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Acute neuroinflammation induces AIS
structural plasticity in a NOX2-dependent
manner
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Abstract

Background: Chronic microglia-mediated inflammation and oxidative stress are well-characterized underlying
factors in neurodegenerative disease, whereby reactive inflammatory microglia enhance ROS production and
impact neuronal integrity. Recently, it has been shown that during chronic inflammation, neuronal integrity is
compromised through targeted disruption of the axon initial segment (AIS), the axonal domain critical for action
potential initiation. AIS disruption was associated with contact by reactive inflammatory microglia which wrap
around the AIS, increasing association with disease progression. While it is clear that chronic microglial
inflammation and enhanced ROS production impact neuronal integrity, little is known about how acute microglial
inflammation influences AIS stability. Here, we demonstrate that acute neuroinflammation induces AIS structural
plasticity in a ROS-mediated and calpain-dependent manner.

Methods: C57BL/6J and NOX2−/− mice were given a single injection of lipopolysaccharide (LPS; 5 mg/kg) or vehicle
(0.9% saline, 10 mL/kg) and analyzed at 6 h–2 weeks post-injection. Anti-inflammatory Didox (250 mg/kg) or vehicle
(0.9% saline, 10 mL/kg) was administered beginning 24 h post-LPS injection and continued for 5 days; animals were
analyzed 1 week post-injection. Microglial inflammation was assessed using immunohistochemistry (IHC) and RT-qPCR,
and AIS integrity was quantitatively analyzed using ankyrinG immunolabeling. Data were statistically compared by
one-way or two-way ANOVA where mean differences were significant as assessed using Tukey’s post hoc analysis.

Results: LPS-induced neuroinflammation, characterized by enhanced microglial inflammation and increased expression
of ROS-producing enzymes, altered AIS protein clustering. Importantly, inflammation-induced AIS changes were
reversed following resolution of microglial inflammation. Modulation of the inflammatory response using anti-
inflammatory Didox, even after significant AIS disruption occurred, increased the rate of AIS recovery. qPCR and IHC
analysis revealed that expression of microglial NOX2, a ROS-producing enzyme, was significantly increased correlating
with AIS disruption. Furthermore, ablation of NOX2 prevented inflammation-induced AIS plasticity, suggesting that ROS
drive AIS structural plasticity.

Conclusions: In the presence of acute microglial inflammation, the AIS undergoes an adaptive change that is capable
of spontaneous recovery. Moreover, recovery can be therapeutically accelerated. Together, these findings underscore
the dynamic capabilities of this domain in the presence of a pathological insult and provide evidence that the AIS is a
viable therapeutic target.
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Background
The axon initial segment (AIS) is a highly specialized
axonal domain responsible for action potential initi-
ation and modulation [1]. The AIS is characterized by
a unique assembly of cytoskeletal and scaffold proteins
[2] and densely packed voltage-gated ion channels,
which are recruited to and clustered at the AIS via the
scaffolding protein ankyrinG (ankG) [3]. ankG is con-
sidered the “master organizer” of the AIS and is essen-
tial for AIS function [4, 5]. Accumulating evidence
suggests that the AIS is a dynamic domain capable of
structural plasticity, undergoing changes in length [6],
location [2, 7, 8], and ion channel clustering [9, 10] in
response to neuronal pathology and altered activity.
AIS plasticity is characterized by the relocation of

cytoskeletal-associated proteins such as ankG, βIV
spectrin, neurofascin, and voltage-gated sodium (NaV)
channels [2, 7, 11–13]. Although plasticity can be trig-
gered by both pathologic and non-pathologic stimuli,
the mechanisms and cell types that drive plasticity re-
main largely unknown. Schafer et al. [14] were the first
to implicate the calcium-dependent protease calpain as
a mediator of AIS plasticity with recent studies con-
firming these findings [10, 15]. Consistent with calpain
activation, Evans et al. [8] reported that AIS plasticity
is triggered by calcium channel activation with down-
stream activation of calcineurin. Recently, it has also
been shown that microglia may influence neuronal ac-
tivity through specific association with the AIS [16].
Microglia-AIS contact was found to occur early in de-
velopment and persist throughout adulthood in the
uninjured brain [16] as well as during chronic inflam-
mation present in an animal model of multiple
sclerosis known as experimental autoimmune enceph-
alomyelitis (EAE) [17], suggesting an important
interaction that may influence AIS integrity.
Microglia, the resident immune cells of the central ner-

vous system (CNS), are dynamic cells that survey, respond,
and shape neuronal networks through neuronal contact and
synaptic pruning [18–21]. Microglia are critical for main-
taining tissue homeostasis in the CNS, rapidly activating and
eliminating pathogens and cellular debris in response to in-
fection or insult [22–24]. Upon activation, microglia display
an enhanced pro-inflammatory response and a dampened
resolving phenotype [25–27]. This is typified by increased
expression of inflammatory mediators such as tumor necro-
sis factor alpha (Tnf-α), cyclooxygenase-2 (COX-2), and
NADPH oxidase 2 (NOX2), elevated production of reactive
oxygen species (ROS), and reduced expression of resolving
factors such as transforming growth factor beta (TGF-β),
mannose receptor, C type 1 (Mrc1), and resistin-like beta
(Fizz-1) [28–30]. Though reactive microglia play an import-
ant role in pathogen clearance and CNS homeostasis, ampli-
fied ROS production or aberrant activation of the

