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ABSTRACT: Multiparameter optimization, the heart of drug design, is
still an open challenge. Thus, improved methods for automated
compound design with multiple controlled properties are desired.
Here, we present a significant extension to our previously described
fragment-based reinforcement learning method (DeepFMPO) for the
generation of novel molecules with optimal properties. As before, the
generative process outputs optimized molecules similar to the input
structures, now with the improved feature of replacing parts of these
molecules with fragments of similar three-dimensional (3D) shape and electrostatics. We developed and benchmarked a new python
package, ESP-Sim, for the comparison of the electrostatic potential and the molecular shape, allowing the calculation of high-quality
partial charges (e.g., RESP with B3LYP/6-31G**) obtained using the quantum chemistry program Psi4. By performing comparisons
of 3D fragments, we can simulate 3D properties while overcoming the notoriously difficult step of accurately describing bioactive
conformations. The new improved generative (DeepFMPO v3D) method is demonstrated with a scaffold-hopping exercise
identifying CDK2 bioisosteres. The code is open-source and freely available.

■ INTRODUCTION
A crucial task in all drug discovery projects is designing
molecules against multiple, often contradictory objectives.1

Much of today’s drug hunters’ time is therefore spent on
attempting to find an optimal compromise where all desirable
properties are satisfied in a single molecule. The use of
sophisticated computational methods, leveraging high-quality
data sets to help solve this task, is thus conceptually very
attractive.
Recent advances in artificial intelligence (AI) and machine

learning (ML) have given rise to an immense popularity of
inverse design,2 and the field shows little signs of slowing
down.3 In inverse design, desired properties are specified a
priori, and such methods generate compounds fitting that
description.4 Significant progress has been made in this area,
and a plethora of approaches for deep learning in molecular
design has been published in the last few years.2 Many
methods include reinforcement learning5−7 to generate
molecules, most often in the form of SMILES strings.8 Other
popular methods include generative methods such as recursive
neural networks, generative adversarial networks, or variational
autoencoders, which are sometimes steered with reinforcement
learning to control the molecular properties. The SMILES
format in itself is nothing but amazing.9 Using SMILES is also
convenient for the AI algorithm since it is trivial to manipulate
and transform a string. In addition, there are success stories of
using SMILES in the area of generative design.10 However, all
molecules are 3D objects, and a conservative modification to a
SMILES string may cause a large effect in their 3D structure.
Examples include the removal of brackets denoting sub-

stitution, such that a Y-shaped compound becomes linear, or
the removal or changing of ring-closing locants. Therefore,
optimization of molecular structures cannot be smooth in the
space of 3D properties even though the SMILES strings
change by only small amounts from iteration to iteration of the
AI algorithm. We have previously presented a fragment-based
generative approach (DeepFMPO) that addressed these
modifications to the structure issue, albeit as 2D descriptions.11

Here, we introduce a significant extension to DeepFMPO,
using detailed descriptions of 3D properties to represent
molecules more accurately.
The shape and electrostatic properties of molecules are

primary determinants of molecular recognition and should
consequently be the method of choice when comparing the
similarity of molecules encountered at various stages in drug
design. Even though these methods have been used to achieve
major impacts in related areas (e.g., virtual screening leading to
the discovery of novel and unexpected chemotypes12−14), they
have been largely unexplored in the context of de novo
generative methods, although promising attempts have been
made.15,16 One reason for the reluctance of using 3D methods
is the challenge of obtaining accurate descriptions of
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molecules’ bioactive conformations. In this work, we reduce
this notoriously difficult step by using 3D fragments of the
complete target compounds.
Moreover, much of the work in the generative de novo design

area has been focused on the development of maximally
expressive methods whose purpose is to explore the entire
chemical space. Our approach is different in this regard since it
specifically rewards the generation of molecules that are similar
to known lead compounds. Another such method is the
recently published MolDQN method, which maximizes a
“drug-likeness” (QED) score while also maintaining similarity
to the original molecule.17 Virtual screening is a related
approach to generative methods18 and can also be a powerful
method for finding hits and lead compounds with desired
properties. However, a virtual screen is limited in regard to
what is in the queried databases (i.e., it is not possible to find
something that is not there).
Here, we describe a new open-source python package, ESP-

Sim, for calculating shape and electrostatic similarities, and its
implementation in DeepFMPO.11 We highlight its usefulness
with a scaffold-hopping study that identifies bioisosteres for a
set of CDK2 kinase inhibitors.19

