
Machine Learning Approaches toward Orbital-free Density
Functional Theory: Simultaneous Training on the Kinetic Energy
Density Functional and Its Functional Derivative
Ralf Meyer, Manuel Weichselbaum, and Andreas W. Hauser*

Cite This: J. Chem. Theory Comput. 2020, 16, 5685−5694 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Orbital-free approaches might offer a way to boost the
applicability of density functional theory by orders of magnitude in
system size. An important ingredient for this endeavor is the kinetic
energy density functional. Snyder et al. [Phys. Rev. Lett. 2012, 108,
253002] presented a machine learning approximation for this
functional achieving chemical accuracy on a one-dimensional model
system. However, a poor performance with respect to the functional
derivative, a crucial element in iterative energy minimization
procedures, enforced the application of a computationally expensive
projection method. In this work we circumvent this issue by including
the functional derivative into the training of various machine learning
models. Besides kernel ridge regression, the original method of choice,
we also test the performance of convolutional neural network techniques borrowed from the field of image recognition.

1. INTRODUCTION

Over past decades density functional theory (DFT) has evolved
into a powerful standard tool of computational chemistry.1,2

Although originally intended as an orbital-free ansatz, where all
contributions to the electronic energy of a system are
represented by functionals of the electron density, the
reintroduction of orbitals within the Kohn−Sham framework
is a de facto standard of most modern programs.3,4 The crucial
term which triggered this development is the expression of the
kinetic energy for a system of interacting fermions, which is
much better covered within the picture of occupied molecular
orbitals, i.e., eigenfunctions of an effective one-electron operator
in a mean-field approximation. In modern functionals, the small
deviations from the true kinetic energy are compensated by
approximative functional expressions for the exchange and
correlation interactions of an N-electron system. Although the
local density approximation (LDA) of Kohn and Sham4 is
uniquely defined by the properties of the uniform gas, the
strategy for further refinements is not clear at all.
Among the most successful current approaches for kinetic

energy density functionals (KEDFs) is the class of nonlocal
functionals, which are built from three parts:

[ ] = + +T n T T TTF vW NL (1)

with TTF = CTF∫ n5/3 dr as the Thomas−Fermi functional,5−7

∫= ∇ |T n n r/ dvW 1
8

2 as the semilocal von Weizsac̈ker func-

tional,8 and TNL as an additional nonlocal term. A widely used
ansatz for the nonlocal part is of the form

∫ ∫ ω= [ ] ′ ′ ′α βT C n n nr r r r r r( ) ( , ) ( ) d dNL
(2)

with ω denoting a dimensionless kernel, typically assumed to be
a function of |r − r′|, and the exponents α and β as parameters.
This form encompasses state-of-the-art nonlocal functionals
such as the Wang−Teter,9 Smargiassi−Madden,10 Perrot,11

Wang−Govind−Carter,12,13 Huang−Carter14 and Mi−Geno-
va−Pavanello15 functionals. With varying degrees of success,
these functionals have been applied to metallic and semi-
conducting bulk systems containing up to 1 million atoms,16−19

to metallic clusters,20−22 and to molecular systems.23,24

Following ref 25, the idea of using machine learning (ML)
methods to approximate density functionals has been
investigated by several groups recently. The original ML
model for the KEDF has been shown to successfully describe
bond breaking26 and was extended to include basis set
independence27 as well as scale-invariance conditions.28 The
same ML model has also been employed for direct fits of F[n],
the universal part of the total energy density functional.29 A very
interesting MLmodel was investigated by Yao and Parkhill, who
used a 1D convolutional neural network to fit the kinetic energy
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as a function of the density projected onto bond directions.30

Machine learning approximations, in particular neural networks,
have also been suggested for semilocal KEDFs.31−33 However,
all of these ML-based KEDFs were deemed to be inadequate for
an application in iterative calculations of the minimum energy
density, mostly due to large errors on the predicted functional
derivative. As a consequence, the focus has shifted toward a
direct prediction of the minimum energy density from the
nuclear potential, thereby bypassing the need for iterative
calculations.34−39