inflammatory phenotype has been implicated in a number
of neuronal pathologies [31–35] where AIS disruption is
observed [14, 16, 17, 36, 37]. Previous studies from our lab
demonstrated that chronic neuroinflammation in EAE
resulted in changes in AIS length and protein clustering and
this disruption corresponded with increased microglial
reactivity and production of pro-inflammatory factors [17].
Furthermore, AIS disruption corresponded with increased
contact between reactive microglia and the AIS, suggesting
that in a chronic inflammatory environment, pro-
inflammatory microglia may drive AIS disruption [17].
The microglial inflammatory response is amplified by

the enzyme NOX2, which is responsible for the micro-
glial respiratory burst and extracellular production of
ROS [38]. NOX2 activity has been implicated in the
chronic activation of microglia and its deleterious effects
both through the production of extracellular ROS and
through amplification of the pro-inflammatory response
[39–41]. Inhibition of NOX2 reduced microglial ROS
production and reduced microglia-mediated neurotox-
icity [40, 42, 43]. Here, we investigate the role of micro-
glial inflammation and the ROS-producing enzyme
NOX2 on AIS integrity. Using a lipopolysaccharide
(LPS)-induced model of neuroinflammation, we demon-
strate that in the presence of acute microglial inflamma-
tion, AIS ankG clustering is disrupted and upon
resolution of inflammation, AIS changes are reversed.
Furthermore, ablation of NOX2 preserved AIS integrity.
These data underscore the dynamic capabilities of the
AIS in the presence of a pathological insult.

Methods
Animals
Six- to eight-week-old C57BL/6J mice and NOX2-deficient
(B6.129S-Cybbtm1Din/J, NOX2−/−) mouse breeding pairs
were purchased from Jackson Laboratories (Bar Harbor,
ME). All animals were maintained in the AAALAC-
accredited McGuire Veterans Affairs Medical Center
(VAMC) vivarium with access to food and drink ad libi-
tum. NOX2−/− mice have a targeted mutation of the 91-kD
subunit of the oxidase cytochrome b and lack phagocyte
superoxide production [44]. NOX2−/− mice are maintained
on a C57BL/6J background; therefore, age-matched
C57BL/6J mice (NOX2+/+) were used as controls. All pro-
cedures were conducted in accordance with the National
Institutes of Health guidelines for the care and use of la-
boratory animals and were approved by the McGuire
VAMC Institutional Animal Care and Use Committee.

LPS treatment
Lipopolysaccharide (LPS; O111:B4, lot: 2728527) was
purchased from Calbiochem (San Diego, CA). Female
C57BL/6J and NOX2−/− mice (8–12 weeks) were given a
single intraperitoneal (IP) injection of LPS (5 mg/kg,
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10 mL/kg) or vehicle (0.9% saline). The LPS dose was
based on the previously established neuroinflammation
model [45, 46] where peripheral inflammation rapidly
transfers to the brain, resulting in elevated microglial
cytokine and ROS production [45]. Saline- and LPS-
treated mice were analyzed at 6 h, 24 h, 3 days, 1 week,
and 2 weeks post-injection to assess the effects of micro-
glial reactivity and AIS integrity throughout the course
of neuroinflammation.

Didox administration
Didox (3,4-dihydroxybenzohydroxamic acid) was ob-
tained from Molecules for Health, Inc. (Richmond, VA).
Didox, a ribonucleotide reductase inhibitor and free rad-
ical scavenger, is a multifunctional compound that in-
hibits DNA replication, suppresses NF-κB activation,
reduces oxidative injury, and attenuates microglia/
macrophage production of inflammatory cytokines and
ROS-producing enzymes [47–49]. Based on previous
studies [17, 50], Didox (250 mg/kg solubilized in 0.9%
saline) or vehicle (0.9% saline, 10 mL/kg) was adminis-
tered intraperitoneally beginning at 24 h post-LPS injec-
tion and continued for 6 days. Animals were taken for
analysis 1 week post-LPS injection.

Calpain inhibitor administration
Calpeptin was obtained from Calbiochem (San Diego,
CA). Calpeptin is a cell-permeable inhibitor of calcium-
activated proteases calpain-1 and calpain-2, which have
been implicated in targeted cleavage of AIS proteins and
alterations in AIS structure [9, 10, 14]. Based on previ-
ous studies [51–53], Calpeptin (50 μg/kg) or vehicle
(0.1% dimethyl sulfoxide in saline, 10 mL/kg) was ad-
ministered subcutaneously 30 min prior to injection of
LPS (5 mg/kg, 10 mL/kg, IP) or vehicle (0.9% saline,
10 mL/kg, IP). On days 1 and 2 post-LPS injection, mice
received a second and third dose of Calpeptin (calpain
inhibitor), respectively. Vehicle-, LPS + vehicle-, or LPS
+ Calpeptin-treated mice were analyzed at 3 days post-
LPS injection to assess the effects of calpain activity on
AIS integrity.

Immunohistochemistry
Animals were deeply anesthetized using 0.016 mL/g
body weight of a 2.5% solution of avertin (2,2,2 tribro-
moethanol, Sigma-Aldrich, St. Louis, MO) in 0.9% saline
(Sigma-Aldrich, St. Louis, MO) and transcardially per-
fused with 4% paraformaldehyde (Ted Pella, Redding,
CA). Following perfusion, brains were removed and
immersed in 0.1 M PBS containing 30% sucrose for
48 h, frozen in OCT compound (Sakura, Netherlands),
and serially sectioned into 40-μm-thick coronal sections
stored at −80 °C and immunolabeled as previously de-
scribed [17] using the following antibodies: mouse

monoclonal anti-ankyrinG (ankG; NeuroMab, Davis,
CA; N106/36; 1:500), rabbit polyclonal anti-Iba-1 (Wako
Chemicals, Richmond, VA; 019-19741; 1:1,000), mouse
monoclonal anti-NeuN (Millipore, Billerica, MA;
MAB377; 1:1000), mouse monoclonal anti-gp91-phox
(Santa Cruz, Dallas, TX; sc-130543; 1:500), mouse
monoclonal anti-NaV1.6 (NaV1.6; NeuroMab, Davis,
CA; K87A/10; 1:200). All secondary antibodies were ob-
tained from Invitrogen Life Technologies (Grand Island,
NY; Alexa™ Fluor) and used at a dilution of 1:500.

