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Abstract: Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases
that cause characteristic spongiform degeneration in the central nervous system. The causative
agent, the so-called prion, is an unconventional infectious agent that propagates by converting the
host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties.
Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation.
While it is now established that, in addition to PrP, other cellular factors or processes determine
the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly
obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed
intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize
what we learned about the processes of prion invasion, intracellular replication and subsequent
dissemination from ex vivo cell models.
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1. Introduction

Transmissible spongiform encephalopathies or prion diseases are neurodegenerative
diseases that are characterized by the deposition of host-encoded prion proteins as highly
stable, beta-sheet rich polymeric aggregates in the central nervous system [1]. Prion
diseases affect humans and other mammals and can be of sporadic, genetic or infectious
origin. In animals, natural infection usually occurs through contact and/or ingestions of
contaminated biological materials [2]. In humans, prion diseases are mainly sporadic, with
some genetic cases. Both iatrogenic and zoonotic transmissions have been reported [1].
Prions form by aberrant folding of cellular prion protein PrP into highly ordered protein
aggregates with self-templating activities. Once formed, prions convert cellular PrP (PrPC)
into its aggregated isoform PrPSc, thereby indefinitely propagating PrP misfolding [3–5]. A
so-far unknown process results in fragmentation of formed PrPSc aggregates, leading to
the generation of smaller seeds that can be transmitted to other cells [6]. A peculiar feature
of prions is their existence as strains. When introduced into the same mammalian species,
prions can cause disease phenotypes that differ in incubation times, clinical presentation,
host organ and cell tropism and neuropathological characteristics such as PrPSc deposition
patterns and spongiform degeneration [7]. Once established in the new host, prion strains
are quite stable, causing specific clinical phenotypes and neuropathological changes upon
subsequent passage. As prions do not contain a nucleic acid genome, strain information
is likely enciphered within the three-dimensional fold of the PrPSc polymer [8]. Indeed,
biophysical and biochemical characterization of PrPSc molecules associated with different
prion strains argue that prion strain information is encrypted in conformational variants
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of PrP polymers [9]. Cell-free experiments further argue that cofactors both promote or
restrict formation of certain prion conformations that are associated with different disease
phenotypes [10–12].

Prions are cell-associated pathogens that transmit to neighboring cells by different
routes. These include the potential release of naked PrPSc molecules [13], transfer to
neighboring cells by direct cell contact [14,15] or secretion of PrPSc in association with
extracellular vesicles by infected cells [16]. However, how exactly is PrPSc taken up by
recipient cells and how do PrP-derived prion strains differ in their cellular propagation
and dissemination routes? Here we discuss what we know from cellular models on how
PrP-derived prions enter and replicate within their target cells.

2. Cell Biology of Cellular PrP

The cellular prion protein PrPC serves as a substrate for PrPSc formation and is essential
for prion propagation. It is anchored to the cell membrane by a glycosyl-phosphatidylinositol
moiety (GPI). PrPC is predominately expressed in the central nervous system and, to a
lesser extent, in the lymphoreticular system, the female genital tract, intestine, colon and
thyroid (reviewed in [17]). Several functions for PrPC have been proposed, including
neuronal activity and viability, cell adhesion, cell cycle and immune regulation (reviewed
in [18]). Interestingly, PrPC also plays a role in cancer development by regulating cancer
stem cell properties and chemoresistance [19]. Recent analyses suggest that PrPC functions
through interacting and mediating the posttranslational modification of NCAM1, thereby
controlling epithelial-to-mesenchymal transition and related plasticity programs [20].