One of the earliest machine learning models for density
functionals was presented by Tozer et al. for the exchange−
correlation (XC) functional.40 In addition to explorations of the
XC functional,41−44 machine learning approximations have also
been applied to other technicalities of DFT.45−48

In this article, we follow up on the first tests by Snyder et al.25

and investigate if the original idea of learning the kinetic energy
functional for a usage in iterative calculations can be “salvaged”
by a simultaneous training of the machine learning model on
both the kinetic energy functional and its functional derivative.
In addition to the application of kernel ridge regression, we
evaluate the performance of convolutional neural networks, one
of the most successful and widely used ML architectures to date.
Our approach is motivated by the fact that the underlying
mathematical expression is very similar to the nonlocal
contribution given by eq 2 (if the kernel ω is assumed to be a
function of |r − r′|) and shows translational invariance, which
might enable a better generalization, especially for large systems.

2. METHODS
2.1. Data Generation. A one-dimensional model system of

noninteracting spinless Fermions is used to train and test theML
KEDFs. It consists of N particles in a hard wall box within the
interval 0 ≤ x ≤ 1 and an external potential built from a linear
combination of three Gaussians:25
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with parameters a, b, and c randomly sampled from uniform
distributions in the intervals [1, 10], [0.4, 0.6], and [0.03, 0.1],
respectively. The 1D Schrödinger equation for these potentials
is solved on a grid ofG = 500 points using Numerov’s method,49

yielding a set of eigenfunctions ψj
k(x) and corresponding

eigenvalues Ej
k for each potential Vj(x), ordered from lowest to

highest energy with increasing index k. These solutions are then
used to calculate all components of the training data for an N-
particle system, namely the density
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the kinetic energy density, here defined as
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the kinetic energy

∫ τ=T x x( ) dj j
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(6)

and the kinetic energy functional derivative
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(7)

with μ = ∑ E N/j k
N

j
k denoting the total energy per particle. The

discretized version of these functions, written as vectors for
clarity nj(x)→ nj, τj(x)→ τj, and δT[nj]/δnj(x)→∇njTj/Δx, are
used to train the MLmodels. The error in the eigenenergies due
to discretization is estimated to be below 10−3 kcal/mol by
comparing the solutions to calculations on a 10 times finer grid.
However, in the context of the ML models all of the computed
quantities are considered exact. TheM = 100 parameter triplets
for a, b, and c as listed in the Supporting Information of ref 25 are
used as training data in order to recreate the original study as
closely as possible. On the basis of eq 3, we generate 1000
additional random potentials as a test set.

2.2. Kernel Ridge Regression.We start with a brief review
of the kernel ridge regression (KRR) approach as introduced in
ref 25. This ansatz is then extended by the inclusion of the
functional derivative into the training in order to improve its
capabilities. Details on the derivation of the equations used in
the following can be found in section 2 of the Supporting
Information. An elaborate discussion of KRRmodel training can
be found in ref 50.
In KRR the simple regularized linear fit of ridge regression is

extended toward nonlinear data through the introduction of a
kernel function:

∑ α=T kn n n( ) ( , )
j

M

j j
ML

(8)

with αj as the fit coefficients, the kernel function k(ni, nj), which
can be interpreted as a measure of similarity between two
densities, and with {n1, ..., nM} as the M training examples. The
coefficients αj are determined by minimizing the cost function

∑ ∑λ α α= − +T T kn n n( ) ( , )
j

M

j j
i j

M

i i j j
ML 2

, (9)

where the second term is a regularization function scaled by the
parameter λ and Tj are the kinetic energies corresponding to the
training densities nj. Setting the derivative with respect to the αj
equal to zero yields a matrix equation for the fit coefficients:
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The matrix K contains the values of the kernel function for the
M training examples, so Kij = k(ni, nj) and IM is a unit matrix of
size M.
Snyder et al.25 have shown already that the discretized

