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Abstract
 An integrated custom cross-response sensing array has been developed combining the algorithm module’s visible machine 
learning approach for rapid and accurate pathogenic microbial taxonomic identification. The diversified cross-response 
sensing array consists of two-dimensional nanomaterial (2D-n) with fluorescently labeled single-stranded DNA (ssDNA) as 
sensing elements to extract a set of differential response profiles for each pathogenic microorganism. By altering the 2D-n 
and different ssDNA with different sequences, we can form multiple sensing elements. While interacting with microorgan-
isms, the competition between ssDNA and 2D-n leads to the release of ssDNA from 2D-n. The signals are generated from 
binding force driven by the exfoliation of either ssDNA or 2D-n from the microorganisms. Thus, the signal is distinguished 
from different ssDNA and 2D-n combinations, differentiating the extracted information and visualizing the recognition 
process. Fluorescent signals collected from each sensing element at the wavelength around 520 nm are applied to generate a 
fingerprint. As a proof of concept, we demonstrate that a six-sensing array enables rapid and accurate pathogenic microbial 
taxonomic identification, including the drug-resistant microorganisms, under a data size of n = 288. We precisely identify 
microbial with an overall accuracy of 97.9%, which overcomes the big data dependence for identifying recurrent patterns 
in conventional methods. For each microorganism, the detection concentration is 105 ~ 108 CFU/mL for Escherichia coli, 
102 ~ 107 CFU/mL for E. coli-β, 103 ~ 108 CFU/mL for Staphylococcus aureus, 103 ~ 107 CFU/mL for MRSA, 102 ~ 108 CFU/
mL for Pseudomonas aeruginosa, 103 ~ 108 CFU/mL for Enterococcus faecalis, 102 ~ 108 CFU/mL for Klebsiella pneumoniae, 
and 103 ~ 108 CFU/mL for Candida albicans. Combining the visible machine learning approach, this sensing array provides 
strategies for precision pathogenic microbial taxonomic identification.
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Introduction

Pathogenic microorganisms have rich varied, diverse sur-
face morphology and complex biochemical characteris-
tics, which essentially threaten human health and cause 
social panic upon their infection [1–4]. Antibiotics that 
are applied to treat pathogenic microorganism infection 
have been overused, leading to the thriving of antibiotic-
resistance microorganisms [5–8]. To reduce the dose of 
the antibiotics, the accurate recognition of microbial taxo-
nomic for multiple microorganism recognition is essential 
to precisely guide the medical therapy [5, 7, 9].

Some traditional methods for identifying microorgan-
isms have been developed, including the morphologi-
cal recognition method [10–12], the immunodiagnostic 
method [13, 14], and the molecular diagnostics method 
[15–17]. However, these methods require expensive 
reagents, instruments, higher operating skills, and low 
throughput, which limit the application of these methods 
in clinical practice. In recent years, a variety of sensing 
array has been developed, targeting to fulfill the require-
ment of multiple target microorganism detection. For 
example, Yan et al. have reported a fluorescence sensing 
array for identified five different bacteria, which six types 
of metal ion-protein-AuNC as sensing elements [18]; Fan 
et al. reported a GO-antimicrobial peptide (AMP) sensing 
array for identified 13 different bacteria [19]. Wu et al. 
have reported a sensing array of different thiopropionic 
acid, thiosuccinic acid, cysteine, and CTAB-functional-
ized AuNPs for identified 15 microorganisms [20]. These 
sensing arrays collect features from multiple dimensions 
to differentiate information for multiple target detection, 
including different receptors on the membrane of bacteria 
[21], the interaction between bacteria and sensing ele-
ments [20], and the specific metabolites [22, 23]. Combin-
ing the machine learning approach, a large amount of data 
can be processed for multi-target recognition. However, 
the kinds of sensing elements in these sensing arrays are 
limited, with the confined ability for the special kind of 
microorganism identification. Therefore, it is challenging 
to develop a sensing array that is not limited by the num-
ber and kinds, enabling the visualization of the detection 
progress.