Following synthesis and glycosylation in the endoplasmic reticulum and Golgi, mature
PrPC is present on the cell surface. PrPC is mainly found in rafts, membrane microdomains
enriched in phospholipids and cholesterol [21,22]. Some PrPC molecules undergo pro-
teolytic cleavage or membrane shedding (reviewed in [23]). PrPC is also secreted from
cells in association with extracellular vesicles, small membrane-bound delivery devices for
intercellular communication [24]. PrPC can be internalized from the cell surface by different
routes in different cell types [24–29]. Following internalization by clathrin-, caveolin- or
raft-mediated endocytosis, PrPC is transported through early endosomes and either recy-
cled back to the cell surface [27] or trafficked to late endosomes and subsequently to the
lysosome for clearance [30,31]. The route of PrPC uptake is at least partially determined by
the sorting receptor VSP10P sortilin, which directly interacts with PrPC, moves it out of
rafts and mediates its transport to the lysosome [30]. Another factor identified is muskelin
which directs PrPC towards the lysosome [32]. Following transport to the lysosome, PrPC is
degraded with a half-life of approximately 5 to 24 h. Differences in half-lives likely depend
on the amount of PrPC expressed by the cells [33,34].

3. Cellular Models for Prion Propagation

The cell biology of prion replication is only incompletely understood. In vivo, neu-
rons and astrocytes represent the major targets for prion replication, with certain cells
of the lymphoreticular system also acting as hosts [35]. In vitro, however, only few cell
lines of diverse origins are permissive to prion replication (Table 1) [16]. These include
brain-derived cell lines of neuronal, astroglial, microglial or Schwann cell origin, but also
fibroblasts, epithelial or muscle cells (reviewed in [36]). Not all cell lines of these origins
can be infected, so that prion susceptibility must be detected empirically (reviewed in [16]).
Once infection is established, prions persistently replicate in susceptible cell lines without
overt cytotoxic effects. It is unclear, what—other than PrP—controls prion infection in vitro.
The relative expression level of PrPC does not appear to be the limiting factor for successful
infection [37–39]. Susceptibility is both dependent on the cell line and prion strain, with
some cell lines capable of propagating one prion strain but being resistant to another one
(reviewed in [36]). Importantly, even in prion-permissive cell lines, the percentage of cells
that become persistently infected can substantially differ [38,40]. Infection rates can be so
low that PrPSc is undetectable by Western blot, despite prion infectivity being confirmed by
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mouse bioassay [40]. In these cases, selection of cell clones with increased susceptibility
helps to drastically increase attack rates [28,38,41].

Table 1. Cell lines susceptible to prions.

Species
Inoculum TSE Strain Prion Susceptible Cell Line Expressed PrP References

Sheep Scrapie

Natural Scrapie RK13, hTERT microglia,
MovS6/ MovS2 cells Ovine [42–44]

Primary neurons: cerebellar
granular, iPSC-

derived astrocytes
Ovine [45]

127S RK13, MovS6/ MovS2 cells Ovine [13,41]

PG127 Rov cells Ovine [46]

LA404 Rov cells Ovine [46]

Kanagawa Scrapie GT1 Murine [47]

Obihiro Scrapie MG20 Murine [48]

Elk/Deer
Cervid chronic
wasting disease

(CWD)

Mule Deer CWD
(MD-CWD)

CAD5 Cervid [49]
MEF bank Vole/cervid [49]
MDB Mule Deer [50]

White-Tailed Deer
CWD (WT-CWD)

CAD5 Cervid
[49]MEF Bank Vole/cervid

Elk CWD RK13 Elk [51]

Cattle

Bovine
spongiform en-
cephalopathy

(BSE)

BSE MG20 Murine [48]

Human
Creutzfeldt–

Jakob disease
(CJD)

Sporadic CJD
Primary neurons: cerebellar

granular, iPSC-
derived astrocytes

Human [52,53]

Variant CJD
Primary neurons: cerebellar

granular, iPSC-
derived astrocytes

Human [52,53]

Iatrogenic (iCJD) Primary neurons:
cerebellar granular Human [52]

Mouse-
adapted

Scrapie

Ch./RML
N2a (and subclones), SMB, GT1,

CAD5, SN56, 1C11, MG20,
C8D1A, MSC-80, L929, RK13

Murine [38,42,48,54–
62]

Primary neurons:
cortical, hippocampal Murine [56,63,64]

79 A N2a PK1 subclone, SMB,
CAD5, L929 Murine [39,40,48,65]

139 A

N2a (and subclone), SMB, GT1,
CAD5, CRBL, L929 Murine [39,40,48,65,

66]
PC12 Rat [67]

Primary neurons: cortical,
striatal Murine [68]

Primary neurons: cerebellar
granular, astrocytes Murine/ovine [41,69]
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Table 1. Cont.