■ METHODS

The DeepFMPO method is based on an actor−critic model for
reinforcement learning.11 It is a fragment-based generative
method that learns how to modify compounds and improve
them. That is, molecules are split into fragments, and these
fragments are replaced with other similar fragments in the
(deep) learning process of generating novel molecules with
optimal properties. Technically, the fragments are encoded
into binary strings, and similar fragments are assigned with
similar encodings. This is achieved by constructing a balanced
binary tree. In the process of assembling the tree, similarities
between all fragments are calculated. Fragments are paired in a
greedy bottom-up manner, where the two most similar
fragments are paired first. The joining procedure is repeated
until all fragments are put together in a single tree.
Subsequently, this information is used to generate encodings
for all fragments. The paths from the root to the leaves define
the encoding for each fragment. For every branch in the tree, a
one (“1”) is added to the encoding when going to the left, and
a zero (“0”) is added when going to the right, see Figure 1. The
rightmost character in the encoding corresponds to the
branching closest to the fragment. In this process, the pairwise
similarity between all fragments is calculated. There are many
ways to calculate chemical similarities, and the most used
approaches currently employ 2D fingerprints.
Here, we present a new implementation of DeepFMPO

utilizing a 3D-based molecular alignment method, where the
electrostatic potential (ESP) similarity between pairs of
fragments is calculated. To this aim, we developed an open-
source python package, ESP-Sim, which calculates the overlap
integrals of the electrostatic potentials (generated from
Coulomb potentials) of two molecules or fragments. Within
DeepFMPO, the computation of ESP similarities can be
broken down into six steps for each fragment pair (see Figure
2a) and is described in more detail below. Steps 2, 3, and 6
correspond to function calls of the ESP-Sim package, whereas
steps 1 and 5 are innate to DeepFMPO. It is worth noting that
this fragment alignment approach eliminates the challenging
step of generating bioactive conformations for complete

molecules as well as alleviates the issue of aligning them
correctly.

The Molecular Alignment of Fragments. All single
bonds in a molecule that extend from a ring atom are broken in
the DeepFMPO process, creating the molecular fragments.
The attachment atoms (previously connected with a single
bond) are labeled in this step. To calculate ESP similarities, the
fragments must be aligned in 3D. Here, a conformational
search is conducted generating an ensemble of low-energy
conformers for all fragments containing rotatable bonds, using
the ETKDG method20 as implemented in RDKit.21 As default,
a maximum of 10 conformations of each fragment is generated.
An anchor group is connected to the fragments’ attachment
atom and serves as a template in the alignment procedure. The
coordinates of the anchor group are fixed in 3D space. The
rationale for this step is that ligands containing related
fragments typically bind in a similar orientation,22,23 and
these fragments will frequently make similar ligand−protein
interactions. Consequently, to ensure that the fragments are
aligned as accurately as possible, an anchor group is attached to
the fragments and used in the molecular alignment step. The
anchor group was arbitrarily chosen to be a hexazine ring with
a methylene linker subunit. This group is of reasonable size for
a template and highly unique (i.e., hexazines are never present
in drug-like molecules) for easy identification and removal
downstream in the process. A few experiments were conducted
with other types of structural fragments as anchors to gauge
possible conformational effects (vide inf ra). For each pair of
fragments, the pair of conformations with the best shape
overlay in terms of the highest shape Tanimoto value is stored.
The anchor is then replaced with a hydrogen (see Figure 2). In
cases where fragments include several labeled atoms, they are
replaced with a methyl group. In this manner, all labeled atoms
are replaced by a methyl, which may be considered neutral in
terms of electrostatic similarities. Finally, the ESP Tanimoto
value is calculated between the pair of conformers with the
best shape alignment (see the Electrostatic Similarity
Calculations section below).

