffic crash severity data plays a vital role in the machine learning process. The dataset contains 
multiple descriptions of crashes, but not every line of data can be used as an indicator for analysis, such as "Description", "City", "County 
Description", "City", "County", etc. Outliers, redundancies, and missing values must be removed from the data before analyzing it to 
ensure that the model receives accurate input data and makes precise predictions. We extracted 110,778 interstate highway collision 
records from all vehicle crash data in 2020 and conducted data structure analysis to eliminate 136 outliers and 6131 missing values 
from the original dataset. we finally obtained 104,511 data points, including environmental factors, road factors, time factors, social 
factors, and location factors. Table 1 displays all indicators post-screening and includes informative descriptions of each indicator. 

Digitization and normalization of input data are necessary because the training and analysis of machine learning models require 
data with well-defined and consistent rules. Therefore, we use numerical values instead of categorical variables. We categorized the 
weather into seven categories based on its effect on regular vehicle travel. Road conditions were categorized as either present (1) or 
absent (0). Time information includes whether it is a rest day, season, and time of day [40]. In addition to this, the dataset includes 

Table 1 
Variable summary.  

Category NO. Features Definitions/Details 

Environmental factor 1 Temperature (F) Shows the temperature (in Fahrenheit) 
2 Wind-Chill (F) Shows the wind chill (in Fahrenheit). 
3 Humidity (%) Shows the humidity (in percentage). 
4 Pressure (in) Shows the air pressure (in inches). 
5 Visibility (mi) Shows visibility (in miles). 
6 Wind-Speed (mph) Shows wind speed (in miles per hour). 
7 Precipitation (in) Shows precipitation amount in inches 
8 Weather Shows the weather conditions (rain, snow, thunderstorm, fog, etc.) 

1 = (Fair, Windy, etc.) 
2 = (Mostly Cloudy, Partly Cloudy, etc.) 
3 = (Thunder, Rain Shower, etc.) 
4 = (Rain, Precipitation, etc.) 
5 = (Snow, Wintry Mix, etc.) 
6 = (Mist, Dust Whirlwinds, etc.) 
7 = (Heavy T-Storm, Heavy Drizzle, etc.) 

Road factor 9 Junction A POI annotation indicates the presence of a junction in a nearby location. 
10 Stop A POI annotation indicates the presence of a stop in a nearby location. 
11 Traffic-Calming A POI annotation indicates the presence of traffic calming in a nearby location. 
12 Traffic-Signal A POI annotation indicates the presence of a traffic signal in a nearby location. 

Temporal factor 13 Week 1 = Weekend (Saturday, Sunday) 
0 = Weekday (Monday, Tuesday, Wednesday, Thursday, Friday) 

14 Season 1 = spring (March, April, May) 
2 = summer (June, July, August) 
3 = autumn (September, October, November) 
4 = winter(December, January, February) 

15 Time of Day 1 = 6–9 am 
2 = 4–7 pm 
3 = 8 p.m.–5 am 
4 = other 

Social factor 16 Population Density The ratio of total state population to area 
17 GDP GDP of total state 

Location Factor 18 Crash-Location The crash location is reflected in the GIS 
Severity 19 Crash severity 1 = Minor impact 

2 = Moderate impact 
3 = Impactful 
4 = Significant impact 

Please refer to Refs. [41,42] for POIs and other details in the table. 
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(a)

(b)

(c)

Fig. 1. Time distribution characteristics of motor vehicle traffic crashes.  
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continuous variables such as temperature, humidity, and population density, comprising a total of 19 attributes of information. Table 1 
provides detailed information about the 19 attributes. 

2.3. Data consolidation and processing 

Regional population density and the level of GDP development may also be important factors affecting the severity of crashes, but 
few forecasts for motor vehicle traffic crash severity will consider these indicators. For this purpose, we gathered the population and 
GDP data for each state in the continental United States for the year 2020 and integrated it with the temporal information, location 
details, environmental conditions, and road conditions of the collision points using a GIS platform. 