Species
Inoculum TSE Strain Prion Susceptible Cell Line Expressed PrP References

22L

N2a (and subclones), GT1,
CAD5, SN56, 1C11, HpL3-4,

CF10, C8D1A, L929,
NIH/3T3, RK13

Murine [39,40,57,62,
70–73]

Primary neurons: cerebellar
granular, cortical,

striatal, hippocampal
Murine [56,63,74]

ME 7

N2a subclones, CAD5, SN56,
MG20, L929 Murine [39,48,61,75]

Primary neurons:
cerebellar granular Murine [76]

PC12 Rat [67]

22F SMB Mouse [54]

BSE 301 C CAD5 Murine [55]

CJD
M1000 RK13 Murine [60,77]

SY GT1 Murine [78]
FU N2a, GT1 Murine [79]

GSS Fukuoka 1 (Fu-1) GT1, 1C11, RK13 Murine [57,72]
Primary neurons: cerebellar

granular Murine [68,76]

Bank
vole-adapted BSE Bank vole-adapted

BSE RK13 Bank vole [60]

Hamster-
adapted

Transm. mink
encephalopa-

thy
(TME)

Hyper (HY) CAD5 Hamster [80]

Scrapie 263K CAD5 Hamster [80]
139H CAD5 Hamster [80]

Abbreviations: CAD5—mouse catecholaminergic neurons; CF10—mouse neuronal cells; CRBL—mouse cerebel-
lum cells; C8D1A—mouse astrocytic cells; GT-1—mouse hypothalamic neurons; HpL3-4—mouse hippocampal
cells; hTERT—immortalized ovine microglia; L929—mouse fibroblasts; MDB—mule deer meningeal fibroblasts;
MEF mouse embryonic fibroblasts; MG20 mouse microglia cells; MovS6/MovS2 mouse Schwann cells; MSC-
80 mouse Schwann cells; N2a—mouse neuroblastoma cells; PC12—rat pheochromocytoma; NIH/3T3 mouse
fibroblasts; Rov—rabbit kidney epithelial cells expressing ovine PrP; RK13—rabbit kidney epithelial; SMB—mouse
brain cells, SN56—mouse septal neurons; 1C11—mouse embryonal carcinoma cells (neuronal stem cells).

Surprisingly, even isogenic clones derived from the same cell line can be highly suscep-
tible to some prion strains, but refractory to others derived from the same host [39,46,47].
This characteristic of cell clones has been successfully used to discriminate prion strains
in vitro [55]. One reason for the differences in prion susceptibility is the genomic instability
of cell lines, resulting in clonal cell populations with slightly differing genetic make-ups [74].
Cell clones have also helped to uncover some factors governing susceptibility to prion
infection [74,81–83]. For example, analysis of N2a cell clones uncovered that a network
of genes involved in extracellular matrix homeostasis, including genes for sulfation of
glycosaminoglycans, was related to increased susceptibility to certain prions [82]. Genes
associated with cell proliferation, protein degradation and heparin binding were detected
to influence permissiveness of immortalized sheep microglia to ovine prions [81].

The cell biology of prion replication has been mainly studied in permanent cell lines
with few prion strains that can efficiently propagate in vitro. First demonstration of PrPSc

formation upon prion infection was achieved in mouse neuroblastoma cell line N2a exposed
to RML/Chandler prions [62]. Subsequently, infections were also performed with 22L,
as this strain resulted in high infection rates and could be propagated reliably in cell
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culture [38,39]. More recently, neuronal and astroglial cultures from wildtype or transgenic
mice have also been successfully used for infection studies [41,68,84,85]. Because of the
lack of species-specific cell culture systems, researchers focused on ectopic expression of
species-specific PrPC in heterologous cell cultures. The rabbit kidney epithelial cell line
RK13 proved to be an outstanding cellular model for propagation of several prion strains
from diverse species [60]. RK13 cells exhibit only limited to no expression of endogenous
PrP. Engineered to overexpress murine [60], sheep [46], elk [70] or bank vole PrP [13], these
cells became permissive to infection with prion strains propagated in the respective species.
Surprisingly, however, infection of RK13 cells overexpressing human PrP with human-
derived prions proved ineffective [86]. Similar heterologous systems were established
to propagate bovine spongiform encephalopathy prions [87]. What we learn from these
heterologous cell models is: (1) that cellular factors required for prion propagation are not
necessarily species specific and (2) that also in heterologous systems strain-specific factors
control establishment of persistent infections.