Herein, we establish a molecular response differential 
profiling cross-response sensing array for rapid and accu-
rate recognition of microorganisms. The sensing elements 
are composed of a series of 6-carboxyfluorescein (FAM)-
labeled single-strand DNA (FAM-ssDNA) and two-
dimensional nanomaterial (2D-n) fluorescence quencher. 
In particular, we hypothesize that non-specific competitive 
reactions of pathogenic microorganisms with ssDNA mol-
ecules and 2D-n build a chemical-responsive information 

identification method for the pathogenic microorganisms. 
The sensing element’s silhouette coefficient directly pre-
sents the degree of influence on the classification results of 
each sensing element, ensuring the approach’s identifica-
tion process is visible. The cross-responsive sensing array 
produces a unique response differential profiling for the 
pathogenic microorganisms. Combining the advantage of 
the machine learning algorithm, we can visibly discrimi-
nate each pathogenic microorganism by regulating the spe-
cies and quantity of sensing elements with 100% accuracy.

Experimental section

Materials

All oligonucleotide sequences were synthesized and puri-
fied by Sangon Biotech Co., Ltd. (Shanghai, China), and the 
specific sequence information is shown in Table S1. Gra-
phene oxide (GO) dispersion (sheet diameter 50 ~ 200 nm) 
and tungsten disulfide (WS2) dispersion (sheet diameter 
20 ~ 500 nm) were purchased by Nanjing XFNANO Mate-
rial Technology Co., Ltd. (Nanjing, China). All the strains 
were purchased from Shanghai Luwei Technology Co., Ltd. 
(Shanghai, China), and the specific names and numbers are 
shown in Table S2. Tryptone soy broth (TSB) medium was 
purchased from Beijing Solarbio Science & Technology 
Co., Ltd. (Beijing, China); yeast extract peptone dextrose 
(YPD) medium was purchased from Guangdong HuanKai 
Microbial Technology Co., Ltd. (Guangdong, China); and 
buffer PBS was purchased from Sangon Biotech Co., Ltd. 
(Shanghai, China). Unless otherwise stated, all the aqueous 
solutions were prepared using deionized water and purified 
using a Milli-Q water purification system (Millipore Corp., 
Bedford, MA) with a resistivity of 18.2 MΩ/cm. Artificial 
urine (pH 6.0) was purchased from Beijing Leagene Bio-
technology Co. Ltd. (Beijing, China). Substitution of human 
serum (TBDTM-HS0704) was purchased from Haoyang 
Biological Products Technology Co., LTD (Tianjin, China).

Instrumentation

Microorganisms were cultured in a constant temperature 
incubator shaker (IS-RDV1, Crystal Technology & Indus-
tries, Inc., Dallas, TX, USA) at 37 °C with a shaking speed 
of 80 rpm. Autoclave manufacturer is GI54DW (Zealway 
Instrument Inc., Xiamen, China). Sterile operation worked 
in a clean bench CJ-1S (Taisite Instrument, Tianjin, China). 
A microplate reader (BioTek Synergy 4) was used for record-
ing fluorescence spectrum and intensity by λex = 488 nm and 
λem = 520 nm. Zeta potential and dynamic light scattering 
(DLS) were recorded using Malvern Zetasizer Nano ZS90.
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Methods

Microorganism culture

Tryptone soy broth powder of 30 g was dissolved in 1 L deion-
ized water. Yeast extract peptone dextrose of 49 g was dis-
solved in 1 L deionized water, stirring, heating, or else boiling 
until it is completely dissolved; then, it is divided into trian-
gular bottles and autoclaved at 121 °C for 20 min and stored 
at 4 °C, maintaining sterility [24, 25]. Methicillin-resistant 
Staphylococcus aureus, S. aureus, Enterococcus faecalism, 
Escherichia coli, β-lactam-resistant E. coli, Klebsiella pneu-
monia, and Pseudomonas aeruginosa were cultured in a TSB 
medium at 37 °C and Candida albicans in a YPD medium at 
28 °C. ATCC ID was listed in Table S2. Microorganism sus-
pensions were measured by a microplate reader and stopped 
culturing by centrifuged (7500 rpm, 5 min), when they pro-
liferated up to OD600 = 0.6, which is approximately equal to 
1 × 108 CFU·mL−1. Then, liquid was removed and sediment 
was resuspended (i.e. microorganism) in equal volume by 
1 × PBS [24, 26].