The severity of crashes in a dataset is categorized into four classes based on the degree of traffic delay: minor impact (short delay as 
a result of the accident), moderate impact, impactful, and major impact (long delay) [39,41,42]. The four severity classes exhibited a 
normal distribution, and there was a significant imbalance in the classification of crash severity data. To address this issue, the data can 
be balanced using oversampling or undersampling techniques. Undersampling aims to equalize the distribution of injury outcomes by 
randomly discarding samples in large categories, while oversampling increases the samples in small categories. Many researchers have 
found that oversampling methods, especially the Synthetic Minority Oversampling Technique (SMOTE), can significantly improve the 
accuracy of crash severity classification [29,43]. To enhance the model prediction accuracy and facilitate the visualization of the 
prediction results, the dataset undergoes a SMOTE to balance the data. 

2.4. Spatial-temporal characterization of data structures 

2.4.1. The temporal distribution of motor vehicle traffic crash severity 
Motor vehicle traffic crashes are influenced by a variety of factors, such as road conditions, weather changes, and time of day. These 

factors have a direct impact on the speed of the vehicle and the traffic conditions, thereby affecting the likelihood of motor vehicle 
traffic crashes. For this reason, we analyzed the temporal characteristics of motor vehicle traffic crash severity in terms of seasons, days 
of the week, and times of the day. Fig. 1 illustrates the characteristics of the temporal distribution of motor vehicle traffic crash 
severity. The characteristics of the distribution from 2018 to 2020 show that motor vehicle traffic crashes are more likely to occur in 
winter, on weekdays, and during peak commuting hours. The lower temperatures in winter and the high levels of ice and snow on the 
roads result in reduced coefficients of friction, significantly increasing the likelihood of crashes. The rise in the number of vehicles on 
the road during weekdays results in increased traffic congestion, particularly during peak commuting hours when motor vehicle traffic 
crashes are more likely to happen. Moreover, the number of motor vehicle traffic crashes caused by driver fatigue starts to increase in 
the afternoon, and the severity of the crashes increases accordingly. Compared to weekdays, the incidence and motor vehicle traffic 
crash severity is lower on weekends because the number of vehicles on the road is relatively low. Motor vehicle traffic crashes are small 

Fig. 2. Spatial distribution of motor vehicle traffic crashes compared with population density and GDP.  
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probability events that often suffer from zero-inflation issues, so data imbalance needs to be considered when developing predictive 
models. Although the number of interstate highway vehicle traffic crashes varies between different years, their temporal distribution 
characteristics remain largely consistent. The indicators in this study, including weather conditions, road factors, and temporal ele-
ments, are minimally affected by the Coronavirus disease 2019 (COVID-19), and societal factors such as population density are un-
likely to undergo significant changes in the short term. Based on data availability and completeness, this study selects the 2020 dataset 
of interstate highway crashes in the contiguous United States as its research focus. 

2.4.2. The spatial distribution of the motor vehicle traffic crash severity 
Spatial heterogeneity and spatial correlation are important characteristics of the distribution of motor vehicle traffic crash severity. 

A comparison of the spatial distribution of motor vehicle traffic crashes with population density and GDP is shown in Fig. 2. The 
eastern, Great Lakes, and western coasts of the continental U.S. have a higher frequency of vehicle traffic crashes, while the central 
region has a lower frequency of crashes. There is a clear correlation between the occurrence of motor vehicle traffic crashes and the 
level of population density and GDP in the area. 

The spatial-temporal statistical analysis of vehicle traffic crashes can provide a brief understanding of the spatial-temporal dis-
tribution characteristics of crashes. However, there exists a certain non-linear relationship between crashes influencing factors and the 
severity of vehicle traffic crashes. Therefore, further exploration is needed to uncover the intrinsic connection between the influencing 
factors and the severity of vehicle traffic crashes. 

3. Methodology 

The Random Forest algorithm is generally applicable to the prediction of motor vehicle traffic crash severity in terms of its 
nonlinear data processing capability, low noise dependence, and high accuracy [16,44,45] This section presents the implementation of 
the study and provides a summary of metaheuristic algorithms. Detailed explanations of the methods are found in some previous 
studies [46–54]. In addition to this, we introduce methods used to address imbalances in data structures and methods for evaluating 
model accuracy. 