4. The Infection Process—The Uptake of Prions

Infection of cells with prions is mostly performed with crude brain homogenate, as this
proved to be more efficient than purified PrPSc [88]. One possible reason for the inefficient
infection with purified PrPSc fibrils is that these tend to stick to the cellular membrane for a
long time, thereby delaying uptake [56,89,90]. Indeed, one bottleneck for efficient infection
appears to be protein aggregate size, as sonication used to break up amyloid fibrils derived
from different proteins promotes cellular uptake [71]. Further, mixing of brain homogenate
with cationic lipids increases subsequent infection of permanent and primary cells, likely
due to better uptake of infectious inoculum due to positive charge [91,92].

So far, no exclusive receptor has been identified that is required for prion uptake.
Several lines of evidence suggest that glycosaminoglycans (GAGs) such as heparan sulfates
present on the cell surface and in the endocytic system are required for prion propaga-
tion (Figure 1) [93]. However, chemical inhibition of GAG biosynthesis has divergent
effects on prion uptake, possibly due to different prion strains used for infection or dif-
ferences in the purification grade of the inoculum [94]. Other potential receptors include
the 37 kDa/67 kDa laminin receptor (LRP/LR) [95] and low-density lipoprotein receptor-
related protein 1 (Lrp1) [90]. Uptake is not sufficient for infection and also cells lacking
PrPC efficiently internalize external PrPSc [56,89,90,96]. Genetic and chemical manipulation
of endocytosis pathways demonstrated that prions are preferentially taken up by clathrin-
and caveolin-independent routes or are able to bypass these routes when blocked [28].
Impairment of one internalization pathway can increase alternative pathways, such as
macropinocytosis, that allow efficient PrPSc internalization [28]. Once internalized, some pu-
rified PrPSc enters the endocytic-recycling pathway that transports cargo and receptors back
to the cell surface, but the majority is trafficked to the endo-lysosomal pathway [97]. Studies
with purified PrPSc as inoculum suggest that re-direction of the inoculum and/or newly
generated PrPSc to the endocytic-recycling pathway is important for efficient accumulation
of newly formed PrPSc [97]. Impairment of the route of initial internalization influences
the outcome of persistent infections in a strain-dependent manner [28]. In L929 mouse
fibroblast cells, impairment of clathrin-mediated endocytosis results in decreased infec-
tion with mouse-adapted prion strain RML, while it benefits productive infection with
strain 22L. While the reason for the different fates of prions is unknown, such manipula-
tions may shunt invading prions to different endo-lysosomal compartments that may or
may not contain factors or conditions that affect PrPSc formation or clearance in a strain-
dependent manner.
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Figure 1. Prion infection mechanisms. Dissemination of PrPSc relies on different routes. PrPSc can
be transmitted from a donor (brown) to a recipient (blue) cell. Most studies on prion uptake and
infection have been performed with purified PrPSc or with crude brain homogenate containing
prions. If PrPSc is “freely” released into the extracellular space is unknown. (a) Receptors for
exogenously added PrPSc include heparan sulfate proteoglycans (HSPGs), Lrp1 or the 37 kDa/67 kDa
laminin receptor (LRP/LR). (b) “Free” PrPSc can be internalized by different endocytosis routes or
macropinocytosis. (c) In cellular systems, PrPSc can be released from donor cells via microvesicles
shedding from the cell surface or in association with smaller extracellular vesicles (EVs) derived from
multivesicular bodies (MVBs) that fuse with the cell membrane. EVs can be taken up by recipient cells
by different pathways. Few EV ligands that mediate binding to target cells have been identified. Viral
ligands present on PrPSc-containing EV can bind to recipient cells and facilitate subsequent infection.
(d) PrPSc can also transmit to recipient cells within endosomal vesicles through tunneling nanotubes
(TNTs). (e) Within target cells, the majority of internalized PrPSc is directed to the lysosome for
degradation. (f) Newly formed PrPSc can be found on the cell surface, within the endocytic recycling
pathway and the endo-lysosomal pathway. Productive infection requires PrPC expression but is
determined by additional cellular factors and the prion strain. Created with BioRender.