Imaging and analysis
Imaging was performed on a Zeiss LSM 710 confocal
laser scanning microscope (Carl Zeiss Microscopy, LLC,
Thornwood, NY) housed in the VCU Department of
Anatomy and Neurobiology Microscopy Facility. For AIS
number analysis, images were collected as previously de-
scribed [17]. Briefly, confocal z-stacks spanning an op-
tical thickness of 25 μm, using a pinhole of 1 Airy disc
unit and Nyquist sampling (optical slice thickness,
0.48 μm), were collected from neocortical layer V for
each of six sections (spanning 1.1 mm anterior to the
bregma to 2.5 mm posterior to the bregma) per mouse
resulting in 12 images per animal (n = 4–6 animals per
treatment group). Images were then processed and ana-
lyzed using FIJI (NIH ImageJ software). Settings were
optimized by comparing manual AIS tracings (previously
described by [17]) and FIJI automated counts; no signifi-
cant difference was found between methods (data not
shown). Once established, settings remained constant
throughout analysis. Thresholds of maximum intensity
projections of ankG labeling were automatically set
using the Otsu threshold method [54], and AISs were
quantified using the “Analyze Particles” plugin (FIJI)
(size 0–infinity μm2; circularity 0–0.5; objects touching
edges excluded). ankG-positive structures measuring
<10 μm were excluded from analysis consistent with
previous studies [17, 36, 37].
For analysis of microglial NOX2 immunoreactivity,

confocal z-stacks spanning an optical thickness of 25 μm
were collected from neocortical layer V for each of six
sections (spanning 1.1 mm anterior to the bregma to
2.5 mm posterior to the bregma) per mouse (n = 3 ani-
mals per treatment group). Images were blinded, and
NOX2 immunoreactivity in Iba-1+ cells was quantified
using Volocity™ 3D Image Analysis Software version 6.3
allowing 3D confirmation of double immunolabeling in
each Iba-1+ cell. The total number of microglia and the
number of NOX2+ microglia were counted manually for
each double-immunolabeled z-stack. Data are presented
as the percent of NOX2+ microglia (Iba-1+) per field of
view.
For neuronal nuclei analysis (NeuN labeling), four

confocal images per mouse were collected using a ×20
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objective with a numerical aperture of 1.4 and a pin-
hole of 1 Airy disc unit. Images were processed and
analyzed using FIJI (n = 3 mice per treatment group).
Settings were optimized by comparing manual NeuN
counts (previously described [17]) and FIJI automated
counts; no significant difference was found between
methods (data not shown). Thresholds of maximum
intensity projections of NeuN labeling were automatic-
ally set using the Otsu threshold method [55], and
neuronal nuclei were quantified using the “Analyze
Particles” plugin (size 10–150 μm2; circularity 0–1; ob-
jects touching edges excluded). No differences in
NeuN+ cell counts were detected among any treatment
groups (NOX2+/+ Saline, NOX2+/+ LPS-injected,
NOX2−/− Saline, or NOX2−/− LPS-injected; Table 1).
Cortical volume analysis was performed using the

Cavalieri principle as previously described (modified
[55, 56]). Briefly, unbiased stereology was performed
using every 15th section from the total sections span-
ning the cortical region 1.1 mm anterior to the bregma
to 2.5 mm posterior to the bregma and analyzed to es-
timate cortical volume. Each reference space was
outlined with a ×2 objective and analyzed using a
point-grid analysis, sampling 100% of the regions of
interest. Samples were counted in a blind manner and
volumes calculated using an Olympus BX51 micro-
scope (Center Valley, PA) and newCAST software
(Visiopharm, Hoersholm, Denmark) (n = 3–4 mice per
treatment group). No differences in cortical volumes
were detected among any treatment groups (NOX2+/+

Saline, NOX2+/+ LPS-injected, NOX2−/− Saline, or
NOX2−/− LPS-injected; Table 1).

Microglia isolation
Adult cortical microglia were isolated using MACS
magnetic bead separation (Miltenyi Biotec, San Diego,
CA) as described previously [17, 45]. Briefly, saline-
treated and LPS-treated mice were deeply
anesthetized and transcardially perfused with 50 mL

ice-cold PBS. After removal of the meninges, the
cerebral cortices of two mice were harvested and
pooled per sample (2 mice = 1 n) and suspended in
Hank’s balanced salt solution (HBSS) without CaCl2
and MgCl2 (Corning, Corning, NY). A single-cell sus-
pension was prepared using the Miltenyi Neural
Tissue Dissociation Kit according to the manufac-
turer’s instructions. The cells were depleted of myelin
by suspension in 3 mL of 30% isotonic Percoll™ (GE
Healthcare Life Sciences, Pittsburgh, PA) followed by
a 10-min centrifugation at 700 x g at 4 °C. The cell
pellet was washed in 5 mL HBSS without CaCl2 and
MgCL2, and isolation of microglia was performed
with magnetic CD11b microbeads (Miltenyi) and
MACS magnetic separator (Miltenyi) according to the
manufacturer’s instructions.