Preparation of sensing array

To construct the sensor array, DNA elements (sequences were 
listed in Table S1) and two-dimensional nanomaterial (GO and 
WS2) are diluted by phosphate-buffered saline (PBS), serum, 
and urine, respectively. The final concentrations of DNA ele-
ments and 2D-n are 10 nM and 40 μg/mL. After 12 h of incu-
bation in a temperature room, 50 µL DNA elements and 2D-n 
solutions are transferred to the black 96-well plate (Sangon, 
China). One milliliter of the incubated DNA elements and 
2D-n was transferred in a zeta potential sample cell for poten-
tial measurement [27].

Fluorescence experiment

Eight microorganisms were diluted (10 times successively) 
into 102–108 CFU/mL, respectively. After 12 h of incubation 
in PBS, serum, and urine, 50 μL of DNA elements and 2D-n 
solutions are transferred to the black 96-well plate. At the exci-
tation light of 488 nm at 25 °C, the fluorescence intensity at 
520 nm was recorded with a microplate reader. Then, 50 μL 
of microorganism solutions of different densities was added to 
each well and incubated for a period of time. The fluorescence 
intensity at 520 nm was measured again, and the fluorescence 
difference between the two measurements was used as the 
fluorescence response [27].

Statistical analysis

The fluorescence difference between the two measurements 
is used as the fluorescence response. Calculate (ΔI = I − I0), 
where I is the fluorescence intensity after adding microor-
ganism, and I0 is the fluorescence intensity before adding 
microorganism, then normalized it by the maximum I value 
of all the datasets (abovementioned initial data are shown in 
Figure S1). Linear discriminant analysis (LDA) processes 
the fluorescence intensity data matrices to distinguish them 
in R (version 3.5.2). The data graphs were drawn using Ori-
gin 2020 and GraphPad Prism 8 [28].

The fitting curve of bacterial concentration and its LDA 
score as well as the Stern–Volmer plot and quenching effi-
ciency plot of FAM-T20, FAM-A20, and FAM-C20 at dif-
ferent GO concentrations is analyzed using GraphPad Prism 
8 (GraphPad, https://​www.​graph​pad.​com/​guides/​prism/8/​
user-​guide/).

Apparent recovery experiment

The array sensing was mixed with different concentrations 
of microorganism in serum and urine. LDA classification of 
different concentrations of microorganism was determined. 
According to the LD1 of LDA, the concentrations of micro-
organism in different body fluids were calculated by fitting 
the curve of Figure S6. The average of LD1 can be denoted 
as “Detected”, “Add amount,” and “Detected” which are 
listed in Tables S7–S8 [29, 30].

Results and discussion

The recognition principle of the molecular response differ-
ential profiling based on the custom cross-response sensing 
array.

In this work, we establish a series of custom sensing 
elements for featured extraction modulation. The sens-
ing array’s sensing elements are composed of anionic 
FAM-labeled ssDNA and two types of 2D-n fluorescence 
quenchers, as shown in Scheme 1. The anionic FAM-
labeled ssDNA binds strongly with 2D-n, resulting in fluo-
rescence quenching due to electron transfer [27, 31–33]. 
Upon incubation with microorganisms, microorganisms 
compete with FAM-labeled ssDNA for nanoscale 2D-n 
binding due to the sugars, phosphates, and lipids in the 
outer membrane of microorganisms, which can form 
hydrogen bonds with 2D-n [34–36]. As such, the FAM-
labeled ssDNA is displaced from the 2D-n surface, leading 
to the recovery of the fluorescent signal (Scheme 1a). The 
detected fluorescent signal intensity strongly correlates 
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to the affinity between the 2D-n and microorganisms 
based on the species and quantity of sensing elements 
and surface physicochemical features of the microorgan-
isms, resulting in the generation of a unique fluorescence 
response differential profiling to profile microorganisms 
(Scheme 1b).

In this work, two different 2D-n, graphene-oxide (GO) 
and tungsten disulfide (WS2) fluorescence quenchers 
[27, 33, 37], with FAM-labeled ssDNA (three different 
sequences, FAM-A20, FAM-C20, and FAM-T20) as the 
sensing elements’ model are chosen for perceptual differ-
ences of microorganism. To precisely visualize the fluores-
cence response differential profiling to profile microorgan-
isms, a data-driven machine learning approach is applied. 
Taking the advantage of DNA molecules’ moldability 
and 2D-n’s diversity as a feature extraction layer of target 
microorganism, the precision visualization with machine 
learning can be achieved with very low data input. The 
diverse sensing array generates specific multiple paral-
lel parameters, which fully connects machine learning 
algorithms. These machine learning algorithms convert 
the fluorescence response levels into low-dimensional 
characteristic vectors through weight matrices of sensing 
elements. Then, the low-dimensional characteristic vectors 
can be used in the evaluation of microorganism phenotyp-
ing indicators (Scheme 1b) [38].