3.1. Research framework 

17 impact indicators were selected as input values for predicting crash severity through a literature review combined with actual 
data. The data preprocessing was completed through data cleaning, merging, balancing, and normalization. To enhance the prediction 
accuracy of the model, the hyperparameters of the Random Forest were optimized using nine metaheuristic algorithms. Metaheuristic 
algorithms include Crested Porcupine Optimizer (CPO) [46], Horned Lizard Optimization Algorithm (HLOA) [47], Hippopotamus 
Optimization Algorithm (HO) [48], PID-based search algorithm (PID) [49], Triangulation Topology Aggregation Optimizer (TTAO) 
[50], Newton-Raphson-based optimizer (NBRO) [51], Football team training algorithm (FTTA) [52], Sparrow Search Algorithm (SSA) 
[53], and Dung Beetle Optimizer (DBO) [54]. Algorithms are compared with common classification prediction models such as Support 
Vector Machine (SVM) and BP Neural Network to ultimately determine the optimal prediction model. A GIS platform was utilized to 

Fig. 3. The flowchart diagram of the current investigation.  
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visualize the prediction results, and crucial indicators were chosen for explanatory analysis based on their importance in the pre-
diction. The research framework is shown in Fig. 3. 

3.2. Random forest optimized by meta-heuristic algorithm 

Random Forest [55] is a non-linear model proposed by Leo Breiman and Adele Cutler, adept at tackling regression and classification 
tasks (see Fig. 4). This method leverages bootstrap sampling to vary the training dataset, forming an ensemble of decision trees. In each 
tree’s node training phase, features are randomly chosen without replacement from the entire set in a specified ratio. Throughout 
training, k-fold cross-validation is employed to mitigate overfitting. 

In this study, we applied 4-fold cross-validation to the model for model training, where the filtered vehicle crash data were divided 
into four equal subsets. Among the four subsamples, three subsamples were used as the training data (75 %), and one subsample was 
used as the validation data (25 %). The i-train samples for RF are represented as S = [s1,s2, …, si], and the n-test samples for RF are 
represented as T = [t1,t2, …,tn]. A metaheuristic optimization algorithm is utilized to determine the number of decision trees, where 
each tree has a depth of d and employs M features at each node. The algorithm’s flow can be summarized as follows.  

(1) Training sets X are created by re-sampling the approach from the original data set i times. After a total of K rounds of extraction, 
K new sample sets are obtained: (X1, X2, …, XK). The K sample sets that are independently sampled and have the same dis-
tribution will be used to generate K decision trees.  

(2) Assuming there are M features in the feature space, during each round of generating the decision tree, m features (where m < M) 
are randomly selected from the feature space. Starting from the root node, a new feature set is formed from top to bottom, and a 
complete decision tree is generated. After K rounds of calculation, K decision trees are generated. K decision trees are combined 
to form a random forest. The fitness function for the meta-heuristic algorithm is generated during the random forest training 
process. Hyperparameter optimization for the random forest model is conducted using a meta-heuristic algorithm to determine 
the optimal hyperparameters.  

(3) The samples tn of the test set T are fed into a random forest containing optimal hyperparameters to enable decisions to be made 
on the test samples by each decision tree. Subsequently, the majority voting method is employed to vote on the decision results 
and determine the categorical prediction of motor vehicle traffic crash severity for tn.  

(4) Step 3 is repeated n times until the classification prediction of the test sample T is completed. 

3.3. Crested Porcupine Optimizer 

Crown Porcupine Optimizer (CPO) [46] models various defensive behaviors observed in crown porcupines. These behaviors—-
sight, sound, scent, and physical attack—are ranked from least to most aggressive and are simulated across four distinct regions within 
CPO. 