RNA isolation and RT-qPCR analysis
Total RNA was extracted from isolated CD11b+ cells
or whole cortical tissue using a Qiagen RNeasy mini
kit (Qiagen, Germantown, MD) and treated with
Ambion DNase I (Invitrogen Life Technologies,
Grand Island, NY) (n = 3 samples per treatment
group). RNA concentrations were determined using a
NanoPhotometer (Implen, Los Angeles, CA), and pur-
ity was assessed by the ratio of absorbance at 260
and 280 nm (OD260/280 > 1.8). Oligo-dT-primed com-
plementary DNAs (cDNAs) were synthesized from
0.25 μg of RNA for each sample using the iScript
Reverse Transcription Supermix (Bio-Rad) according
to the manufacturer’s guidelines. RT-qPCR reactions
with at least two technical replicates per sample were
performed on a CFX96 real-time PCR detection sys-
tem (Bio-Rad) using 1 μL of cDNA, SsoFast Evagreen
Supermix (Bio-Rad), and forward and reverse primers
(500 nM). Cycling parameters were 1 cycle of 95 °C
(5 min), 40 cycles of 95 °C (5 s), and 56 °C (5 s)
followed by a melt curve measurement consisting of
5-s 0.5 °C incremental increases from 65 to 95 °C.
Relative changes in gene expression were calculated
by the 2−ΔΔCt method [57] using cyclophilin A and
phosphoglycerate kinase 1 (PGK1) as an endogenous
reference gene. Gene-specific primers were designed
and checked for specificity using National Center for
Biotechnology Information/Primer-BLAST (basic local
alignment search tool [58]) (Table 2). Primers were
generated by Integrated DNA Technologies (San
Diego, CA).

Calpain activity assay
To quantify the levels of calpain activity and to deter-
mine the effect of Calpeptin on inhibition of calpain ac-
tivity, vehicle-, LPS + vehicle-, or LPS + Calpeptin-treated
mice were deeply anesthetized and transcardially

Table 1 Neuronal density and cortical volume measurements
from saline or LPS-injected mice

Treatment group Average NeuN count
(% saline ± SEM)

Average cortical volume ± SEM
(μm3) × 103

NOX2+/+ NOX2−/− NOX2+/+ NOX2−/−

Saline 100 ± 3.2 100 ± 7.3 1.4 ± 0.2 1.14 ± 0.3

LPS 6 h 103 ± 5.9 – 1.1 ± 0.2 –

LPS 24 h 98 ± 0.8 109 ± 4.9 1.1 ± 0.1 1.15 ± 0.3

LPS 3 days 108.1 ± 2.5 – 1.4 ± 0.1 –

LPS 1 week 97.7 ± 2.5 110 ± 3.4 1.2 ± 0.1 1.27 ± 0.1

LPS 2 weeks 108 ± 3.9 – 1.5 ± 0.1 –

No significant difference was detected with regard to density of neuronal cell
bodies or cortical volume among any of the treatment groups in either NOX2
+/+ or NOX2−/− mice

Benusa et al. Journal of Neuroinflammation  (2017) 14:116 Page 4 of 14



perfused with 50 mL ice-cold 0.9% saline at 3 days post-
LPS injection. Cerebral cortices (10 mg) were harvested
and immediately homogenized in ice-cold extraction
buffer (Calpain activity kit). Samples were centrifuged
for 5 min at 4 °C at 15,000 x g to remove insoluble ma-
terial. Calpain activity was quantified using a fluoromet-
ric calpain activity assay kit (ab65308, Abcam,
Cambridge, MA) according to the manufacturer’s proto-
col. All samples were analyzed in triplicate, and calpain
activity was measured using a Tecan M1000 PRO micro-
plate reader (Männedorf, Switzerland). Changes in cal-
pain activity were normalized to saline control levels and
expressed as relative fluorescent units (RFU).

Statistical analysis
All graphing and statistical analyses were performed
using GraphPad Prism version 6.03 (GraphPad
Software, San Diego, CA). Data were analyzed by a
one-way or two-way analysis of variance and, where
mean differences were significant, assessed using
Tukey’s honest significance difference post hoc ana-
lysis. Treatment groups were presented as percent of
saline control (% Control ± SEM), and p < 0.05 was
considered statistically significant.

Results
LPS-induced inflammation alters AIS protein clustering
Studies from our lab [17] and others [14, 16, 59] have
shown that AIS protein clustering is disrupted during
chronic inflammation and disease. To determine if acute
neuroinflammation alters AIS integrity, we used a LPS-
induced neuroinflammatory model and assessed AIS
ankG protein clustering (Fig. 1). AISs were immunola-
beled for ankG in saline- and LPS-treated mice at 6 h,
24 h, 3 days, and 1 week post-injection. Disruption of
ankG labeling was first observed 24 h post-LPS injection
(71.6% ± 3.7, p < 0.01) compared to saline controls
(100% ± 5.8) (Fig. 1c, f ). The number of AISs detected
in LPS-injected mice remained significantly decreased
at both 3 days and 1 week post-injection (72.7% ± 2.5,
p < 0.01 and 65.3% ± 5.1, p < 0.0001, respectively)

compared to saline controls (Fig. 1d–f ). AIS disruption
as indicated by a loss of ankG immunolabeling was
confirmed by immunolabeling for NaV1.6 (data not
shown). To determine if AIS disruption was a conse-
quence of neuronal loss or changes in cortical volume,
we quantified NeuN immunolabeling and cortical
volume and found no difference among saline or LPS
groups (Table 1). These data suggest that acute neuro-
inflammation caused a significant disruption in AIS
protein clustering, but altered ankG detection was not
associated with neuronal loss.