The feasibility research of sensing elements 
to convert the target pathogenic microorganisms 
into chemical‑response identifying information

We systematically study the competitive reaction mecha-
nism of microorganisms and sensing elements. Firstly, we 
characterize the GO and WS2 using DLS and zeta potential. 
The result shows that nanoscale GO and WS2 have quite 
uniform diameters and elevated zeta potential, as shown in 
Fig. 1a and b. Then, we further study the quenching pro-
cess of 2D-n to FAM-DNA and the Stern–Volmer plot of 
the quenching ability of WS2 to FAM-DNA (A20/T20/
C20), as shown in Figure S1. The result shows that each 
Stern–Volmer plot is not linear, and the curve tends to the 
Y-axis when WS2 concentration is high. In brief, the slope 
of the curve increases as WS2 concentration increases; this 
result indicates that the quenching system of WS2 and FAM-
DNA exists in both static quenching and dynamic quench-
ing. This result is consistent with the previous research [39]. 
This complex quenching type can be analyzed by the fol-
lowing formula:

F
0
∕F =

(

1 + KD[Q]
)(

1 + KS[Q]
)

F
0
∕F = 1 + Kapp[Q]

Scheme 1   The recognition principle of molecular response differen-
tial profiling based on the custom cross-response sensing array. (a) 
The sensing array consisting of different FAM-labeled ssDNA (A20, 
T20, and C20) complexes and two different 2D nanomaterials (GO 

and WS2) fluorescence quenchers and the key steps for recognition of 
microbial taxonomic. (b) The chart flow of recognition of microbial 
taxonomic by the sensing array and machine learning. Wi and Wij are 
the weight factors
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where, F0 and F are the fluorescence intensity before 
and after quenching agent is added; Kapp is the apparent 

Kapp =
[

F
0
∕F − 1

]

∕[Q] =
(

KD + KS

)

+ KDKS[Q]
quenching constant; KD and KS are the dynamic and static 
quenching constants; and [Q] is the concentration of the 
quench agent. Kapp or (F0/F − 1)/[Q] and [Q] generate a line 
with an intercept of KD + KS and a slope of KDKS [40].

Fig. 1   Sensing elements’ feasibility to convert the target pathogenic 
microorganisms into chemical-response identifying information. 
DLS (a) and zeta potential (b) characterization of GO and WS2. (c) 
Schematic representation of competitive reaction between sensing 
element and microorganisms. (d) The fluorescence signal of free 
FAM-A20 (10 nM, black curve), hybridization with WS2 conjugates 
(40 μg/mL, green curve), or in the presence of MRSA (6 × 108 CFU/

mL, red curve). (e) Fluorescence titration measurement of differ-
ent concentrations of FAM-A20 (2  nM, 3  nM, 4  nM, 5  nM, 6  nM, 
7 nM, 8 nM, 9 nM, 10 nM, 20 nM, and 30 nM, respectively) with a 
constant concentration of WS2 (40 μg/mL) in the presence of MRSA 
(6 × 10.8 CFU/mL). (f) Fluorescence recovery of A20-WS2 by time in 
the presence of MRSA
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Furthermore, fluorescence quenching efficiency of FAM-
T20, FAM-A20, and FAM-C20 with different concentrations 
of WS2 is shown in Figure S2. The results showed that the 
fluorescence intensity of FAM-DNA decreased significantly 
with the increase of WS2 concentration, and the quenching 
efficiency of WS2 for the three FAM-DNA is close to 100% 
when WS2 concentration > 30 mg/mL. The results indicate 
that WS2 has a good quenching effect on FAM-DNA.