functional derivative can easily be calculated from eq 8, yielding

∑
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In our study, we expand on this idea by including the
functional derivatives of the training examples into the model
using additional fit coefficients βj. The kinetic energy of the
extended model is then given by
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Derivation with respect to the input density gives the new
formula for the functional derivative:
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Note that each of the newly introduced coefficients βj is a
vector of size G. Therefore, the number of parameters grows
from M to M(1 + G). The cost function is extended by the
squared error of the functional derivative and an additional
regularization term for the new weights βj:
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with ∇njTj/Δx denoting the reference value for the discretized
functional derivative corresponding to the training density nj.
Minimizing this extended cost function with respect to the
coefficients yields
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with an extended regularization matrix
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where IM and IMG are unit matrices of size M and MG,
respectively, and an extended kernel matrix
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whereK is a (M×M)matrix with elementsKij= k(ni, nj); J and J′
are matrices of size (MG ×M) and (M ×MG), respectively, and
contain the gradient vectors of k(ni, nj) with respect to the input
densities
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Finally, H is a (MG × MG) blocked matrix consisting of the
Hessian matrices of k(ni, nj) given by
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Following ref 25, we use the squared exponential kernel for all
of the presented KRR models:
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where the hyperparameter σ denotes the length scale on which
the training densities vary.

2.3. Convolutional Neural Networks. Convolutional
neural networks51,52 (CNNs) are on the forefront of the
ongoing deep learning revolution53,54 and achieve unprece-
dented accuracy in their main field of application: image
recognition.55 CNNs represent a subclass of standard feed-
forward neural networks, designed for the specific purpose of an
efficient inclusion of spatial information in pixel-based image
processing. Despite their origin in visual pattern recognition,
CNNs have been applied successfully to numerous other tasks,
including also the approximation of density functionals.30,43,45

A single convolutional layer typically consists of several filters
or steps of input processing. A pass through a single
convolutional filter in one dimension is given by
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where the index “(g)” refers to the gth element of a vector
(parentheses are used to distinguish grid point indices from
training example indices), f is an activation function, b is a bias
parameter, w is a vector of weight parameters for the filter
(commonly referred to as “kernel”), and σw is the filter width.
Equation 19 is only valid for indices (g) where the input and the
convolutional kernel w fully overlap (referred to as “valid
padding”). The resulting output vector z is therefore smaller
than the input. Alternatively, the input vector can be padded
with zeros to ensure that the output is of the same size as the
input, a technique referred to as “same padding”.
In the course of this article we investigate the performance of

both a standard CNN and a residual neural network (ResNet),56

with the latter referring to a network featuring a more
sophisticated architecture: In addition to conventional convolu-
tional layers, ResNets use so-called skip connections through
which the feed-forward signal can bypass several layers and is
directly added to the output of a later layer. Connections of this
type are known to improve the training process, in particular if
training data is limited, as they are forming a less complicated,
“coarse” network within the actual network structure.
Both investigated models use 32 filters per convolutional layer

with a filter width of σw = 100 and employing the softplus
activation function.57,58 The standard CNN consists of five
convolutional layers using valid padding. This results in an
flattened output vector containing 160 entries, which is then
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reduced to a single scalar, the kinetic energy prediction, using a
weighted sum, referred to as “linear dense layer” in community
parlance. The more complicated ResNet model consists of three
blocks of two convolutional layers. Each of these blocks is
bypassed by a skip connection. The three blocks are followed by
a final convolutional layer with a single filter. In order to allow for
skip connections, all convolutions employ same padding. This
architecture results in an output vector of the same size as the
input density, which is interpreted as kinetic energy density.
Finally, the kinetic energy (see eq 6) is calculated by integrating
over the output using the trapezoidal rule. The batch
normalization layers59 typically employed in ResNets worsen
the training performance in regression tasks and are therefore
not used. Schematics of both models are presented in Figure 1.
We use the keras60 and tensorflow61 python packages to
implement and train both types of neural networks.

The bias and weight parameters are determined by
minimizing a cost function similar to eq 14. Since the ResNet
model offers predictions of the kinetic energy densities τj, an
additional error term can be added to the cost function
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where the weighting coefficients are set to ιT = 0.2, ιτ = 0, κ = 1,
and λ = 2.5 × 10−4 for the standard CNN (since it does not
predict the kinetic energy density) and to ιT = 0, ιτ = 1, κ = 1, and
λ = 2.5 × 10−4 for the ResNet. The L2-regularization term is
applied to weight parameters exclusively and not to bias
parameters.