AIS disruption is reversible
The AIS is the site of action potential initiation and
thus is critical for neuronal function [60]. Studies
have shown that the AIS can undergo structural plas-
ticity in development and in response to pathological
insults to sustain proper signaling within neuronal
networks [2, 6, 61, 62]. To determine in vivo if
inflammation-induced AIS disruptions are reversible,
we assessed ankG clustering of AISs in saline- and
LPS-treated mice 2 weeks post-injection (Fig. 1).
ankG immunolabeling revealed that the number of
AISs in LPS-treated mice 2 weeks post-injection
returned to baseline and was not significantly reduced
compared to saline controls (91.3% ± 2.8) (Fig. 1f, g).
Furthermore, AISs at 2 weeks post-LPS injection were
significantly increased compared to LPS 1 week
treated mice (mean difference 25.9% ± 5.7, p < 0.01)
(Fig. 1e–g). Thus, LPS-induced disruption of AIS
ankG clustering is reversible.

AIS integrity coincides with microglial inflammatory
response
Previous studies demonstrated that chronic neuroin-
flammation in EAE resulted in disruption of the AIS,
and this disruption coincided with microglial reactivity
and increased microglial-AIS contact [17]. Therefore,
to better understand how microglial inflammation con-
tributes to AIS disruption in LPS-induced neuroinflam-
mation, we examined microglial reactivity and gene

Table 2 Oligonucleotide primer sets used for RT-qPCR

Gene Accession no. Forward primer Reverse primer

Tnf-α NM_013693.1 5′-GCCCACGTCGTAGCAAACCACC-3′ 5′-CCCATCGGCTGGCACCACTA-3′

COX-2 (Ptgs2) NM_009367.1 5′-TTGCTGGCCGGGTTGCTGG-3′ 5′-CAGGGAGAAGCGTTTGCGGT-3′

NOX2 (Cybb) NM_023965.1 5′-GGGAACTGGGCTGTGAATGA-3′ 5′-CAGTGCTGACCCAAGGAGTT-3′

Mrc1 NM_008625.2 5′-GGCTGATTACGAGCAGTGGA-3′ 5′-CATCACTCCAGGTGAACCCC-3′

Fizz-1 (Retnlb) NM_020509.3 5′-CAGCTGATGGTCCCAGTGAAT-3′ 5′-AGTGGAGGGATAGTTAGCTGG-3′

TGF-β NM_009367.2 5′-CTCCCCTCCGAAAATGCCA-3′ 5′-GTTTTGCAAGCGGAAGACCC-3′

Cyclophilin A NM_008907.1 5′-CTAGAGGGCATGGATGTGGT-3′ 5′-TGACATCCTTCAGTGGCTTG-3′

PGK1 NM_008828.3 5′-ATGCAAAGACTGGCCAAGCTA C-3′ 5′-AGCCACAGCCTCAGCATATTTC-3′
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expression of inflammatory mediators in saline- and
LPS-treated mice. AIS disruption was first observed
24 h post-LPS injection and remained significantly dis-
rupted until recovery 2 weeks post-injection. Therefore,
we assessed microglial reactivity 6 h, 24 h, 3 days,
1 week, and 2 weeks post-injection. Iba-1 immunolabel-
ing revealed that at 6 h post-LPS injection, prior to AIS
changes, microglia display a reactive phenotype which
is maintained 1 week post-LPS injection (Fig. 2b–e). By
2 weeks post-LPS injection (Fig. 2f ), microglia morph-
ology returned to a surveying phenotype similar to that
of saline-injected mice (Fig. 2a). qPCR analysis of iso-
lated microglia from LPS- and saline-injected mice re-
vealed that gene expression of inflammatory mediators
Tnf-α, COX-2, and NOX2 was significantly upregulated

6 h post-LPS injection (p < 0.05, Fig. 2g–i). Messenger
RNA (mRNA) expression of NOX2, the enzyme re-
sponsible for extracellular release of ROS and amplifi-
cation of microglial pro-inflammatory response [38],
was significantly increased at 6 h (p < 0.01) and
remained elevated 3 days post-LPS injection (p < 0.05),
returning to control levels prior to AIS recovery
(Fig. 2i). Furthermore, gene expression of resolving fac-
tors Mrc1, TGF-β, and Fizz-1 was significantly de-
creased by 24 h post-LPS injection and returned to
control levels by 1 week post-injection, coincident with
AIS disruption and recovery, respectively (p < 0.05,
Fig. 2j–l). Thus, microglial inflammation preceded dis-
ruption of the AIS, while AIS recovery followed the
resolution of microglial inflammation.