Electrostatic Similarity Calculations. The presented
ESP-Sim method uses the cheminformatics toolkit RDKit21

to generate different conformations of a molecule with (or
without) a constrained anchor or core group and computes
shape and electrostatic potential similarities between pairs of

Figure 1. Snippet of the balance binary tree used in DeepFMPO.
Fragments that are similar are placed close to each other. The
encoding of a fragment is determined by the path from the root to the
leaf. Every branching to the left adds a “1” to the end of the encoding,
and a branching to the right adds a “0”.
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conformers. Alternatively, ESP similarities can be computed on
prealigned molecules. The electrostatic potential similarity is
computed via the overlap integral of the Coulomb potentials of
two molecules, as well as their respective self-overlap integrals
as either Tanimoto24,25 or Carbo similarity.26,27 The Coulomb
potential V(r) describes the electric potential at a point r as a
sum of potentials of point charges qi at points ri as

∑
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ϵ | − |

r
r r

V
q

( )
1

4 i

i

i0

where ϵ0 is the vacuum permittivity. Since analytic integration
of the Coulomb potential at r = 0 is not possible, we provide
options to either approximate each potential with a sum of
three Gaussian functions and integrate the fit function
analytically analogous to Good et al.28 or to perform a

Monte Carlo integration over the space outside of the van der
Waals radii of each atom and inside a user-defined margin.
Partial charges can either be supplied by the user, calculated via
RDKit (Gasteiger or MMFF94 charges), predicted via a recent
machine learning (ML) model,29 or computed using the open-
source quantum chemistry program Psi4,30 with the option of
using restrained electrostatic potential (RESP) charges.31

There are a range of different methods and basis sets available
in Psi4, for example, the often recommended combination of
using the B3LYP method and the 6-31G** basis set, although
using them can be computationally demanding. Within
DeepFMPO, Dask,32 a library for parallel computing in
Python, is used to speed up the process. It should be noted
that the RESP/Psi4 method is not parametrized for atoms
beyond the atomic number of argon. To allow for larger atoms
(e.g., bromine), their van der Waals (vdW) radius needs to be
specified separately. In this code version, we set the vdW radii
for bromo to 1.8 (file: resp/vdw_surface.py), following the
GAMESS scheme33 derived from the Merz−Kollman−Singh
publication.34 In addition to electrostatic similarities, ESP-Sim
can furthermore output the shape Tanimoto similarity of
molecules, describing the volume overlap. For DeepFMPO, we
used the Tanimoto similarity of electrostatic potentials
obtained via fitting to Gaussian functions (ESP-Tanimoto).
We furthermore provide an option to add the volumetric shape
score resulting in an ESP-TanimotoCombo score.

■ RESULTS
In the following, we showcase the performance of ESP-Sim on
a variety of benchmark tasks. We then perform a retrospective
case study, where we aim to demonstrate the value of using
shape and electrostatic similarities in scaffold-hopping
exercises. Scaffold hopping is a method for identifying
bioisosteric replacements35,36 with the intention of retaining
biological activity of analog compounds but also improving
other relevant molecular properties. It can also be used as a
design strategy for intellectual property (IP) reasons.

ESP-Sim Benchmark Studies. To evaluate the influence
of the employed partial charge distribution on the observed
scores within ESP-Sim, ESP similarities were computed for the
same molecule at the same geometry but with different partial
charges. As ground truth, quantum mechanically (QM)
obtained RESP charges at a high level of theory (MP2 with
a polarizable PVTZ basis set) were used,29 on a selection of
about 3000 neutral molecules. RESP charges are specifically
designed to reproduce the electrostatic potential of a molecule
so that a comparison of electrostatic potentials obtained from
different charge distributions to the QM RESP charges allows
for a detailed assessment of the quality of each approach for
similarity comparisons. We evaluated Gasteiger37 (default in
RDKit), MMFF94,38 and AM1-BCC39,40 partial charges, as
well as a machine learning model (ML).41 The ML partial
charge model is provided with the ESP-Sim package on
Github. Table 1 provides an overview of the observed mean
absolute deviations of the respective partial charges from the
RESP charges, as well as the ESP similarities evaluated via
Carbo or Tanimoto similarities. We find that AM1-BCC
charges reproduce the QM electrostatic potentials best
followed by the deep learning model, MMFF, and Gasteiger.
Figure 3 depicts heat maps of the QM atomic charges

compared to Gasteiger, MMFF, ML, and AM1-BCC charges.
Although there is no perfect correspondence of QM charges to
any of the evaluated charges, we find the highest agreements