5. Detection of Productive Infections

Acute PrPSc formation following prion exposure can be a fast process, with de novo
PrPSc formation being detectable within minutes to hours [46,81,82]. Still, initial PrPSc

formation can also occur with prion strains incapable of establishing persistent infections,
arguing that processes or factors downstream of cellular uptake regulate productive PrPSc

formation [98]. Persistent infection requires that PrPSc formation exceeds clearance and
cell division, two processes that reduce the net amount of PrPSc [34,99]. Mitotically active
cells are thus ideally suited to monitor ongoing PrPSc formation rather than aggregate
persistence [100]. However, cell division potentially also prevents propagation of certain
prion strains in cellula [53]. This might be especially true for human prions, which so
far only propagate in slow proliferating stem-cell derived astrocytes [53] or mixed as-
troglial cultures derived from transgenic mice [91]. It is possible that kinetics of human
prion formation in vitro is slower than cell doubling, so that persistent infection cannot
be established.

A problem with determining the time point of established prion infection is that
exposures are usually performed with excess PrPSc-containing inoculum (usually 1% w/v
brain homogenate). Consequently, in mitotically active prion cell models, productive prion
infection is monitored several cell passages post infection to dilute remaining inoculum.
Weak PrPSc signals by Western blot are usually apparent at early passage and increase
in subsequent passages [46]. The expression of antibody-epitope tagged PrPC helped
to discriminate inoculum from newly formed PrPSc and demonstrated the formation of
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PrPSc in two different cell lines within 2–3 passages post exposure to 22L prions [38,101].
Further, a combination of fluorescently labelled PrPSc for infection and antibodies that
primarily bind to PrPSc rather than PrPC demonstrated increased accumulation of total
PrPSc 72 h post exposure [97]. Thus, productive prion infections in permanent cell lines can
be monitored approximately within 6–9 days post infection.

Detection of productive prion infection in primary cells requires extensive rinsing
of cells, as inoculum cannot be diluted by cell splitting. A gradual increase in PrPSc

signal following prion exposure is indicative of successful infection. Primary neurons and
astrocytes exposed to 22L prions showed increased PrPSc levels 14-21 days p.i. [96,102]. Similar
results were obtained with primary cerebellar granule neurons (CGN) from transgenic
mice expressing human PrPC exposed to different human Creutzfeldt–Jakob disease (CJD)
strains [52]. De novo production of PrPSc was first observed in stem-cell derived human
astrocytes as soon as 3–8 days post exposure to vCJD or sCJD brain homogenate [53].
In another study, however, mixed glial cultures from transgenic mice expressing human
PrPC were exposed to human vCJD or sCJD prions, newly-formed PrPSc was first detected
approximately 120 days post infection [91]. Thus, cell system and/or prion strain strongly
influence kinetics of the establishment of prion infections.

6. The Site of PrPSc Formation in Persistently Infected Cells

The exact cellular location of PrP conversion is still ill-defined and might differ de-
pending on the cell type or the prion strain. It can also change from acute to persistent
infection [28]. Early experiments with persistently infected cells demonstrated that PrPSc is
derived from PrPC that is first present on the cell surface [103,104]. PrPSc’s self-templating
property in mammalian cells is related to its membrane tether [105]. Anchorless PrPC is
unable to maintain prion propagation in cell culture [106]. Exchange of the GPI-anchor for
other membrane tethers prevents conversion of PrPC to its pathologic isoform [106,107].
In persistently infected cells, PrPSc formation occurs either directly on the cell surface or
along the endocytic pathway following internalization. Interestingly, worm-like structures
of PrPSc are detectable on the cell surface of infected cells [108]. PrPSc has also been found
in basically all compartments of the endo-lysosomal system (for a review, see [109]). Recy-
cling endosomes and/or the multivesicular bodies have been proposed as major sites of
conversion [110–112]. Eventually, in cellular models, PrPSc is trafficked to the lysosomes
for clearance [104,113]. In N2a cells, PrPSc has a half-life of less than 2 days [34]. Infection
experiments with mixed cultures of cerebellar granule cells and astrocytes confirmed the
presence of PrPSc in the endosomal recycling compartment and lysosomes [96].