The network parameters are initialized randomly according to
the “Glorot uniform” tensorflow method62,63 and trained using
the Adam optimizer64 for 100 000 epochs. We use a two-stage
learning rate schedule, where the learning rate stays constant at
10−4 for the first 21 800 epochs and is lowered by 10% every
1000 epochs for the remaining training procedure, resulting in
an exponential decay. This greatly improves the overall
convergence, as the inclusion of derivative information leads
to large variations of the cost function during the training. A
more detailed discussion of the training procedure as well as its
convergence behavior is given in section 4 of the Supporting
Information.

3. RESULTS AND DISCUSSION
Each of the following investigations can be split into two
different parts with respect to their objectives. In the first part,
the model performance is tested by using the exact densities of
the test set as input to theMLmodels and evaluating the error of
both the kinetic energy and the functional derivative. In the
second part, the derivative prediction of the ML models is used
to iteratively find the minimum energy density for the potentials
of the test set. For these densities, the error of the kinetic energy
is reported together with the deviation from the exact minimum
energy density. This way, the impact and the magnitude of both
types of error contributions, one stemming from the model itself
and the other caused by wrong minimum energy density
predictions, should become clear and traceable for the reader.

3.1. Training on the Functional Derivative.As a first test,
we investigate if the inclusion of derivative information can
improve the fit quality of the machine learning models on the
data sets for N = 1. Table 1 summarizes the mean value, the

standard deviation, and the maximum value of both the absolute
error of the kinetic energy |ΔT| and the integral over the absolute
error of the functional derivative Δδ

δ
T
n
for all of the investigated

models.
As a reference, we reproduce the KRR results from ref 25 by

using the reported hyperparameters (σ = 43 and λ = 12× 10−14).
Slight deviations between our results and the previous work in
Table 1 can be attributed to the fact that we use a different
randomly generated test set. The hyperparameters for the
extended KRRmodel including derivative information (referred
to as “ext KRR” in Table 1) are determined using a rough grid
search and 5-fold cross-validation. The minimum of the sum of
the mean absolute validation errors for kinetic energy and
functional derivative is obtained for σ = 30.58 and λ = 10−12. The
influence of the weighting parameter κ, which is set to 1, as well
as a more detailed description of the hyperparameter search is
given in section 3 of the Supporting Information.

Figure 1. Schematic depiction of the NN architectures used for the
standard CNN (left) and the ResNet model (right). Note the
appearance of skip connections for the latter.

Table 1. Absolute Error Values on theN = 1 Test Set for All of
the Machine Learning Models (in kcal/mol)

|ΔT|
δ
δ

Δ T
n

model mean std max mean std max

KRR, ref 25 0.15 0.24 3.2 − − −
KRR, this work 0.163 0.29 4.6 29313.2 345.5 30610.9
ext KRR 0.004 0.02 0.6 3.4 4.3 50.7
CNN 0.044 0.10 2.3 31.5 25.0 370.1
ResNet 0.015 0.02 0.3 10.1 7.0 110.7
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Comparison of the two KRR models shows that the inclusion
of derivative information into the KRR approach not only
drastically reduces the error on the functional derivative, as
illustrated for a sample potential in Figure 2, but also improves

the accuracy of the kinetic energy prediction. Section 3 of the
Supporting Information shows that the cross-validation error of
the kinetic energy is actually lowest for the hyperparameter
values σ = 11.50 and λ = 10−14, whereas the lowest error on the
functional derivative is obtained for σ = 30.58 and λ = 10−12.
Both the simpler CNN and the more sophisticated ResNet

achieve lower mean absolute errors for both the kinetic energy
and its derivative than the standard KRR model. We attribute
the better performance of the extended KRRmethod to a lack of
smoothness exhibited by the neural network models as shown in
the bottom panel of Figure 2.
3.2. Finding Minimum Energy Densities Using