Figure 2. (a) Stepwise procedure to obtain the electrostatic shape
potential similarity values for pairs of fragments. (b) Example of the
corresponding procedure in graphics.
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for AM1-BCC charges. Notably, Gasteiger and ML charges
lead to narrower ranges than MMFF and AM1-BCC charges.
This is also reflected in the Carbo and Tanimoto ESP
similarities in Table 1. The Carbo metric, which is largely
insensitive toward the magnitude of a function,42 yields more
favorable scores for ML and AM1-BCC, in contrast to the
Tanimoto metric, which is more sensitive to the absolute
magnitudes, thus ranking MMFF better than ML. However,
these differences are small, and a comparison of observed
similarities via different charge distributions in reference to
QM RESP shows similar trends between all options (Figure 4).
We can therefore assume that even Gasteiger charges lead to a
fair depiction of the electrostatic potential for most of the
molecules. In fact, benchmarking of ESP-Sim on protein-
docking databases shows little dependence of ranking metrics

on the employed partial charge distribution, as detailed in the
following.
We furthermore compared ESP-Sim scores to similarities

obtained via the state-of-the-art tool EON43 for about 450
fragments generated by DeepFMPO for various partial charge
distributions. We find a strong correlation, with a Spearman
correlation coefficient of about 0.8. A detailed analysis is given
in the Supporting Information. In addition, we assessed the
ability of ESP-Sim scores to identify potential ligands to
protein targets. We compared the performance of ESP-Sim
electrostatic and shape similarities to a set of rescoring
functions44−50 on the dopamine D4 receptor, for which
experimental data on active and inactive compounds is
known.51 We furthermore benchmarked ESP-Sim on the 102
DUD-E targets52 and compared its performance against a
variety of ligand-based approaches.53−58 For both comparisons,
we find that ESP-Sim electrostatic and shape similarities
perform very well. Details on these benchmarks are given in
the Supporting Information.

Assessing Various Molecular Similarity Measures. A
frequently occurring scenario is that a drug hunting team has
identified a promising compound, from an internal lead
generation effort or from the literature, that needs
optimization. For the sake of argument, compound 119 in
Figure 5 is such a compound.

With compound 1 at hand, the design question is then
“which compound should we make next?”. The optimization
task usually includes improving molecular properties (e.g.,
permeability, solubility, clearance, selectivity, etc.) and perhaps
also IP-related issues. A common scenario then is for the
project team to try to come up with ideas of novel central rings
to be introduced as scaffold replacements. In this context, it
should be noted that heterocyclic rings are often considered
special and typically end up in different patent applications.59

Also, with regard to calculating molecular properties (e.g.,
lipophilicity), many 2D-based methods are not adequately
parametrized and have difficulties in assessing heterocyclic
compounds accurately.60 So, how can breakthrough ideas for
novel central rings be generated and which methods can be
used to do it? Here, compound 2 (Figure 5) is one answer to
the question “what to make next?”. It is equipotent to
compound 1 and, importantly, contains a different but related
central scaffold. That is, the bicyclic heterocycles in compound
1 (imidazo(1,2-a)pyridine) and compound 2 (pyrazolo(1,5-
a)pyridine) are both nine-membered ring systems with
identical substituents.

Table 1. Mean Absolute Deviations between Gasteiger,
MMFF, ML, or AM1-BCC Partial Charges q Compared to
RESP Charges, as well as Similarities of Electrostatic
Potentials Compared to RESP Evaluated Either via Carbo
or Tanimoto Similarity

partial charges MAE q [e] ESP-Sim (Carbo) ESP-Sim (Tanimoto)

Gasteiger 0.16 0.78 0.60
MMFF 0.17 0.80 0.64
ML 0.17 0.85 0.61
AM1-BCC 0.12 0.88 0.78

Figure 3. Heat maps of quantum mechanical RESP partial charges
compared to Gasteiger, MMFF, ML, or AM1-BCC partial charges.

Figure 4. Electrostatic potential similarities between molecules with
RESP partial charges to molecules with Gasteiger, MMFF, ML, or
AM1-BCC partial charges (at the exact same geometries evaluated via
Tanimoto similarity). An analogous figure for Carbo similarity is given
in the Supporting Information.