In the first region, CP employs the least aggressive defense strategy, being farther from the predator. Random values, generated 

Fig. 4. Optimization of the random forest by meta-heuristic algorithm.  
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using a normal distribution, simulate these behaviors mathematically. Movement towards CPs is encouraged if these values fall outside 
the range of − 1 to 1; otherwise, predators move away. 
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Where r is a random number between [1, N]. 
If the predator persists despite the initial defense strategy, a secondary defense mechanism is enacted. In the second strategy, the CP 

utilizes sound to intimidate the predator, increasing the intensity of its vocalizations as the predator draws nearer. 
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Where r1 and r2 are two random integers between [1, N], and τ3 is a random value generated between 0 and 1. U1
̅→ is used to determine 

whether predators will continue to approach CP. y→ indicates the location of the predator. 
If the predator continues to advance even after the second and third defense strategies are employed, the CP initiates a third defense 

mechanism. 
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where r3 is a random number between [1, N], δ→ is a parameter used to control the search direction and is defined using Eq. (5), γt is the 
defense factor defined using Eq. (6), and St

i is the odor diffusion factor and is defined using Eq. (7). 
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where f
(
xt

i
)

represents the objective function value of the i-th individual at iteration t, ε is a small value to avoid division by zero, rand
̅̅ →

is a vector including numerical values generated randomly between 0 and 1, rand is a variable including a number generated randomly 
between 0 and 1, N is the population size, t is the number of the current iteration, and tmax is the maximum number of iterations. 

When all defense mechanisms fail, the prey attacks the predators, incapacitating or even killing them to protect themselves. 
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(8)  

where α is a convergence speed, τ4, and τ5 is a random value within the interval [0,1], and Ft
i

→
is the average force of the CP that affected 

the i-th predator. 

3.4. Evaluation metrics 

Accuracy, precision, recall, F1-score, and confusion matrix are commonly used metrics to assess the performance of classification 
prediction models [56,57,]. 

Accuracy=
TP + TN

TP + FP + TN + FN
(9)  

Precision=
TP

TP + FP
(10)  
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Recall=
TP

TP + FN
(11)  

F1 Score=2 ⋅
Precision × Recall
Precision + Recall

(12) 

Where TP (true positive) indicates proportion of actual positive cases that were correctly identified as positive by the model. FP 
(false positive) denotes samples that are actually in the negative category are incorrectly classified in the positive category. TN (true 
negative) signifies situations where the model correctly predicted negative outcomes. FN (false negative) refers Proportion of actual 
positive cases incorrectly identified as negative by the model. 

Confusion matrices can be used to represent predictions using two-dimensional data. In this type of matrix, the x-axis displays the 
model’s true labels, and the y-axis shows the predicted class labels. The confusion matrix allows us to visualize how the model classifies 
each class and observes incorrectly assigned to other classes. 

3.5. Data balancing 

Unbalanced data poses a significant challenge to prediction model accuracy, whereas crash severity classification typically adheres 
to a normal distribution. To tackle the imbalance in our dataset, both under-sampling and over-sampling techniques are commonly 
employed. In this study, we employ the Synthetic Minority Oversampling Technique (SMOTE) algorithm to address the issue. SMOTE 
oversamples minority class samples, ensuring an equal representation across all severity categories and enhancing the model’s 
discriminative capability for each category in the imbalanced dataset. This approach helps to prevent redundancy in the sampled data, 
reduces overfitting risks, and improves the model’s ability to generalize [18,58,59]. 

4. Results and discussions 

In this section of the article, the prediction of motor vehicle traffic crash severity on interstate highways in the contiguous United 
States will be conducted using nine meta-heuristic algorithms (CPO, HLOA, HO, PID, TTAO, NBRO, FTTA, SSA, and DBO) combined 
with an RF model and a single model (RF, BP, SVM, and XGBoost). The predictive performance will be compared to determine the best 
classification prediction model. Finally, a GIS platform is used to conduct interpretive analysis of the prediction results and visualize 
them. 

4.1. Model accuracy analysis 

In this study, the dataset was divided into two parts: a training set consisting of 75 % and a test set containing 25 %. This division 
was conducted using stratified sampling to ensure equal representation of various graded crashes. Comparison criteria involved the 
precision, recall, F1-Score, overall accuracy, and confusion matrix of each model. And analyze the predictive accuracy of different 
gradations of motor vehicle traffic crash severity. The prediction results of the models regarding the accurate categorization of crash 
severity are shown in Table 2. Due to the large volume of data, random forest models optimized using nine meta-heuristic algorithms 
all achieve comparable prediction accuracies. The differences in accuracy among training sets are minimal, with an accuracy of 1.000 
for each of the four levels of the training set when rounded to 0.001. However, the training set accuracies show varying differences. The 
three models selected as the most effective by comparing the precision of the models to show their test set confusion matrices are 
illustrated in Fig. 5(a–c), which compares the predicted results with the actual results. 