Principal Component Analysis. In the next step we address
the question of applicability with respect to a direct
minimization of kinetic energy density. As will be shown in
the following, an unconstrained search still remains impossible
despite the drastic improvements in the prediction accuracy of
the functional derivative.
The reason for this failure lies in the notoriously noisy nature

of machine learning approximations. Already emphasized in ref
25, this was discussed in greater detail in a follow-up
investigation on nonlinear gradient denoising.65 For reasons of
comparability, we use the same local principal component
analysis (PCA) approach as was introduced in the original
publication as an ad hoc remedy and investigate if the improved
accuracy of the models trained on the functional derivative
translates to lower errors on the iteratively found densities.
Additionally, we test if the PCA search space can be increased for
these models.
Starting from the average density of all training examples,

= ∑n n
M j j

(0) 1 , the minimum energy density is found by simple

gradient descent
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where the projection matrix Pm,l(n) is acting on the functional
derivative and constraining the search space, η is the step size,
and V is the discretized potential. We note that more
sophisticated optimization methods such as conjugate gradient
are known to significantly accelerate the convergence,66 but this
is not relevant for the intended comparison. For a given density
n the local PCA algorithm starts by calculating the difference
matrix XT = (nj1 − n, ..., njm − n) for the m closest training
densities and diagonalizing the covariance matrix C = XTX/m.
The projection matrix is then constructed from the eigenvectors
wk corresponding to the l largest magnitude eigenvalues

= ∑ ·=P n w w( )m l k
l

k k, 1
T. Figure 2 shows the effect of this

projection on the functional derivative prediction made by the
standard KRR model with parameters m = 30 and l = 5. For all
calculations presented in this article we keepm = 30, but we vary
the size of the search space via the parameter l. Section 7 of the
Supporting Information shows the effect of the projection on the
functional derivative prediction for different values of l. The
iterative minimization algorithm is considered converged once
the integral over the absolute projected functional derivative is
smaller than 10−6 hartree/particle. We use a step size of η = 10−3

and restrict the maximum number of iterations to 4000 cycles.
The results for all of the 1000 random potentials in the test set

are summarized in Table 2. Again, the inclusion of derivative

information reduces both errors significantly when compared to
those obtained with the simple KRR. The final error can be
attributed to two different sources. The first contribution stems
from the model error due to the ML approximation as has
already been discussed in section 3.1. A second contribution
arises due to the difference in the corresponding minimum
energy densities Δn, which is in turn caused by the model error
and the restriction of the search space in the PCA. This limited
flexibility in the search for l = 5 is likely the cause of the similar
error values achieved by all of the ML models using derivative
information. We therefore also investigated larger l values while
keepingm = 30. Runs using standard KRR fail for every value l >
5, not reaching convergence and predicting sharply peaked
densities instead. Similarly, the performance of the simple CNN
deteriorates quickly for l > 10. For the ResNet and extended
KRR models the errors reduce up to an l value of about 15, at
which point the iterative algorithm leaves the valid region of the
ML models. Note, however, that for l values in the range
between 10 and 15 the ML approximations including derivative

Figure 2. Comparison of exact functional derivative (solid lines) and
predictions by standard KRR with and without the PCA projection
detailed in section 3.2 (dashed lines) as well as prediction from the ML
models trained on derivative information (dashed−dotted lines). The
parameters for the shown potential are a = {4.43, 7.18, 9.03}, b =
{0.0532, 0.587, 0.568}, and c = {0.0754, 0.0406, 0.0554}.

Table 2. Absolute Kinetic Energy Errors ΔT for the
Iteratively Found Densities (in kcal/mol) as Well as the
Integrated Absolute Error of the Densities Δn for the N = 1
Test Set

|ΔT| |Δn| × 104

model l mean std max mean std max

KRR, ref 25 5 3.0 5.3 46 − − −
KRR, this work 5 2.85 7.00 87.34 45.0 54.0 503.9
ext KRR 5 0.46 1.05 15.35 14.9 11.5 85.0
ext KRR 10 0.04 0.22 5.95 0.8 0.7 10.7
ext KRR 15 0.04 0.22 5.97 0.3 0.5 10.8
CNN 5 0.57 1.40 21.69 15.2 12.0 95.5
CNN 10 0.29 0.77 13.26 5.5 8.5 171.0
ResNet 5 0.51 1.25 19.59 14.9 11.5 85.5
ResNet 10 0.09 0.21 5.72 1.0 0.9 14.7
ResNet 15 0.09 0.22 5.86 2.0 2.4 19.6
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information achieve errors an order of magnitude lower than
standard KRR.
Alternatively, KRR can also be used in iterative calculations