Then, we develop a WS2-loaded FAM-A20 sensing ele-
ment and carry out the feasibility assay to confirm our sens-
ing element’s capability of chemical-response on pathogenic 
microorganisms, as shown in Fig. 1c. The fluorescence of 
FAM-A20 is almost completely quenched in the presence 
of WS2 due to the strong affinity of FAM-A20 to WS2, with 
quenching efficiency up to 99%, as shown in the black and 
green curves in Fig. 1d. When adding MRSA, the FAM-A20 
exfoliates from the surface of WS2. Thus, the fluorescence 
is partially recovered, as shown in Fig. 1d, represented by 
the red curve. Furthermore, we quantitatively analyze the 
competitive reaction of MRSA and FAM-A20 to the WS2 in 
the presence of MRSA. We determine the critical concentra-
tion for quenching the fluorescent signal by adding different 
concentrations of FAM-A20 to a constant concentration of 
WS2 in the presence of MRSA through a titration approach, 
as shown in Fig. 1e. By taking FAM-A20 concentration that 
induces half-maximal fluorescent intensity change [41], we 
can calculate the apparent dissociation constant of 4.43 nM 
for the FAM-A20 in the competitive interaction between 
MRSA and WS2. Moreover, the competitive reaction can 
complete under 40 min as non-fluorescent intensity varia-
tion, as shown in Fig. 1f. Our sensing elements’ feasibility 
is converted from the target pathogenic microorganism bind-
ing into readable chemical-responsive information through 
the above quantitative analysis of the competitive reaction 
process.

Specific response differential profiling analysis 
for microorganisms

A series of sensing elements act as custom feature extraction 
modules for microbial profiling. The sensing array is carried 
out in a 96-well microplate, and the sequence of the sensing 
array platform is shown in Fig. 2a. On each plate, a set of 
the fluorescence intensities of the initial (I0(a.u.)) and final 
(I(a.u.)) response are measured with a microplate reader in 
the absence and presence of microorganisms, respectively 
(Figure S3). We can obtain a set of the fluorescent incre-
mental of each microbial fluorescence response through the 
equation of ΔI = I − I0. In this work, eight different micro-
organisms, including E. coli, β-lactam-resistant E. coli (E. 
coli-β), S. aureus, methicillin-resistant S. aureus (MRSA), 
P. aeruginosa, E. faecalis, K. pneumoniae, and C. albicans 
are selected as model pathogenic microorganisms. After 

the addition of these bacteria into the 96-well plates with 
preloaded 2D-n and FAM-labeled ssDNA, apparent changes 
in fluorescence are detected with different intensities.

Each pathogenic microorganism shows a different fluo-
rescence response level to each of the six sensing elements 
(A20-NGO, T20-NGO, C20-NGO, A20-WS2, T20-WS2, and 
C20-WS2), as shown in Fig. 2b. The pathogenic microorgan-
ism’s response profile is derived from the different com-
petitive capacities of varying sensing elements to various 
microorganisms. This result demonstrates the capability of 
the sensing array in turning target bacteria into the unique 
fluorescence responsive differential profiling.

The response sensibility of the single sensing element to 
identify microorganisms is estimated using silhouette coeffi-
cient [42, 43], which represents the similarity between clus-
ters. The silhouette coefficient ranges from − 1 to + 1, where 
a high value indicates that the point is well matched to its 
cluster [42]. Figure 2c shows that each sensing element as a 
single-channel feature extraction layer can obtain a fluores-
cence response value for the target pathogenic microorgan-
ism. The fluorescence response value is as input information 
used for the pre-training of machine learning algorithms. 
The silhouette coefficients of T20-GO, C20-GO, A20-GO, 
T20-WS2, C20-WS2, and A20-WS2 are measured to be 
0.636, 0.579, 0.569, 0.591, 0.688, and 0.569, respectively. 
The result indicates that our sensing array’s sensing element 
has good response sensitivity to identify target microorgan-
isms and gives rise to the high silhouette coefficient. What 
is more, the sensing element’s silhouette coefficient visu-
alization shows each of the sensing element’s degrees of 
influence on the identification results, which ensures the vis-
ibility of the machine learning approach–basic identification 
process.