Table 2 shows the effectiveness of the random forest optimized by meta-heuristic algorithm and the single classification prediction 
algorithm to predict the motor vehicle traffic crash severity. Among the single classification prediction models, RF has a good pre-
diction effect, XGBoost has an average effect, while SVM and BP have poor prediction effects. The random forest optimized by meta- 
heuristic algorithm can predict motor vehicle traffic crash severity more effectively compared to a single classification prediction 
model. Among them, the CPO-RF model shows the best performance, with precision, recall, and F1 score exceeding 90 %. Meanwhile, 
the CPO-RF model has the best overall accuracy of 95.2 %. A 0.1 % variance in prediction accuracy can lead to the correct prediction of 
dozens or even hundreds of motor vehicle traffic crash samples due to the extensive dataset available. So, an increase in accuracy also 
means that more crashes can be predicted accurately. 

The confusion matrix allows us to visualize how the model classifies each class and observes incorrectly assigned to other classes. 
The first three models with the highest accuracy were selected for analysis. In Fig. 5, it can be seen that class 1 and class 4 exhibit higher 
prediction accuracy, while class 2 and class 3 are more prone to incorrect predictions. The models can more accurately predict crashes 
of minor and significant impact, making it easier to anticipate the occurrence of more severe crashes. 

4.2. Importance of indicators 

The three models with the best prediction results were selected to analyze the degree of importance of the indicators, and Fig. 6 
shows the importance of the indicators in the prediction results of the three models CPO-RF, HO-RF, and DBO-RF, where 1–17 are the 
corresponding numbers of the indicators in Table 1. 

Fig. 6 shows that the three model indicators with the best prediction effect have the same top six importance rankings. The six 
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Table 2 
Model accuracy analysis.  

Optimizer  Precision Recall F1 Score Accuracy 

Class1 Class2 Class3 Class4 Class1 Class2 Class3 Class4 Class1 Class2 Class3 Class4 

CPO-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.916 0.917 0.972 1.000 0.908 0.905 0.994 1.000 0.908 0.907 0.983 0.952 

HLOA-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.913 0.904 0.968 1.000 0.893 0.900 0.993 1.000 0.903 0.902 0.980 0.946 

HO-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.917 0.909 0.969 1.000 0.898 0.904 0.994 1.000 0.907 0.906 0.981 0.949 

PID-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.917 0.905 0.968 1.000 0.894 0.904 0.994 1.000 0.905 0.904 0.981 0.948 

TTAO-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 0.999 0.907 0.911 0.965 1.000 0.901 0.894 0.991 0.999 0.904 0.902 0.978 0.946 

NBRO-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 0.999 0.908 0.910 0.966 1.000 0.900 0.894 0.991 0.999 0.904 0.902 0.978 0.946 

FTTA-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.907 0.905 0.969 1.000 0.894 0.898 0.990 1.000 0.900 0.901 0.979 0.945 

SSA-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.909 0.907 0.965 1.000 0.897 0.894 0.991 1.000 0.903 0.900 0.978 0.945 

DBO-RF train 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
test 1.000 0.912 0.910 0.971 1.000 0.899 0.902 0.993 1.000 0.905 0.904 0.981 0.948 

RF train 1.000 0.952 0.938 0.968 1.000 0.925 0.940 0.994 1.000 0.938 0.939 0.981 0.965 
test 1.000 0.908 0.893 0.949 1.000 0.871 0.890 0.990 1.000 0.889 0.891 0.969 0.937 

XGBoost train 0.997 0.886 0.684 0.953 1.000 0.733 0.879 0.844 1.000 0.938 0.939 0.981 0.864 
test 0.995 0.880 0.671 0.947 1.000 0.724 0.869 0.829 1.000 0.889 0.891 0.969 0.856 