Figure 5. Two equipotent CDK2 kinase inhibitors. CDK2 inhibitors
containing the related bicyclic heterocycles imidazopyridine (1) and
pyrazolopyridine (2) were discovered through high-throughput
screening by Fischmann et al.19 and here used as a scaffold-hopping
example.
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To investigate how different methods predict the similarity
of these kinds of central bicyclic heterocyclic scaffolds, we first
generate a data set of fragments containing the same
framework and similar substitution pattern. Thus, the
ChEMBL v28 database61 was queried for compounds
including a nine-membered bicyclic ring system, with three
substituents, using SMARTS matching.21 For comparison
reasons, the substituents were subsequently removed providing
30 different scaffolds, see Figure 6. In this manner, we

identified an extensive list of nine-membered bicyclic
heterocyclic scaffolds present in drug-like molecules that
could potentially act as replacements for the pyrazolopyr-
imidine in compound 1.
All 30 bicyclic systems were subsequently subjected to

pairwise comparisons using a range of standard 2D similarity
measures, together with the 3D-based ESP-Sim measure. A
summary of the results obtained from each method is reported
in Table 2. For completeness, the results using four different

anchor fragments (hexazine, carboxylic acid, piperidine, and
iodine) are shown in Figure 7. The heat maps are essentially
the same, indicating that the method is not dependent on the
choice of the anchor fragment.
The 1 vs 2 fragment pair is top-ranked when using the ESP-

Sim (B3LYP/6-31G**) metric but not by the 2D-based
methods. The Morgan fingerprints rank the 1 vs 2 pair among
the top five (Table 2), which is reasonably high. However,
given the challenges and resource investments required to
establish new synthetic routes, our experience is that very few
alternative ring analogs are explored in real-life projects.
Typically, only a couple of ring replacements are made and

tested, essentially enforcing that only top-ranked scaffolds
would be followed up. Two other observations provide further
support for the use of the ESP-Sim method. First, the MACCS
keys’ fingerprint resulted in very similar values for many
scaffolds (e.g., the Tanimoto similarity values for five scaffolds
against the scaffold of compound 1 show identical values of
−0.87), suggesting that the MACCS keys’ similarity metric is
not sufficient for capturing such subtle differences. Second,
there is a couple of clearly structurally dissimilar fragments in
Figure 6 (e.g., 1,4,6-trimethylpyrazolo[5,4-b]pyridine vs 2,4,7-
trimethylimidazo[2,1-f ][1,2,4]triazine) that are ranked low
when using ESP-Sim (as they most probably should) but top-
ranked when using Morgan 2D fingerprints.
As a final observation, deriving ESP similarities with

methods of lower theory for calculating the underlying partial
charges (Gasteiger, MMFF, and HF/3-21G, data not shown)
also yielded the 1 vs 2 pair as top-ranked, suggesting that such
partial charges may be sufficient and a cost-effective alternative
for this data set. We recommend using a higher level of theory,
although it is computationally more demanding, for example,
RESP partial charges derived using the B3LYP method and the
6-31G** basis set or AM1-BCC partial charges, which were
found to reproduce the QM electrostatic potentials best in our
benchmark.

Generating “Sweet Spot” Molecules. Having estab-
lished the value of using the ESP-Sim measure, the next step
was to include it in the generative (DeepFMPO) method. An
experiment was set up to mimic a real-world scenario, where a
set of lead compounds is optimized toward the sweet spot
criteria through a multiparameter optimization process. Three
different calculated properties (molecular weight, polar surface
area,21 and clogP62), commonly used in the optimization of
leads to candidate drugs, were selected for this purpose. It
should be noted that the choice of molecular properties was
also selected for practical reasons facilitating reproducibility.
Namely, there are methods for calculating them using RDKit.21

The aim of the setup was to bias the generation of compounds
to fulfill the criteria for the three calculated properties while
also maintaining their similarity in shape and electrostatics
toward a known set of lead compounds. The agent in the
reinforcement learning method was rewarded for producing
valid molecules and got a higher reward when generating

Figure 6. Bicyclic heterocyclic scaffolds in ChEMBL compounds
matching the SMARTS pattern “[A][cH0]1[c,n][c,n]([A])[c,n]2-
[c,n][c,n][c,n]([A])[c,n]2[c,n]1”.

Table 2. Rankings for the 1 vs 2 Fragment Pair, among
Pairwise Comparisons of 30 Different Heterocyclic Ringsa

method rank (max = 30)

ESP-Sim (B3LYP/6-31G**) 1
Morgan fingerprint (radius 2) 5
Morgan fingerprint (radius 3) 5
MACCS keys’ fingerprints 17
MCS Tanimoto 21
topological fingerprints 22

aThe rankings, and Tanimoto values, using a range of different 2D
similarity methods available through RDKit and the new ESP-Sim
measure are reported. Hexazine was used as an anchor fragment.