Identification performance analysis of the molecular 
response differential profiling based on the custom 
cross‑response sensing array

We also systematically investigate the effects of the custom 
sensing array on identification accuracy. Linear discrimi-
nant analysis (LDA) [28] is used to statistically characterize 
the fluorescent incremental (ΔI). The specific adjustment 
programs of sensing elements, as shown in in Fig. 3 and 
Figure S4, the ellipsoids in Fig. 3 represent the confidence 
interval at 95%. First, we utilize two types of sensing ele-
ments (T20-WS2 and A20-WS2) fluorescence quenchers to 
recognize eight different microorganisms, and this finalizes 
the training matrix with 96 data points from 48 test cases 
(2 sensing elements × 8 microorganisms × 6 replicates), 
which produces linear discrimination factors of 95.44 and 
4.56, and the overall recognition accuracy is 83.3%. The 
result shows substantial overlap among different microbial 
strains, especially among E. coli, E. coli-β, E. faecalis, K. 
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Fig. 2   Specific response differential profiling analysis of the cross-
response sensing array to target microorganisms. (a) The fluores-
cence fingerprints of different bacteria, as measured by sensing array. 
(b) Fluorescence response levels of six sensing elements (A20-GO, 

T20-GO, C20-GO, A20-WS2, T20-WS2, and C20-WS2) for different 
bacteria. (c) The response sensitivity of single sensing element by sil-
houette coefficient
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pneumoniae, and MRSA by two sensing elements (T20-WS2 
and A20-WS2), as shown in the first row of Fig. 3, There is a 
partial overlap among E. coli-β, E. faecalis, K. pneumoniae, 
and MRSA for three sensing elements (T20-WS2, A20-WS2, 
and C20-WS2). This finalized the training matrix with 144 
data points from 48 test cases (3 sensing elements × 8 micro-
organisms × 6 replicates), which produces linear discrimina-
tion factors of 76.73 and 22.06, and the overall recognition 
accuracy is 83.3%, as in the second row of Fig. 3. Here, 
overlaps are detected among E. coli, E. faecalis, MRSA 
for four sensing elements (A20-GO, T20-WS2, A20-WS2, 
and C20-WS2), and this finalized the training matrix with 
192 data points from 48 test cases (4 sensing elements × 8 
microorganisms × 6 replicates), which produces linear 
discrimination factors of 70.17 and 26.77, and the overall 
recognition accuracy is 87.5%, as shown in the third row 
of Fig. 3. Furthermore, overlap among E. coli, P. aerugi-
nosa, K. pneumoniae, and MRSA are detected for the five 
sensing elements (T20-GO, A20-GO, T20-WS2, A20-WS2, 
and C20-WS2), and this finalized the training matrix with 
240 data points from 48 test cases (5 sensing elements × 8 
bacteria × 6 replicates) which produces linear discrimina-
tion factors of 67.01 and 29.73, and the overall recognition 
accuracy is 89.6%, as shown in the fourth row of Fig. 3. 
Finally, these eight microorganisms are well separated when 
combining all six sensing elements, as shown in the fifth row 
of Fig. 3, including the drug-resistant microorganisms. The 
finalized training matrix with 288 data points from 48 test 
cases (6 sensing elements × 8 microorganisms × 6 replicates) 
produces linear discrimination factors of 63 and 31.98, and 
the overall recognition accuracy is 97.9%.

Furthermore, we study the classification performance 
of sensing array quantitatively. In brief, three main clas-
sification performance indicators are evaluated, which are 
Precision (the proportion of real classes in the sample pre-
dicted to be positive), Recall (the proportion predicted to 
be positive classes in all positive classes), and F1 score 
(harmonic average of accuracy rate and recall rate). The 
specific values of each performance indicator are as shown 
in Table S5. According to these data, we found that the clas-
sification ability of sensing array increases with the increase 
of the number of sensing elements. These results show that 
identification performance can be programmed by simply 
regulating species and quantities of sensing elements. The 
result confirmed that the diversity of DNA molecules and 
two-dimensional materials breaks through the limitation of 
the number and type of array sensing elements and improves 

the classification performance. Hence, our study reveals that 
the diversified sensing elements ensure extract information 
differentiation and the recognition data volume of the target, 
which overcome the dependence on big data from parallel 
experiments.