without the PCA by introducing a constant offset

∑ α̃ = +T b kn n n( ) ( , )
j

M

j j
ML

(22)

and using a small length scale hyperparameter σ in the kernel
function. This can be used to penalize densities far from the
training data and effectively acts similarly to PCA, while using all
of the training densities (m = M). This approach is inspired by
the use of Gaussian process regression for molecular geometry
optimization,67−69 where a similar idea ensures that the iterative
search does not stray too far from the training data. A more
detailed explanation as well as results for the densities provided
by this method can be found in section 6 the Supporting
Information. However, both the need for local PCA and the
alternative approach of small length scales and a constant offset
are indications that the ML density functionals do not properly
generalize and are only valid in close vicinity of the training
examples.
3.3. Toward a Real-World Use Case. While section 3.2

shows that models trained on the functional derivative allow for
significantly larger search spaces, the iterations will, given
enough flexibility, inevitably leave the region where the machine
learning approximations are valid. This typically leads to sharply
peaked or rapidly oscillating densities. A straightforward
solution for this problem is to use physically motivated penalty
terms for these unphysical densities such as the von Weizsac̈ker
kinetic energy functional8 and to train the machine learning
model on the difference between the exact kinetic energy and the
von Weizsac̈ker model:

∫= − = − ′
T T T T

n x
n x

x
( )

8 ( )
dML vW

2

(23)

The prediction of a previously unseen density is then given by
the sum of the machine learning and the von Weizsac̈ker model
functionals, TML + TvW, where the derivative term n′(x) = dn/dx
in the latter contribution is introducing an energy penalty for
rapid changes in the density, which effectively restricts the search
space to physically reasonable densities. Since the von
Weizsac̈ker model already yields the exact solution for the
case of a single spatial orbital (discussed in section 2), we test
this approach for two-particle densities instead. In our toy
model, this already corresponds to the occupation of two spatial
orbitals since there is no spin degree of freedom taken into
consideration.
At first, we again investigate the model performance for fixed

densities. The hyperparameters for both the standard and the
extended KRRmodels are readjusted using the same grid search
and 5-fold cross-validation as in section 3.1. This yields σ = 35.16
and λ = 10−12 for the standard KRR and σ = 26.59, λ = 10−12, and

κ = 1.0 for the extended KRR. More details on the
hyperparameter search are provided in section 3 of the
Supporting Information.
As can be seen in Table 3, all of the three investigated models

achieve significantly better performance on the two-particle
densities than on the single-particle densities. The analysis of the
training sets in section 1 of the Supporting Information suggests
that even though kinetic energies in the N = 2 data set are
showing a larger variance, most of it can be captured by a simple
linear model.We attribute this to the fact that the second particle
is less influenced by the relatively shallow potentials and the
more difficult to learn semilocal contribution is already covered
by the von Weizsac̈ker functional. Even though chemical
accuracy is achieved by all models on this less challenging data
set, extended KRR yields a mean absolute error for the kinetic
energy that is 2 orders of magnitude lower than that obtained
with either ResNet or standard KRR.
Regarding efficiency and feasibility, the local PCA introduces

a significant computational overhead and would most likely
prohibit a large scale application of ML density functionals to
realistic problems. We therefore opt for a more traditional
approach of using a basis of sine functions instead. This
introduces the necessity of ensuring both the positivity and the
proper normalization of the density throughout the iterative
algorithm. While the correct norm can simply be enforced by a
Lagrange multiplier, the positivity constraint is typically
included by iterating on the variable φ = n instead of the
density. The steepest descent update rule for this new variable is
given by

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
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(24)

where PK is a projection matrix and μ is the Lagrange multiplier
used to ensure the conservation of the number of particles N. A
detailed derivation of this result, a possible way of determining μ
as well as an explanation why this procedure is not necessary for
the local PCA, is provided in section 5 of the Supporting
Information. Thematrix used to project the functional derivative
onto the basis of sine functions is constructed via