Figure 7. All-against-all comparison experiments were conducted with
four structurally different anchor fragments (top left: hexazine, top
right: carboxylic acid, bottom left: piperidine, and bottom right:
iodine). The different anchors give essentially the same results.
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molecules with properties in the targeted ranges. Since this was
a scaffold-hopping exercise, with the goal of identifying a new
bioisosteric scaffold, the minimum and maximum target values
for the three properties were centered around the correspond-
ing values for compound 1 (i.e., 320 < MW < 420, 2.3 < clogP
< 4.3, and 45 < PSA < 65).
The library of input fragments was generated from a set of

structurally diverse compounds known to exhibit inhibitory
effects against kinase targets, including compounds that have
shown activity against the specific biological target of interest
(CDK2). The data set was extracted from the ChEMBL
database (version 28) using simple text searches, resulting in a
set of 557 fragments (including the ones in Figure 6), as
obtained from 1059 compounds. The lead series compounds
were obtained by a substructure search using the (imidazo(1,2-
a)pyridine) central scaffold of compound 1 on the surechembl
website (https://www.surechembl.org/search) and yielded
138 close analogs, which is a typical number to what a drug
hunting program would have access to. The data sets are
available online (https://github.com/giovanni-bolcato/
deepFMPOv3D). The calculation for this data set requires 8
h on an i9-9820x CPU, using 20 cores.
DeepFMPO with the ESP-Sim measure generated a total of

6359 unique molecules, when terminated at 1000 epochs.
About two-thirds of those were sweet spot compounds. Hence,
the agent generated compounds that have all three properties
within the desired ranges. This number (ca. 4000) is lower
than when using a standard generative method facilitating the
selection process and a result of intentional biasing using 3D
similarity. The evolution of the percentage of generated
molecules that demonstrate properties within the target ranges
during the training process is shown in Figure 8, displaying
evidence of learning. A significant number of the generated
compounds include the central scaffold of compound 2, and a
number of those show a nearly identical substitution pattern to
compound 1. These bioisosteric compounds were observed in
early epochs. Another nine-membered scaffold (3) was also
represented among the generated compounds, see Figure 9.
When performing the same experiment but with simpler
standard similarity measures (Morgan fingerprints, MACCS
keys, and topological fingerprints), no compounds with the
central scaffold of compound 2 (or 3) were generated. This
provides an incentive for the use of DeepFMPO with ESP-Sim
in scaffold-hopping exercises.

■ DISCUSSION
In the current work, we set out to explore the use of a
sophisticated similarity metric in generative methods. The
power of rewarding compounds that are similar in 3D aspects,
in addition to other molecular property constraints, is often
underappreciated. It is a challenging task due to the issues
involved with conformer generation and molecular alignments.
Nonetheless, this is a design strategy that we believe should be
given more attention and we discuss why below.
Molecular Representations in Deep Generative

Methods. Deep generative models typically use non-3D
methods for representing molecules. Text-based methods and
the use of SMILES strings are still the most prevalent
representation. The reason for this is probably because
SMILES can be massively expressive and that it is trivial to
manipulate and transform strings. However, there are some
drawbacks with using SMILES strings.11,63 A significant
problem is that a conservative change can have a huge change

in the 3D structure of a molecule. This is important since all
molecules are 3D objects. Here, we have addressed this issue
by extending the fragment-based DeepFMPO method, where

Figure 8. Graphs showing how molecular weight, clogP, and TPSA
values change during the epochs, as the mean value of all the
compounds for each epoch.

Figure 9. Graph showing the frequency of occurrence of compounds
including the central fragment of compounds 1, 2, and 3. The y-axis
represents the total number of compounds for each epoch
(percentage).
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molecules are built from similar fragments, instead of
sequences of letters (as is the case for SMILES-based
methods). Fragment-based methods are considered intuitive
and often mimic the way that medicinal chemists think and
design. The approach was recently described by Meyers et al.
as a method “offering an appealing compromise between
molecular expressivity and practicality”.63 Hence, a common
medicinal chemistry design strategy is to work on molecular
series, swapping fragments and substituents in one part of the
molecule while keeping other parts of the compounds
unaltered. This is often a challenge for generative methods
working on SMILES strings,63,64 leading us to the next topic of
discussion.
Deep Generative Methods Can Generate Many