SVM train 0.781 0.669 0.655 0.672 0.993 0.552 0.520 0.745 0.874 0.605 0.580 0.707 0.703 
test 0.782 0.671 0.656 0.667 0.992 0.552 0.522 0.745 0.875 0.606 0.581 0.704 0.702 

BP train 0.980 0.744 0.667 0.807 1.000 0.654 0.762 0.781 0.990 0.696 0.711 0.794 0.800 
test 0.782 0.671 0.656 0.667 0.992 0.552 0.522 0.745 0.875 0.606 0.581 0.704 0.798  
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Fig. 5. The confusion matrix generated from the prediction of the test data.  
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indicators that have the greatest impact on motor vehicle traffic crashes are 1 (Temperature), 8 (Weather), 4 (Pressure), 17 (GDP), 16 
(Population density), and 15 (Time of Day). 

4.3. Results interpretive 

The CPO-RF model with the best performance is chosen for visualizing and interpreting the prediction results. The visualization 
part involves spatially representing predicted crash points using a GIS platform. In this part of the study, the test set and prediction 
results of the model are first processed with Inverse SMOTE to obtain the actual crash points. We found that the prediction accuracy of 
the data after the Inverse SMOTE processing reached 99.6 %, and the confusion matrix after the Inverse SMOTE processing is shown in 
Fig. 7. 

4.3.1. Analysis of results 
The location information of the data is utilized to visualize the prediction results on the GIS platform. Since there is only one sample 

in class 1 and it is predicted correctly, spatial visualization analysis is conducted only for class 2, class 3, and class 4, as shown in Fig. 8. 
The incorrectly predicted points are mainly located at two major transportation intersections in the California region. 

4.3.2. Interpretive analysis of results 
Environmental indicator 1 (Temperature), Time indicator 5 (Time of day), and Social indicator 17 (GDP) were selected for the 

Fig. 6. Ranking of importance degree of indicators in CPO-RF, HO-RF, and DBO-RF model.  

Fig. 7. Confusion matrix of predicted results after inverse Smote processing.  
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explanatory analysis of the predictor indicators based on the top six rankings of the indicators’ importance in Section 4.2. For com-
parison, the continuous variables 1 (Temperature) and 17 (GDP) were categorized into four classes using the quantile classification 
method in GIS, while the categorical variable 15 (Time of day) is presented in Table 1. Kernel density analysis of motor vehicle traffic 
crash points using the spatial density analysis function in GIS, as shown in Fig. 9. The areas with frequent motor vehicle traffic crashes 
are primarily concentrated in densely populated areas, intersections, and other locations that may lead to complex road conditions. 
The six indicators are combined with kernel density analysis for interpretive analysis, as shown in Fig. 10. 

Fig. 10(a) illustrates that the crash points are mainly concentrated in the high-risk area of motor vehicle traffic crashes, with most of 
them occurring in high-temperature locations. This indicates a clear positive correlation between motor vehicle traffic crashes and 
temperature, although it is not a straightforward linear relationship. The rise in temperature causes the ground temperature to in-
crease, resulting in a decrease in asphalt pavement friction, which can easily lead to motor vehicle traffic crashes [60]. Furthermore, 
high temperatures also have a significant impact on human emotions [61]. 

GDP is an important factor influencing the number of national private vehicles and traffic conditions. Relevant studies have found 
that in regions with higher levels of socio-economic development people’s willingness to travel increases and commercial vehicle 
movements will also increase, which will increase the risk of traffic vehicle traffic crashes. In regions with lower levels of economic 
development, factors such as poorer vehicle levels, more old vehicles on the roads, and poorer road infrastructure will also affect 
vehicle traffic safety. Mobility may be the most critical determinant of vehicle traffic safety [62]. Fig. 10(b) illustrates that California 
and Texas have higher levels of GDP development, and simultaneously, they are also high-incidence areas for vehicle traffic crashes. 
The central region of the U.S. mainland has a lower level of GDP development, and simultaneously, there are fewer vehicle traffic 
crashes. It is worth noting that vehicle traffic crashes have become increasingly common in some states with lower levels of GDP 
development, such as Minnesota, Tennessee, and Alabama. This trend reflects the quality of traffic management in these regions. 