∑=
Δ

·
=

P
x

w w
1

K
k

K

k k
1

T

(25)

with π= kw x2 sin( )k . Note that this matrix does not need to
be reconstructed in every iteration as it is no longer dependent
on the density at step j. The size of the search space is now
determined by the maximum wavenumber K. The starting value
for the variable φ is the square root of the initial density n(0)

projected onto the basis of sine functions φ = [ ]P nK
(0) (0) ,

where the starting density is again given by the average over the

training data = ∑n n
M j j

(0) 1 . Themaximumnumber of iterations

Table 3. Error Values of the Machine Learning Approximations on the N = 2 Test Set (in kcal/mol)

|ΔT|
δ
δ

Δ T
n

model mean std max mean std max

KRR 0.0355 0.0588 0.8752 2957.85 16.00 2990.36
ext KRR 0.0002 0.0008 0.0233 0.12 0.15 2.18
ResNet 0.0483 0.2837 6.8116 6.78 11.36 223.35

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00580
J. Chem. Theory Comput. 2020, 16, 5685−5694

5690

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00580/suppl_file/ct0c00580_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00580/suppl_file/ct0c00580_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00580/suppl_file/ct0c00580_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00580/suppl_file/ct0c00580_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00580/suppl_file/ct0c00580_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00580/suppl_file/ct0c00580_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00580?ref=pdf


is restricted to 4000 and calculations are considered converged
once the integral over the absolute projected functional
derivative drops below a threshold of −10 hartree/particle6 .
Note that this differs from the convergence criterion in section
3.2 because convergence is monitored using the functional
derivative with respect to the variable φ instead of the density.
The step size is reduced to η = 10−4 in order to avoid oscillations
in the convergence behavior.
Our results are summarized in Table 4. The large errors on the

functional derivative of the standard KRR model lead to poor
results for iteratively found densities. This is further emphasized
by the steadily increasing error when the search space grows
from K = 10 to K = 20 and K = 40. The iterative search is,
however, stable even for the larger K values due to the von
Weizsac̈ker penalty term. Extended KRR clearly yields the best
predictions for the minimum energy densities, while the ResNet
approach barely manages to achieve a mean absolute error for
the kinetic energy within chemical accuracy.
3.4. Larger Training Set. The previous sections are

somewhat biased due to the small number of training
examplesa regime where KRR excels. In a final test we
therefore investigate the performance of the neural network
based density functional for an increasing number of training
examples. A similar investigation for the extended KRRmodel is
not feasible since the training effort for the KRR model scales
with M( )3 and the memory requirements grow with M( )2 .
We note, however, that an alternative approach to reduce the
computational effort would be to use sparse kernel based
machine learning algorithms such as support vector regres-
sion70−72 or sparsified Gaussian process regression.73−75 These
methods could combine the high accuracy of kernel ridge
regression even for small training sets with the potential of
increasing the region where the model is valid by incorporating a
significantly wider range of training examples.
The hyperparameters of the ResNet model and the training

procedure have to be adjusted due to the increased number of
examples. Instead of evaluating the cost function involving all of
the training data (batch learning), a random subset or “batch” of
100 examples is used to calculate the gradient descent step and
to update the NN parameters (i.e., minibatch learning). The
models are trained for a total of 300 000 such iterations with a
learning rate of 10−4 during the first 40 000 steps, after which the
learning rate is reduced by 10% every 2000 steps. In addition, the
regularization factor λ is lowered as well (see section 4 of the
Supporting Information for details).
Table 5 shows that the larger amount of training examples

leads to a steady reduction in every error score. The most

significant improvement is observed for the standard deviation
and the maximum error, the metrics most closely related to the
generalization properties of the model.
We use a basis of K = 40 sine functions for the iterative

calculation of minimum energy densities. Instead of enforcing a
convergence threshold, the calculations stop after a fixed
number of 10 000 iterations for the sake of simplified
parallelization on GPUs. Typically, the final error values are
reached within the first 10% of the iterations. The large overhead
in terms of iterations is used to investigate the numerical stability
of the iterations on noisy ML predictions of the derivative.
The error scores on the iteratively found densities,

summarized in Table 6, are clearly improving with an increasing

number of training examples. The ResNet trained on 100 000
densities achieves a performance similar to the extended KRR
model trained on just 100 examples. While this may suggest that
KRR should be the obvious choice, one has to keep in mind that
the evaluation times for the ResNet model are independent of
the number of training examples, and that training examples are
typically available in abundance: In fact, every single step in a