Fig. 1 LPS-induced inflammation disrupts AISs. a–f AISs in layer V of the cerebral cortex identified by ankG immunolabeling in saline- (a) and LPS-
treated (b–f) mice. AIS detection is lost with time in LPS-treated mice through 1 week post-injection. However, by 2 weeks post-injection, AIS number
returns to control levels, demonstrating reversibility of AIS disruption. Scale bar = 20 μM. g The mean ± SEM of AISs/FOV in saline- and LPS-treated mice
as a percent of saline controls. An asterisk indicates significant difference (p < 0.05) from saline, and a ¥ indicates a difference between time points
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Treatment with anti-inflammatory Didox reverses AIS
disruption
In LPS-induced inflammation, microglia rapidly respond,
displaying dramatic morphological alterations and signifi-
cantly increasing expression of pro-inflammatory genes
while significantly downregulating expression of pro-
resolution factors (Fig. 2). mRNA expression of microglial
inflammatory markers remained elevated and was not re-
solved until 1 week post-LPS injection. However, AIS clus-
tering remained disrupted until 2 weeks post-LPS injection
(Fig. 1). To determine if AIS recovery could be accelerated
by a therapeutic approach, we treated LPS-injected mice
with the anti-inflammatory and free radical scavenger Didox
[47, 63–65]. Didox administration was initiated 24 h post-
LPS injection (Fig. 3e), when microglia were reactive and

AISs were significantly disrupted. Following treatment
of saline- and LPS- injected mice, AISs were immu-
nolabeled for ankG at 24 h and 1 week post-injection.
At 24 h post-injection, ankG clustering in LPS-treated
mice (71.6% ± 3.7, p < 0.01, Fig. 3b, f ) was significantly
disrupted compared to saline controls. The number of
AISs in LPS-injected mice remained significantly de-
creased 1 week post-injection (65.3% ± 5.1, p < 0.001,
Fig. 3c, f ) compared to saline controls. However, in
LPS + Didox mice, the number of AISs was signifi-
cantly higher compared to that in LPS 1 week un-
treated mice (96.3% ± 2.8, p < 0.01) and was not
significantly different from saline controls (Fig. 3d, f ).
Thus, treatment with Didox reversed AIS disruption
and increased the rate of AIS recovery.

Fig. 2 AIS integrity coincides with microglial inflammatory response. a–f Microglia, visualized by Iba-1 immunolabeling, display a surveying phenotype
with long, highly branched processes in saline-treated mice (a). Microglia display a highly reactive morphology with retracted, thickened processes at
6 h post-LPS injection (b) and maintain this morphology at 24 h (c), 3 days (d), and 1 week (e) post-LPS injection. Microglia appear to return to a
surveying morphology at 2 weeks (f) post-LPS. Scale bar = 10 μM. g–l mRNA expression of inflammatory mediators in isolated cortical microglia from
saline- and LPS-treated mice. Consistent with microglial morphologies, inflammatory markers are significantly upregulated by 6 h post-LPS injection.
Maintenance of this pro-inflammatory phenotype is supported by the persistence of significantly elevated NOX2 expression which does not return to
baseline levels until 1 week post-injection. Similarly, markers associated with resolution of inflammation are reduced following LPS injection, and
expression of these markers does not return to control levels until 1 week post-injection. mRNA expression was evaluated by quantitative RT-PCR;
values were normalized using the 2−ΔΔCT method and were reported as mean expression ± SEM. An asterisk indicates significant difference (p < 0.05)
from saline, and a ¥ indicates a difference between time points post-LPS injection
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Treatment with Didox alters microglial NOX2
Didox is a ribonucleotide reductase inhibitor which modu-
lates the inflammatory response through inhibition of NF-
κβ activation, reduction in ROS-producing enzymes, and re-
duction in oxidative injury [47, 49, 66]. To determine the ef-
fect of the treatment with the anti-inflammatory and free
radical scavenger Didox on microglial inflammatory re-
sponse and AIS integrity following LPS treatment, we ana-
lyzed microglial NOX2, which is dependent on, and induced
by, NF-κβ [67, 68]. NOX2 is a ROS-producing enzyme pri-
marily expressed by microglia and has been implicated as
the primary producer of extracellular ROS and oxidative
stress in the CNS [39, 40, 69, 70]. Quantitation of NOX2
immunolabeling (Fig. 4A–D) in cortical microglia from sa-
line- and LPS-treated mice with or without Didox treatment
revealed that NOX2 immunoreactivity was significantly en-
hanced in microglia 24 h post-LPS injection (Fig. 4B, E) and
remained significantly elevated 1 week post-LPS injection
(Fig. 4C, E) compared to saline controls (p < 0.0001, Fig. 4A,
E). However, NOX2 immunoreactivity was decreased in
LPS-injected mice treated with the anti-inflammatory and
free radical scavenger Didox (p < 0.0001, Fig. 4D, E). Thus,
Didox treatment significantly decreased microglial NOX2
back to saline control levels, and this decrease corresponded
with the reversal of AIS disruption.

Ablation of NOX2-derived ROS production prevents AIS
disruption
Although Didox is a known free radical scavenger and our
data demonstrate a reduction in NOX2 expression result-
ing from Didox treatment, it is possible that Didox targets
other inflammatory factors and that the observed AIS

recovery was coincidental with inhibition of NOX2 ex-
pression. Therefore, to more specifically investigate the
role that NOX2 plays in AIS disruption, we exploited
NOX2−/− mice. We injected NOX2+/+ and NOX2−/− mice
with saline or LPS and assessed AIS integrity 24 h and
1 week post-injection. ankG clustering in NOX2+/+ LPS-
injected mice was significantly disrupted at 24 h (Fig. 5b)
and 1 week (Fig. 5c) post-injection resulting in an ~30%
loss of AISs, compared to saline controls (p < 0.01, Fig. 5g).
Strikingly, ankG clustering in LPS-injected NOX2−/− mice
was not significantly different at either 24 h or 1 week
post-injection compared to saline-injected NOX2−/− mice
(Fig. 5e, f ). However, ankG clustering was significantly
higher at both 24 h and 1 week compared to NOX2+/+

LPS-injected mice (p < 0.01, Fig. 5g). Thus, ablation of
NOX2-derived ROS prevented inflammation-induced AIS
disruption.