Compounds. Most generative AI methods produce tens of
thousands of unique and diverse high-scoring compounds
when used without stringent filters. This is related to Brenner’s
underdetermined inverse problem stating that available data
does not uniquely specify systems.65 Also, although there may
be nothing chemically wrong with AI-generated molecules (i.e.,
all atoms in common valences and charge states), some can be
exotic,66 and an experienced medicinal chemist would reject
them upfront. The issue of such unwanted molecules is
manageable from a technical perspective. For example, one can
enforce substructure rules and penalize the existence of
undesired moieties (e.g., radicals, peroxides, anhydrides, and
strained and chemically unstable systems) in the reward
functions, or as post-filters.
A more difficult problem to address is how to prune down

the numerous generated compounds to the few worth making.
In reinforcement learning, a scoring function is used for this
purpose. A complicating factor here is that drug discovery is
complex and not all factors used in decision-making are easy to
capture, and thus, they are not readily converted into rules that
the AI methods can use in their reward system. For example, a
compound with several stereocenters is usually difficult to
make (and resolve) and should consequently get a low reward
score unless its building blocks are already available on the
shelf. Also, absorption is a critical parameter for the
optimization of oral drugs. Permeability over Caco-2 cells is
often used as a surrogate when assessing absorption. A
complicating factor here is that the uptake over the Caco-2
cells can be hampered by efflux, and in the case of high cell
permeation, the efflux is less relevant. A reward function
handling such scenarios would require several “if-then-else”
statements. They can be included in reward scores but are not
always trivial to define and set up for edge cases. In addition,
multiparameter optimization becomes increasingly challenging
when there are many constraints to fulfill.67 In brief, the biggest
challenge of deep generative methods is to define relevant
reward scores, and this is unfortunately less studied.
Simple drug-likeness rules, multivariate methods for DMPK

properties (solubility, permeability, clearance, etc.) and safety,
and docking scores are typically included in reward scores as
filters. However, several thousands of compounds will
inevitably still pass those filters. This is related to the common
lack of sufficient high-quality data and the fact that we still
often struggle with making predictions to the required
accuracy. Prediction of biological activity is an extremely
hard problem since many phenomena involved are difficult to
quantify precisely. Standard docking scores are most often not
sufficient. Although, at times, methods such as free-energy
perturbation (FEP) can improve the scoring accuracy for small

perturbations of one structure into another but not for major
structural changes.68 The use of FEP combined with active
learning is gaining traction and is showing promise.69,70

Nonetheless, when the output contains many structurally
diverse molecules, as frequently is the case for expressive
SMILES-based generative methods, current methods’ accu-
racies are not sufficient to filter down many compounds to a
selected few. Despite the increasing prevalence of physics-
based models in generative modeling, bioaffinity prediction
remains very challenging.
Here, we propose shape and electrostatic potential matching

as a strategy to bias generative models to propose compounds
with different fragments (that are likely bioisosteres) of known
lead compounds. The tool is designed to generate novel
molecules with optimized properties. One example usage is
scaffold hopping. Here, it should be noted that there are many
other scaffold-hopping tools available,71 ranging from CAV-
EAT,72 which is one of the early 3D database searching
programs, to the more recent BROOD.73 In the context of
generative methods, Langevin et al. recently described a new
RNN-based algorithm, named SAMOA (scaffold constrained
molecular generation), to perform scaffold-constrained molec-
ular design.64 Generative methods benefit from the associated
reinforcement learning methods, allowing multiobjective
molecular design optimization while only exploring the
relevant chemical space.

Using Similarity as a Design Strategy. As mentioned
above, current generative AI methods generally suffer from the
lack of prediction accuracy. Thus, learning from past drug
hunting experiences, we deliberately bias the AI method to
generate compounds that are similar to active molecules
already discovered. We approach this problem by relying on
the similarity principle,74 which states that similar molecules
tend to have similar properties.75 Some advantages to this
approach are discussed below. First, by generating molecules
similar to the initial set available in the project, confidence in
the predictions can be high because they remain in the
applicability domain of the model. This is contrary to
expressive methods that are designed to fully explore the
chemical space and generate structurally diverse compounds,
which are consequently also the most uncertain to predict.
Second, for similar compounds, the same chemical inter-
mediates and established synthetic routes can often be reused,
facilitating speedy progress. Third, sometimes, certain
structural fragments (e.g., “privileged structures”76) are difficult
to replace without severe drops in potency due to specific
ligand−protein interactions.
As a related example, the strategy of molecular optimization