Discrimination of multiple pathogenic 
microorganism in body fluids and determination 
of the Gram‑status of the pathogenic 
microorganisms

To demonstrate the sensitivity of our approach, we pre-
sent the discrimination capacity of multiple pathogenic 
microorganisms at 1 × 103  CFU/mL, 1 × 104  CFU/mL, 
1 × 105 CFU/mL, 1 × 106 CFU/mL, and 1 × 107 CFU/mL, 
respectively. The result shows that the approach can clearly 
distinguish different pathogenic microorganisms, as shown 
in Fig. 4a; the ellipsoids in Fig. 4a represent the confidence 
interval at 95%. The recognition accuracy achieves 81% at 
1 × 103 CFU/mL of pathogenic microorganisms, as shown in 
Fig. 4b. Thus, our cross-response sensing array is extremely 
sensitive. Moreover, we individually probe their detection 
range for each microorganism. We find that LD2 (the sec-
ond linear discrimination factor) is not exceeding 40%, 
and LD1 (the first linear discriminant factor) can be sim-
ply used to quantify the concentrations of microorganisms 
[30], as shown in Figures S5 and S6. For each microorgan-
ism, the detection concentration is 105 ~ 108 CFU/mL for 
E. coli, 102 ~ 107 CFU/mL for E. coli-β, 103 ~ 108 CFU/mL 
for S. aureus, 103 ~ 107 CFU/mL for MRSA, 102 ~ 108 CFU/
mL for P. aeruginosa, 103 ~ 108 CFU/mL for E. faecalis, 
102 ~ 108 CFU/mL for K. pneumoniae, and 103 ~ 108 CFU/
mL for C. albicans. Several methods have been devel-
oped to detect multiple microorganism, including Colori-
metric (UV–vis) [44, 45], SERS [46, 47], Electrochemi-
cal [48–51], and Fluorescence spectroscopy [52, 53]. The 
detection throughput and range of this method are sig-
nificant advantages to reported methods for simultaneous 
detection (Table S3). What is more, the detection range of 
this method meets the standard requirements of bacterium 
for antimicrobial susceptibility test (AST), which is around 
1.5 × 108 CFU/mL based on World Health Organization 
(WHO) standard [54]. This sensing array is further chal-
lenged by various media that are critical to their practical 
application. As a proof of concept, we tested the microbes 
in the serum and urine. We can obtain a set of the fluores-
cent incremental of each microbial fluorescence response 
through the equation of ΔI = I − I0 for each body fluid, as 
shown in Figures S8 and S9. This sensing array showed 
excellent performance in the different body fluids, such as 
serum and urine, as shown in Fig. 4c and Tables S4 to S6; 
the ellipsoids in Fig. 4c represent the confidence interval at 
95%. As shown in Tables S7 to S8, the apparent recovery 

Fig. 3   The machine learning approach’s recognition accuracy is criti-
cally dependent upon input heterogeneity. (Sensing array) The input 
heterogeneity from the custom sensing array. The LDA plot (Classifi-
cation) and the accuracy (Recognition accuracy) of the custom sens-
ing array’s discriminant analysis
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of microorganism in the different solutions for each sample 
is over the range of 90.47–115.56%. These results suggest 
that our sensing array has the potential to be applied to body 
fluid samples.

A critical challenge in pathogenic microorganisms’ ther-
apy is the accurate determination of pathogenic bacteria’s 
Gram-status, which determines initial medication regimens 
[43, 55]. Therefore, we divide eight different pathogenic 
microorganisms into three groups, which are Gram-neg-
ative bacteria, Gram-positive bacteria, and fungus, to test 
our cross-response sensing array in this application. The 
different types of Gram-status of pathogenic microorgan-
isms also show differential fluorescence responsive differ-
ential profiling (fluorescent incremental ΔI normalized), 
as shown in Figures S7a to c. E. coli, E. coli-β, P. aerugi-
nosa, and K. pneumoniae are Gram-negative bacteria. S. 
aureus, MRSA, and E. faecalis are Gram-positive bacteria. 
C. albicans are fungus. The molecular response differen-
tial profiling approach’s performance is shown in Fig. 4d to 
f. This finalized training matrix with 384 data points from 
64 test cases (6 sensing elements × 8 microorganisms × 8 
replicates) produces linear discrimination factors of 63.92 
and 36.08, and the overall recognition accuracy is 92% in 
LDA (Fig. 4d and f); the ellipsoids in Fig. 4d represent the 
confidence interval at 95%. The multi-class identification 
performance of the LDA for the three Gram-status is shown 
in Fig. 4e. The machine learning approach based on a cross-
response sensing array identifies Gram-status with high 
specificity. Furthermore, different machine learning algo-
rithms’ performances are compared (Fig. 4f): LDA, medium 
KNN, coarse Gaussian SVM, and boosted trees. The result 
shows that the LDA algorithm outperforms the other algo-
rithms in the accuracy with a substantial degree.