For multiplication of prions, growing prion aggregates must somehow be fragmented
to produce seeds that can be transmitted to daughter cells or bystanders. PrP’s unique loca-
tion on the cell surface and within endo-lysosomal compartments could enable interaction
with cellular factors mediating efficient fragmentation and thereby replication of protein
aggregates [6,105]. While such factors have so far not been identified in mammalian cells, it
is important to note that the disaggregase Hsp104, which turns protein aggregates in lower
eukaryotes into self-templating entities, lacks a homologue in mammalian cells [114]. Any
potential fragmentation process must thus be accomplished by other cellular processes.

7. Intercellular Dissemination of Prions

Prion strains exhibit selected brain region- and cell-tropism, with some strains pref-
erentially targeting neurons, while others also accumulate in astrocytes [115]. The exact
mechanisms of prion spreading in vivo remain elusive and most of our understanding of
such processes stems from observations made with cellular models. Interestingly, prion
maintenance in cell culture is mainly due to segregation of prions to both daughter cells
during cell division [99]. PrPSc signal intensities on Western blots and percentages of
infected cells can increase over multiple cell divisions, demonstrating that prions also
horizontally transmit to naïve bystander cells [101].
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PrPSc can be directly transmitted to acceptor cell membranes in close proximity to the
infected cell [14]. The association with the cell membrane facilitates spreading of PrPSc

from cell to cell by tunneling nanotubes, thin, transient actin-rich tubes connecting cells
for transfer of organelles and endocytic vesicles (Figure 2) [116]. Experiments with 22L-
infected primary astrocytes demonstrated that efficient intercellular transfer of PrPSc to
recipient CAD cells was predominately due to close cell contact, suggesting that tunneling
nanotubes or other cellular contacts facilitate prion transfer [96]. Direct evidence for this
intercellular transfer came from co-culture experiments with a cell line persistently propa-
gating mouse-adapted prion strain 139A [15]. PrPSc molecules could theoretically traverse
intercellular bridges such as tunneling nanotubes to uninfected cells by propagating along
the surface of the tubular conduits [108]. However, PrPSc also colocalizes with endocytic
compartments in tunneling nanotubes, suggesting that prions hijack these vesicles for
intercellular transmission [117].

Figure 2. L929 cells infected with 22L secrete PrPSc and prion infectivity in association with EVs.
(a) EVs isolated from conditioned medium of L929 cells persistently infected with scrapie strain 22L
(L92922L) were added to L929 cells. Recipient cells were passaged at least four times before PrPSc

formation was monitored by Western blot. (b) Western blot detection of PrPSc in donor cells (L92922L)
or PrPSc in EVs derived from donor cells or PrPSc in recipient cells after continuous culture. PrPSc

present in proteinase K-treated lysates was detected using anti-PrP antibody 4H1. PrPSc runs as
unglycosylated, monoglycosylated and diglycosylated bands.