Time of Day is also an important factor that affects vehicle traffic crashes. Fig. 10(c) shows that the incidence of vehicle traffic 
crashes is greatly affected by the commuting peak in the states of Utah, Texas, and New Hampshire. It is noteworthy that motor vehicle 
traffic crashes in California and Washington are largely unaffected by the commuting peak, which may be related to the level of public 
transportation development in the cities [63]. In addition, most vehicle traffic crashes in Illinois occur at night, highlighting the need 
for additional traffic facilities to ensure safe driving, such as increased lighting, speed limit signs, and other measures. 

5. Conclusion 

Motor vehicle traffic crash severity prediction is crucial for preventing future crashes and mitigating different types of motor 

Fig. 8. Visualization of CPO-RF model prediction results.  
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Fig. 9. Kernel density analysis of motor vehicle traffic crashes locations.  

Fig. 10. Important Impact Indicator Analysis of Motor vehicle traffic crashes.  

X. Wang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e35595

15

vehicle traffic crash severity. In this study, we design an analytical framework for predicting motor vehicle traffic crashes using 
multiple meta-inspired optimization algorithms combined with random forests. Utilizing the framework, predict the severity of motor 
vehicle traffic crashes based on the 2020 motor vehicle traffic crash statistics in the continental United States. This framework mainly 
includes the comparative analysis of combined optimization algorithms and single algorithms, as well as the information fusion and 
visualization on a GIS platform. 

The CPO-RF model produces the most accurate predictions compared to a single model and random forest optimized by other meta- 
heuristic algorithms. It can achieve precision, recall, and F1 scores above 90 % for various severity classes, with an overall accuracy of 
95.2 %. The CPO-RF model demonstrates better overall performance compared to other combination models and single classification 
prediction models. After applying the inverse SMOTE treatment to the prediction results of the CPO-RF model, we found that the 
prediction accuracy increased to 99.6 %. The three model indicators with the best prediction effect have the same top 6 importance 
rankings. The six indicators that have the greatest impact on motor vehicle traffic crashes are 1 (Temperature), 8 (Weather), 4 
(Pressure), 17 (GDP), 16 (Population Density), and 15 (Time of Day). 

GIS was used to visualize the prediction results, pinpointing the specific locations of the inaccurately predicted crash points. 
Through interpretive analysis of key indicators of motor vehicle traffic crash severity, we can offer practical suggestions to urban 
planners for various regions. Studies show that there is a positive correlation between motor vehicle traffic crashes and temperature 
and GDP. It is important to consider the influence of temperature and GDP on motor vehicle traffic crashes when implementing traffic 
management strategies. Some regions, like Minnesota and Tennessee, need to enhance their traffic management. For example, speed 
limits could be imposed and additional road traffic monitoring devices installed to ensure safe driving. Furthermore, enhancing traffic 
morality and safety consciousness among residents in the area is crucial. When necessary, strict legal regulations on driving behavior 
could be implemented to bolster traffic legal awareness. Regarding periods within a day, states such as Utah and Texas exhibit a higher 
incidence of traffic crashes influenced by peak commuting hours. However, California and Washington benefit from well-developed 
public transportation systems, resulting in a vehicle traffic crash rate that is largely unaffected by commuting peaks. Illinois should 
consider implementing traffic facilities such as nighttime lighting installations and fatigue driving warning systems to ensure the safety 
of nighttime vehicle operations. City managers can use our model and its interpretability to predict vehicle traffic crashes more 
accurately. They can also identify factors that contribute to motor vehicle traffic crash severity and choose effective measures to 
address issues in transportation and urban development. 

However, due to the complexity of motor vehicle traffic crashes, our study has some limitations. For example, the original data 
collection measures are limited, and indicators such as drivers and road alignment design are not included. Because factor selection is a 
systematic process, despite some experiences being reported in previous references, further study is necessary to select a more 
reasonable set of factors. 
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