Table 4. Absolute Kinetic Energy Error ΔT for the Iteratively Found Densities (in kcal/mol) as Well as the Integrated Absolute
Error of the Densities Δn on the N = 2 Test Set, Compared between the KRR variants and ResNet for Increased Search Spaces

|ΔT| |Δn| × 104

model K mean std max mean std max

KRR 10 8.431 1.138 16.686 109.0 23.0 222.8
KRR 20 21.365 0.826 22.456 133.9 18.4 194.9
KRR 40 23.882 0.846 25.003 139.8 18.4 200.5
ext KRR 10 0.523 0.827 7.353 24.8 16.0 102.1
ext KRR 20 0.074 0.069 0.789 0.5 0.6 2.9
ext KRR 40 0.076 0.069 0.789 0.1 0.1 1.1
ResNet 10 1.239 6.537 142.649 25.8 18.6 248.9
ResNet 20 0.877 6.634 146.324 2.9 11.8 253.3
ResNet 40 0.877 6.635 146.327 2.7 11.8 253.3

Table 5. Absolute Error Values for the Kinetic EnergyΔT and
Its Functional Derivative (in kcal/mol) on theN = 2 Test Set,
Achieved by the ResNet Model Trained on Sets of Varying
Size

|ΔT|
δ
δ

Δ T
n

M mean std max mean std max

100 0.049 0.284 6.814 6.78 11.36 223.36
1 000 0.012 0.063 1.922 3.12 2.81 66.31
10 000 0.007 0.018 0.528 2.79 1.92 45.19
100 000 0.007 0.009 0.138 2.39 1.36 19.40

Table 6. Absolute Kinetic Energy Error ΔT (in kcal/mol) as
Well as the Integrated Absolute Error Δn of the Iteratively
FoundDensities on theN = 2Test Set, Employing the ResNet
on Training Sets of Increasing Size

|ΔT| |Δn| × 104

M mean std max mean std max

100 0.856 6.591 145.58 2.7 11.8 253.0
1 000 0.151 1.196 32.65 0.7 1.9 50.5
10 000 0.062 0.228 6.48 0.6 0.6 13.7
100 000 0.047 0.070 0.89 0.6 0.5 5.5
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self-consistent Kohn−Sham DFT calculation could serve as
training input.

4. CONCLUSION

The predictive capabilities of kernel ridge regression and
convolutional neural networks, two well-established machine
learning techniques, have been tested on a one-dimensional
model system of noninteracting spinless fermions with respect
to the kinetic energy and its functional derivative. Extending the
work of Snyder et al.,25 we have investigated if the original idea of
learning the kinetic energy functional for usage in iterative
calculations of minimum energy densities can be “salvaged” by a
simultaneous training of machine learning models on both the
kinetic energy functional and its functional derivative. Besides
kernel ridge regression, the method of choice in the original
paper, we have evaluated the performance of convolutional
neural networks, one of the most successful and widely used
machine learning architectures to date.
In general, the inclusion of the functional derivative not only

improves the prediction accuracy for the functional derivative,
but also leads to better generalization toward out-of-training
data. This is underlined by the fact that iterative calculations of
the minimum energy density are significantly more stable and
lead to lower deviations in both the final kinetic energy and the
converged density. However, the usage of derivative information
in the kernel ridge regression technique increases the computa-
tional effort significantly and prohibits its application to larger
data sets. Neural networks, on the other hand, do not show these
limitations. Of the two flavors tested in this study, conventional
convolutional networks and the more advanced ResNets, the
latter variant achieves competitive results already on small
training sets and improves its performance steadily with
increasing data at minimal additional computational cost.
Very recently, it has already been shown for the exchange−

correlation functional that convolutional neural network based
density functionals can easily be extended toward three-
dimensional systems.43 Using similar techniques for the kinetic
energy functional might bring us closer to the ambitious
objective of a truly orbital-free density functional theory.
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