Secretion of PrPSc and/or prion infectivity into the cell culture supernatant has been
reported for several (Table 2) but not all cell models [96]. The first demonstration that this
infectivity is associated with extracellular vesicles (EVs) came from experiments with two
different transgenic cell lines replicating sheep prions [118]. EVs are nano-sized vesicles that
are secreted by virtually all cell types. EVs serve as communication devices that transfer
different RNA types, lipids and proteins to distant acceptor cells [43]. EVs associated
with prion infectivity exhibited the size and density of exosomes, vesicles derived by
invagination of endosomal structures termed multivesicular bodies [118]. At least in RK13
cells, 90% of prion infectivity in conditioned medium could be recovered by 100,000× g
ultracentrifugation, which sediments small EVs with densities corresponding to exosomes,
but infectivity was also present in fractions containing larger vesicles and even in the
non-pelletable fraction [13]. Prion infectivity is also associated with the 100,000× g fraction
of conditioned medium from 22L-infected L929 cells (Figure 2). PrPSc was also found
associated with large EVs in another study, suggesting they were expelled from the cell
surface [44]. Chemical and genetic manipulation of EV biogenesis in prion-infected cells
also affects secretion of infectivity and subsequent infection of target cells [75,119,120].
Interestingly, in RK13 cells overexpressing ovine, mouse or vole PrP and infected with
different prion strains, infectivity levels in EV fractions differed markedly [13]. Such
differences in prion release could be due to general expression levels of PrPC, cell clone
differences or, more intriguingly, to differences in the sorting of prion strains through the
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endosomal pathway. As EVs preferentially bind to and exert their biological function
in specific target cells [65,121], it is quite possible that also the target cell tropism of
EVs influences intercellular prion spreading. Further experiments with susceptible cells
expressing wildtype levels of PrPC and infected with prions from the same species as well
as different recipient cell lines will help to clarify these issues.

Table 2. Cell lines secreting prion infectivity.

Cell Line Origin Prion Strain EV Isolation
Method

PrPSc

Association
with EV

EM
Confirmation

EV

Recipient
Cell

Detection of
PrPSc p.i. Reference

GT1
Mouse

hypothalamic
neurons

RML

Not isolated,
conditioned

medium
used

n.d. No N2a
GT1 6–8 weeks [57]

GT1-7
Mouse

hypothalamic
neurons

M1000
Differential
centrifuga-

tion
WB No

RK13
expressing
murine PrP

6 passages [122]

M1000
Differential
centrifuga-

tion
WB Yes

GT1-7; RK13
expressing
murine PrP

One month [77]

NIH/3T3
Mouse

fibroblast+/−
infectionMuLV

22L
Differential
centrifuga-

tion
WB Yes NIH/3T3

16 passages
Infection

only when
donors were

MuLV
infected

[22]

RK13:
Rov

Rabbit kidney
epithelial cells

ectopically
expressing
ovine PrP

Sheep
scrapie
PG127

Differential
centrifuga-

tion
WB Yes Rov Several

weeks [118]

Sheep
scrapie
PG127

Differential
centrifuga-

tion
WB No Rov 4 weeks [13]

RK13:
moRK13

Rabbit kidney
epithelial cells

ectopically
expressing
murine PrP

22L
Differential
centrifuga-

tion
WB No moRK13 4 weeks [13]

M1000
Differential
centrifuga-

tion
WB Yes

GT1-7; RK13
expressing
murine PrP

One month [77]

N2a

Mouse
neuroblastoma

expressing VSV-G
22L

Differential
centrifuga-

tion
n.d. No L929

CAD 7–8 passages [72]

Mouse
neuroblastoma
overexpressing

murine PrP

22L
Differential
centrifuga-

tion
WB Yes N2a 3 weeks [75]

Mov

Immortalized
Schwann cell-like

cells from
transgenic mouse
expressing ovine

PrP

Sheep
scrapie
PG127

Differential
centrifuga-

tion
WB Yes Mov Several

weeks [118]

Hpl3-4
moPrP-

3F4

Mouse
hippocampus-

derived,
ectopically
expressing

epitope-tagged
mouse PrP

22L

Not isolated,
conditioned

medium
used

n.d. No Hpl3-4
moPrP-3F4

14–28
passages [101]

L929 Mouse
fibroblasts 22L

Differential
centrifuga-

tion
WB No L929 Several

weeks This study

Abbreviations: n.d.—not done; WB—Western blot; p.i.—post infection.
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Once released from their donor cells, EVs transmit cargo following interactions with
specific receptors on their target cells. EVs can either directly fuse with the cell membrane,
or they are taken up by endo- or macropinocytosis (reviewed in [73]). While EV cell tropism
has been reported, only few receptor-ligand interactions mediating cell targeting have been
identified. For example, uptake of some EVs is linked to integrin internalization [123].
Importantly, GAGs such as heparan sulfate proteoglycans, essential for prion propagation
in cell culture [93,94], also mediate uptake of EVs [124]. The roles of proposed prion
receptors Lrp1 or the 37 kDa/67 kDa laminin receptor (LRP/LR) for prion loaded-EVs are
unknown. As PrPSc is exposed on the surface of the EV, the association of the prion-loaded
EVs with cell-surface or endosomal PrPC does not require escape from the endo-lysosomal
system for initiation of PrPSc formation. Exact cellular mechanisms of prion infection
following EV uptake remain, however, unexplored.