using similarity was recently applied by Zhavoronkov and
coworkers. They reported that deep learning enabled rapid
identification of potent DDR1 kinase inhibitors.77 Walters and
Murcko analyzed the Zhavoronkov et al. study and reported
that the AI-generated compound B (Figure 9) shared a
common substructure with an already marketed multikinase
inhibitor (ponatinib, Figure 9), which was indeed included in
the training set.78 In some more detail, they ring-closed a
benzamide carbonyl into an isoxazole moiety to yield an
equipotent and unique compound.77 These two compounds
are very similar with regard to shape and electrostatics, see
Figure 10. Thus, Zhavoronkov’s AI method successfully
mimicked typical medicinal chemistry behavior, keeping
certain parts fixed and making minor modifications to others.
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It is sometimes believed that computer-aided design (CAD)
methods need to provide radically “nonintuitive” different
compounds to merit their use. However, believing that CAD
approaches should surprise us and produce results that we
would not have expected is a tall order. In this context, the
scoring functions used in generative methods for reinforcement
learning are not designed to extrapolate and do not account for
all aspects involved in the drug design process. Thus, the
power of current AIs lies more in pattern recognition than in
creative discovery.
Palazzesi and Pozzan recently reported a list of over 100

deep generative methods published in the literature between
2017 and 2020.79 The methods are innovative and perform
well in benchmark studies that measure the models’ ability to,
for example, reproduce property distributions and generate
valid, diverse, and novel molecules.80 One may thus conclude
that generative modeling is essentially a solved problem−
given a reward function, we now have the methods for
generating molecules that satisfy it. Despite this success,
biology and drug discovery remain immensely complex, and it
is our viewpoint that current generative methods best serve to
augment drug design. To take the next step (full autonomy),
calculated predictions need ultrahigh accuracy, and for that, we
need to develop a broader understanding of human biology.
The state of AI in drug design may be seen as analogous to the
automotive industry. While the future of autonomous vehicles
is promising and exciting, we are not near fully autonomous
cars yet. Candidate drugs, as well as cars, still require human
attention, given the complexity involved and the vast amount
of edge cases that are nontrivial to code up efficiently. Thus,
humans (with domain knowledge) are still very much needed
in the process, to steer the tools and triage the output. In this
context, we would like to highlight the Gruenif.ai tool where
the user can provide feedback interactively while molecules are
generated.81 Such “human-in-the-loop” methods can be very
effective. Future versions of DeepFMPO will include such
functionalities.

■ CONCLUSIONS
The use of sophisticated computational methods for de novo
design is attractive, and deep generative methods have gained a
lot of attention. Significant progress has been made when it
comes to generating molecules. However, scoring them

accurately remains a major challenge. Real-life project
experience informs us that in silico predictions (e.g., synthesis,
potency, and properties) are constantly improving, but they are
generally not accurate enough to prioritize a handful of
compounds for synthesis from a long list of high-scoring AI-
generated molecules. Thus, what really needs solving is being
able to do ultraaccurate predictions to advance the field to the
next level. Until then, the approach of biasing molecular design
toward compounds similar to known actives will remain as one
pragmatic and fruitful way to success.
Here, we present a 3D fragment-based reinforcement

learning approach for the generation of novel molecules with
optimized properties, called “DeepFMPO v3D”. We further-
more developed a python package, ESP-Sim, for calculating
molecular shape and electrostatic similarities. We bench-
marked ESP-Sim on a variety of tasks including the evaluation
of detailed 3D similarities, protein−ligand docking, and
rescoring of docked ligands and reported competitive perform-
ances. The inclusion of ESP scores into DeepFMPO promotes
the generation of compounds similar to existing lead
molecules, toward desirable sweet spot properties. The
proposed method allows the calculation of high-quality partial
charges (e.g., RESP with B3LYP/6-31G**) obtained using the
quantum chemistry program Psi4. In a scaffold-hopping case
study, we show that our approach of using shape and
electrostatic similarities performs well. DeepFMPO v3D
ranks known equipotent scaffolds higher and generates them
earlier (i.e., speedier). The way that the 3D method is
implemented makes the approach essentially alignment-
independent (on a molecular level) and does not require
knowing of the bioactive conformation. Both DeepFMPO v3D
and ESP-Sim are freely available online.
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