Inhibition of calpain prevents AIS disruption
To further elucidate the mechanism of inflammation-
induced AIS disruption, we investigated the calcium-
activated protease calpain. Calpain activity has been im-
plicated in AIS structural changes and the targeted pro-
teolysis of AIS proteins [9, 10, 14]. To determine if
calpain activity is involved in inflammation-induced loss
of AIS ankG clustering, we treated LPS-injected mice
with the calpain inhibitor Calpeptin. Calpeptin adminis-
tration was initiated 30 min prior to LPS injection and
continued once daily for 2 days (Fig. 6d). Following
treatment, AISs were immunolabeled for ankG at 3 days
post-LPS injection. ankG clustering in LPS-treated mice
(72.7% ± 2.5, p < 0.01, Fig. 6b, e) was significantly

Fig. 3 Treatment with Didox reverses AIS disruption. a–d AISs, immunolabeled for ankG, are reduced through 1 week post-injection. LPS-injected mice
that received Didox treatment beginning at 24 h post-injection and continued for five subsequent days displayed no loss in ankG+-labeled AISs (d). Scale
bar= 20 μM. e Schematic of LPS and anti-inflammatory Didox administration. f The mean ± SEM of AISs/FOV in saline-, LPS, and LPS + Didox-treated mice
as a percent of saline controls. An asterisk indicates significant difference (p < 0.05) from saline, and a ¥ indicates a difference between treatment groups
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disrupted compared to saline controls (100% ± 5.8,
Fig. 6a, e). However, in LPS + Calpeptin-treated mice,
the number of AISs was significantly higher compared
to that in LPS 3 days vehicle-treated mice (90.2% ± 2.3
and 72.8% ± 2.5, respectively, p < 0.05, Fig. 6c, e) and was
not significantly different from saline controls. Inhib-
ition of calpain activity by Calpeptin was determined by
a fluorometric calpain activity assay on mouse cortical
homogenates 3 days post-LPS injection (Fig. 6f ). Cal-
pain activity was significantly increased in LPS 3 days
mice (132.9% ± 3.0, p < 0.01, Fig. 6f ) compared to saline
controls (100% ± 5.3), and treatment with Calpeptin sig-
nificantly reduced calpain activity in cortical homoge-
nates (84.1% ± 3.1, p < 0.001, Fig. 6e). Thus, inhibition

of calpain activity prevents inflammation-induced
disruption of AIS ankG clustering in cortical neurons.

Discussion
In this study, we demonstrate that LPS-induced neuroin-
flammation disrupts protein clustering at the AIS con-
comitant with the microglial inflammatory response
resulting in an ~30% loss of AIS detection. Importantly,
we found that inflammation-induced AIS disruptions
were reversed following resolution of microglial inflam-
mation and changes in AIS ankG clustering are NOX2-
mediated and dependent on calpain activity. Thus, in the
presence of acute microglial inflammation, the AIS
undergoes an adaptive change that is capable of

Fig. 4 Treatment with Didox alters microglial NOX2 levels. a–d Microglia, visualized by Iba-1 immunolabeling, display enhanced NOX2 immunoreactivity
in LPS 24 h (b’) and LPS 1 week (c’) mice compared to saline controls (a’). Anti-inflammatory Didox treatment decreases microglial NOX2 immunoreactivity
(d’) to saline control levels (a’). Scale bar= 30 μM. e The mean percentage ± SEM of NOX2-positive microglia in saline-, LPS-treated, and LPS +Didox mice.
An asterisk indicates significant difference (p< 0.05) from saline, and a ¥ indicates a difference between treatment groups
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spontaneous recovery, underscoring the dynamic cap-
abilities of this domain in the presence of a pathological
insult.

The AIS has the capacity to adapt and recover
The AIS is targeted for disruption in injury and disease
emphasizing its need for homeostatic adaptations. In-
deed, many studies [16, 17, 37, 71–73] have shown that
the AIS is plastic, undergoing change in response to
various stimuli. However, few studies have demonstrated
that these changes are reversible. Alterations in AIS
length [12] and location [2] caused by changes in neural
activity were reversible in vitro; however, loss of AIS
protein clustering due to ischemic insults in vitro were
not, even in the absence of cell death [14]. A previous
study examining AIS integrity after stroke observed
axonal sprouting resulting in an increase in small, im-
mature AISs demonstrating reparative potential of this
domain [59]. Furthermore, our lab previously reported

that shortening of AIS length is reversible following
treatment with the anti-inflammatory Didox [17].
Here, we provide evidence that loss of AIS protein
clustering is spontaneously reversible, independent of
axonal sprouting. Moreover, we show that by modulat-
ing the neuroinflammatory response using therapeutic
intervention, the rate of AIS recovery can be increased,
even after significant AIS disruption has occurred.
These data suggest that while insults at the AIS, such
as ischemia [14], can cause irreversible damage, the
AIS has the capacity to adapt and recover after insult.
The mechanism by which this occurs or what the ex-
tent of injury is after which the AIS cannot recover re-
mains to be determined.