8. Role of Viruses in Intercellular Prion Spreading

Growing evidence suggests that viruses or viral proteins have an impact on
prion propagation.

A seminal study in mouse fibroblast cells demonstrated that secretion of prion infec-
tivity was strongly enhanced when prion-infected fibroblast cultures were concomitantly
infected with murine leukemia virus MuLV [22]. PrPSc and PrPC both co-localized with
retroviral proteins Env and Gag at the cell membrane and were secreted in association with
both retroviral particles and EVs. Viral infection strongly increased the release of PrPSc

and infectivity. The strong increase in PrPSc secretion was attributed to the expression
of the viral precursor protein Gag known to drive viral particle formation and enhance
EV release. An increase in prion maintenance following retroviral Gag expression was
also observed in an RK13 cell model propagating chronic wasting disease prions [51]. A
possible explanation for the effect of retroviral Gag on prion secretion is that Gag proteins
associated with prion-containing EVs promote their secretion, thereby increasing horizontal
prion dissemination. However, downregulation of Gag expression in N2a cells did not
affect the release of prion infectivity, arguing that prions were secreted independent of
Gag [75]. We recently demonstrated that also viral glycoproteins can drastically increase
intercellular transmission of prions and other protein aggregates [72]. Viral glycoproteins
such as VSV-G of vesicular stomatitis virus or the spike S protein of SARS CoV-2 mediate
receptor-specific target cell binding and subsequent merging of cell membranes or EVs
with the cell surface or endosomes of recipient cells. Both VSV-G or spike S associated
with the cell surface and EVs and enhanced protein aggregate transfer to recipient cells.
Interestingly, viral glycoprotein VSV-G, but not spike S, also increased release of EVs. When
prion-infected N2a cells were transfected with VSV-G plasmid, EVs from their conditioned
medium strongly increased infection of L929 and CAD recipient cells. This was also the case
when EVs from mock- or VSV-G-transfected donors were adjusted for comparable particle
numbers. These results demonstrate that both elevated EV numbers and increased EV
binding/fusion with the target cell membranes contribute to intercellular prion spreading.

That viruses might play a role in prion dissemination is also supported by findings
in vivo. Small retroviruses have been implicated as cofactors that enhance the spread of
scrapie by milk to suckling lambs through simultaneous infection of mammary glands with
scrapie prions [63]. However, attempts to demonstrate the effect of MuLV retrovirus on
prion propagation in mice failed, likely because target cells for virus and prions differ [64,66].
Surprisingly, a recent in vitro study demonstrated a very different mechanism of how viral
infections could affect prion biogenesis. In a small percentage of surviving N2a cells infected
with influenza virus, spontaneous PrPSc formation was observed that was maintained upon
continuous cell passage [125]. Mice injected with cell lysates succumbed to disease and
exhibited full-blown prion pathogenesis. These experiments indicate that viral infections
could in fact even trigger initial events leading to spontaneous formation of infectious
prions. An important question to answer here is if spontaneous formation of prions is also
observed within human cells expressing human PrPC.
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9. Conclusions

Concerted efforts in the last couple of years have provided us with long-awaited
cellular models for propagation of bovine and human prions. However, despite important
progress made in prion cell models, many unresolved questions remain, for example: we
still do not understand which exact factors determine cellular prion permissiveness and
why there are strain-specific differences in susceptibility even when the prion strains come
from the same host. What is the exact intracellular site of PrPSc formation? Additionally,
what is the link between viral infection, prion biogenesis and dissemination? Results from
cell culture models are exciting, as they demonstrate the strong effect of viral proteins on
prion spreading.
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