The advantage of array-based sensors over traditional 
single-component sensors is that they can spontaneously 
distinguish a variety of targets, allowing to break the tra-
ditional limitation of “lock and key” principle and making 
it possible to simultaneously detect multi-targets. Although 
sensing array offers a huge opportunity for the development 
of bacterial detection sensors, the current fingerprint pat-
tern–recognition sensing approach still needs to be further 

improved to fully meet the requirements of practical applica-
tions. First, small changes in molecular receptors or interfer-
ing species can lead to huge deviations in the final output. To 
solve this problem, more efforts should be put on develop-
ing more effective and selective receptors, which will hope-
fully reduce interference and improve specificity. Second, 
delving into the contribution of each component in a multi-
component sensor array optimizes the performance of the 
component of the sensing array. The number of components 
is directly related to the effort, time-consuming process, and 
accuracy of identifying the results. Third, the current biosen-
sor array can only identify bacteria in existing databases and 
is not suitable for unknown and untested microorganisms. 
The refinement and expansion of the database and the devel-
opment of intermediate laws for the prediction of bacterial 
species are needed. In addition, a lot of effort is required 
to realize real-world applications of array sensing. Cur-
rent research mainly relies on pure bacteria rather than the 
original sample for bacterial identification, which might be 
caused by the low microbial concentration and large interfer-
ence of the original sample. Although many bacterial sen-
sors have been proven in laboratory studies, it is still far from 
practical application due to their time-consuming procedures 
and instrument-based readouts. Future research should focus 
on refinements to simplify procedures and readouts, ena-
bling timeliness, low cost, and convenient visualization of 
biosensor arrays.

Conclusion

In summary, we have developed a molecular response dif-
ferential profiling based on a custom cross-response sensing 
array for rapid and accurate pathogenic microbial taxonomic 
identification. The custom cross-response sensing array’s 
sensing elements consist of different fluorescence-labeled 
ssDNA molecular and different two-dimensional nanoma-
terial (2D-n) fluorescence quenchers. In this work, we con-
firm that the molecular response differential profiling for 
different microorganisms is derived from the competitive 
response capacity of varying sensing elements in the sens-
ing array to various pathogenic microorganisms, including 
drug resistance microorganisms, which proves the ability 
of our approach to directly recognize and phenotype patho-
genic microorganism. This molecular response differential 
profiling based on a custom sensing array has several inher-
ent advantages. First, the sensing array is diverse and cus-
tomizable, ensuring extract information differentiation and 
overcoming dependence on big data. Second, the sensing 
element’s silhouette coefficient visualization shows each 
sensing element to the degree of influence on the classifica-
tion results, ensuring the approach’s identification process is 
visible. Third, the approach shows good practicability, such 

Fig. 4   Discrimination of multiple pathogenic microorganisms in body 
fluids and determination of the Gram-status of the pathogenic micro-
organisms using the custom cross-response sensing array. (a) Differ-
ent concentrations of pathogenic microorganism were detected, such 
as 1 × 103 CFU/mL, 1 × 104 CFU/mL, 1 × 105 CFU/mL, 1 × 106 CFU/
mL, 1 × 107  CFU/mL, respectively. (b) The relationship between 
microorganism concentration and overall accuracy. (c) Simultaneous 
discrimination for multiple pathogenic microorganisms in the differ-
ent body fluids. The test body fluids contain serum and urine. The 
concentration of pathogenic microorganism was 1 × 106  CFU/mL. 
Measure the classification performance (d) and the accuracy (e) using 
the linear discriminant analysis. (f) The performance of the proposed 
method is compared to different machine learning algorithms
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as accurately determining the phenotyping and Gram-state 
of pathogenic bacteria. Overall, the cross-response sensing 
array converts the target analyte into the unique molecular 
response differential profiling, as a new way of develop-
ing biomedical sensing arrays. Therefore, this study pro-
vides a highly generic idea and tool for precision medicine 
application.
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