Microglial phenotype influences AIS integrity
Although AIS plasticity can be triggered by both patho-
logical and non-pathological stimuli, the events that
drive plasticity remain largely unknown. Recently,

Fig. 5 Ablation of NOX2-derived ROS production prevents AIS disruption. a–f AISs in layer V of the cerebral cortex from NOX2+/+ (a–c) and NOX2−/−

(d–f) mice are identified by ankG immunolabeling after saline (a, d) or LPS (b, c, e, f) treatment. AISs are lost in LPS-treated NOX2+/+ mice, but are
preserved in LPS-treated NOX2−/− mice. Scale bar = 20 μM. g The mean ± SEM of AISs/FOV in NOX2+/+ and NOX2−/− mice treated with saline or LPS as
a percent of saline controls. An asterisk indicates significant difference (p < 0.05) from saline, and a ¥ indicates a difference between genotypes
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Baalman et al. [16] established a relationship between
microglia and the AIS, revealing that microglia contact
AISs early in development and throughout adulthood in
the uninjured brain, suggesting an important interaction
that may influence neuronal excitability. In a model of
chronic neuroinflammation, reactive microglia increased
contact with AISs, and this contact both preceded AIS
disruption and increased with disease progression, sug-
gesting that in a chronic inflammatory environment, in-
creased microglial contact may drive AIS disruptions
[17]. Consistent with previous findings, we found that
reactive microglia contact the AISs during LPS-induced
neuroinflammation. However, contrary to findings in the
chronic inflammatory model, the amount of contact
made by microglia did not increase throughout the

course of inflammation and did not correlate with AIS
disruption (data not shown). The microglial inflamma-
tory profile, however, did correspond with AIS disrup-
tion and recovery. Furthermore, modulation of the
inflammatory profile using anti-inflammatory treatment
increased the rate of AIS recovery. Though our findings
suggest that changes in microglial inflammation corres-
pond with AIS alterations, it is possible that these
changes do not directly influence AIS integrity. However,
the direct association of microglia with the AIS suggests
this axonal domain may be particularly vulnerable to
changes in microglial reactivity. Thus, our findings suggest
that AIS integrity may be influenced by microglial pheno-
type, with a pro-inflammatory phenotype driving AIS
disruption while a resolving phenotype hastens repair.

Fig. 6 Treatment with calpain inhibitor prevents AIS disruption. a–c AISs, immunolabeled for ankG, are reduced 3 days post-LPS injection (b, e).
LPS-injected mice that received Calpeptin treatment (calpain inhibitor) beginning 30 min prior to LPS injection and continued once daily for
2 days (d) displayed no loss in ankG+-labeled AISs (c, e). Scale bar = 20 μM. d Schematic of LPS and Calpeptin administration. e The mean ± SEM
of AISs/FOV in saline-, LPS + vehicle-, and LPS + Calpeptin-treated mice as a percent of saline controls. f The mean ± SEM of calpain activity levels
in relative fluorescent units in saline-, LPS + vehicle-, and LPS + Calpeptin-treated mice as a percent of saline controls. An asterisk indicates
significant difference (p < 0.05) from saline, and a ¥ indicates a difference between treatment groups
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Consistent with this premise, Klapal et al. [74] showed
that incubation of hippocampal cultures with activated
microglia or the pro-inflammatory cytokine Tnf-α in-
creased neuronal excitability. In contrast, incubation
with the pro-resolution factor TGF-β decreased Na+

current density to control levels. Together, these findings
suggest that neuroactive factors released by microglia
augment neuronal excitability, which drives AIS struc-
tural changes [2, 6, 12]. Here, we demonstrate that AIS
structure is altered following significant increases in
microglial expression of Tnf-α. Furthermore, this AIS
pathology is reversed after expression of microglial
TGF-β is enhanced. Thus, our findings are consistent
with microglial neuroactive factors driving changes in
neuronal activity and AIS structural plasticity.

NOX2-mediated ROS, calpain, and AIS changes
During insult, pro-inflammatory microglia increase ex-
pression of inflammatory mediators and ROS-producing
enzymes [30, 40, 45, 75]. ROS are highly reactive and
diffuse signaling molecules that regulate cell functions
through redox modification of target proteins. ROS can
result in further production of reactive species [76, 77]
and elevated calcium levels [78], which have been impli-
cated in AIS disruption. In this study, we show that
changes in microglial expression of ROS-producing en-
zymes correspond with AIS disruption and recovery,
suggesting a role for microglial ROS in inflammation-
driven AIS disruption. Consistent with this premise, ab-
lation of NOX2 prevented AIS disruption. Though
NOX2 is primarily expressed by microglia, NOX2 is also
present in cortical neurons, where it plays a role in ROS
regulation and calcium dynamics [79]. Therefore, NOX2
ablation may preserve AIS integrity through both the
prevention of microglial ROS release and neuronal
NOX2 ROS production, both of which may converge on
pathways resulting in AIS changes.
Reactive species such as hydrogen peroxide and

nitric oxide influence calcium-permeable channels in-
cluding L-type Ca(2+) [78, 80, 81] and TRPM channels
[82, 83]. Upon activation, intracellular calcium concen-
trations rise, resulting in the subsequent activation of
calcium-regulated proteins such as calpain [9, 10, 14],
CamKII [8], and calcineurin [8, 12], which have been
implicated in AIS disruption. Consistent with previous
studies [9, 10, 14], our data implicate the calcium-
dependent protease calpain as a mediator of AIS struc-
tural changes. In this study, we demonstrate that acute
neuroinflammation increases calpain activity consist-
ent with disruption of AIS ankG clustering and inhib-
ition of calpain prevents inflammation-induced
disruptions. Together, our data suggest that NOX2-
derived ROS and calpain activity are drivers of AIS
structural plasticity during acute neuroinflammation.

Conclusions
In conclusion, we demonstrate that in the presence of
acute neuroinflammation, protein clustering at the AIS
is altered. Importantly, our data demonstrate that this
AIS disruption is reversible and that the AIS has the
capacity to adapt and spontaneously recover. Further-
more, we reveal that inflammation-driven plasticity at
the AIS is mediated by NOX2 and calpain activity.
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