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Abstract: The development of monoclonal antibody treatments for successful tumor- 
targeted therapies took several decades. However, the efficacy of antibody-based therapy is 
still confined and desperately needs further improvement. Nanobodies are the recombinant 
variable domains of heavy-chain-only antibodies, with many unique properties such as small 
size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance 
from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical 
tools and are considered also as building blocks for chimeric antigen receptors as well as for 
targeted drug delivery. Thus, one of the promising novel developments that may address the 
deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This 
article provides readers the significant factors that the structural and biochemical properties 
of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as 
well as their application prospect. 
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Introduction to Antibody and Nanobody
Since 1975, monoclonal antibodies have been triumphantly applied to the diagnosis 
and management of various diseases. For example, chimeric antibodies, humanized 
antibodies, as well as all-human antibodies, and miniaturized genetic engineering 
antibodies, have manifested expanding application prospects. Nevertheless, the 
strengths of smaller size are, upon most occasions, counteracted by descending 
stabilization, leading to polymerization (especially single-chain variable fragment, 
scFv), lower affinity binding, and problems in mass production.1 Therefore, nano-
body (Nb) discovered in 1993 seems to be able to address the problems.

Nb is a naturally deleted light chain antibody in the peripheral blood of alpaca. 
The acquisition of Nb first needs to select a camelid animal for immunization, 
which will probably take 5–10 weeks. As shown in Figure 1A–F, the effector 
B cells are obtained from the plasma by extracting the peripheral lymph blood 
from the immunized camel, then the total RNA is extracted from the effector 
B cells and the cDNA sequence of the fragment is obtained by the reverse 
transcription-PCR technology, so primary PCR products can be used as templates 
for amplification. Phage display is employed to screen afterward and enrich Nb- 
phage with specific binding ability from the nanobody library which is subsequently 
established after the structure of the phage vector. Eventually, the Nb expression 
system is built to express proteins and function verification is carried out. Although 
the preparation process is relatively complicated, with the development of 
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molecular biology technologies such as phage display 
technology, the screening steps of Nb are being gradually 
optimized.2

Compared with the traditional antibody IgG, which 
includes one heavy chain variable region VHH connects 
with two traditional CH2 and CH3 constant domains, and 

its molecular weight is only half of that of the traditional 
antibody.3,4 The cloned antibody containing only a heavy 
chain variable region named Nb or single-domain antibody 
(sdAb), has identical stability and excellent antigen binding 
vitality in comparison to the initial heavy chain antibody 
(HcAb).5,6 Due to its high specificity, strong stability, and 

Figure 1 Schematic overview of nanobody generation. (A) Extracting a cDNA from peripheral blood obtained from a camelid after immunized. (B) Extracting Total mRNA 
and reversely transcribing into cDNA, then amplifying the VHH, the phage display vector and the VHH are digested by restriction enzymes, and the two fragments are 
connected. (C) Constructing natural or immune camelid-derived nanobody libraries. (D–F) Obtaining antigen-specific nanobody by multiple screening. 
Notes: Adapted with permission of Future Science Ltd, from Novel therapy based on camelid nanobodies. Unciti-Broceta JD, Del Castillo T, Soriano M, Magez S, Garcia- 
Salcedo JA. Ther Deliv. 4(10):1321–1336, copyright 2013; permission conveyed through Copyright Clearance Center, Inc.29
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top affinity, it has generated extraordinary accomplishments 
in the field of antibodies.7,8 It is no exaggeration to say that 
Nb has been extensively used in biochemical mechanisms, 
structural biology, diagnosis and treatment of tumors and 
other diseases.9,10 This article will evaluate the basic char-
acteristics of Nb and its research progress in tumor treat-
ment, and look forward to its application prospect.

Structure and Physicochemical 
Features of Nanobody
Basic Structure of Nanobody
Nb is the minimum known inartificial antigen-specific bind-
ing functional fragment, which consists of approximately 
120 amino acids, with a crystal is 2.5 nm in diameter, 4 
nm in length and merely 12~15 kb in weight (Figure 2D).6 

The molecular weight is smaller than the traditional mono-
clonal antibody mAb (~150 kb), Fab fragment (~55 kb) or 
HcAb (~90 kb) in Figure 2A–C. Furthermore, the variable 
region domain can form a domain antibody called nanobody 
by itself.11 Previous research found that these nanobodies 
can be genetically engineered from the heavy-chain anti-
body derived from camelids or cartilaginous fish, whose 
immune systems had already evolved into high-affinity 
V-like domains so that intramolecular disulfide bonds with 
stability were not for the demand.12–15 Therefore, Nb has 
a stronger and faster tissue penetration ability and can reach 
dense tissues such as solid tumors to play a role. At the same 

time, due to renal filtration, the half-life of Nb in the blood is 
also relatively shorter, in some cases can avoid the accumu-
lation of toxicity.

Nb consists of three antigenic complementary determin-
ing regions (complementarity determining region, CDR) and 
four frame regions (frame region, FR). Among them, three 
CDR are the binding regions of Nb to the antigen, while the 
traditional antibody needs six CDR to maintain the binding 
to the antigen. Compared with monoclonal antibodies, Nb 
showed considerable or even stronger antigen-binding 
ability.16,17 In addition, the longer amino acid sequences of 
CDR1 and CDR3 of Nb make up for the loss of antigen- 
binding ability caused by the loss of light chain to some 
extent. After receiving antigen stimulation, the production of 
Nb mainly depends on somatic hypermutation, so a longer 
CDR sequence also means more antibody diversity. 
Crystallographic studies have shown that longer CDR3 
regions give Nb a stronger ability to bind antigens, which 
can bind to antigenic epitopes that cannot be reached by 
traditional antibodies.18 Sequence alignment showed that the 
VH domain of Nb was highly homologous to that of human 
immunoglobulin IgG, but there were significant differences 
between FR2 and CDR3 regions. Previous studies have 
shown that repeated administration of Nb will not cause 
any humoral and cellular immune response.19–21 but whether 
long-term repeated use of Nb drugs will cause its immuno-
genicity to the body remains to be studied.22

Figure 2 The various antibody formats: (A) mAb (monoclonal antibody); (B) Fab (fragment antigen binding); (C) HcAb (camel heavy-chain antibody); (D) VHH or Nb 
(nanobody). Adapted from Yang X, Xie S, Yang X, et al. Opportunities and Challenges for Antibodies against Intracellular Antigens. Theranostics. 2019;9(25):7792–7806. 
Available from: https://www.thno.org/v09p7792.htm. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.165
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Characteristics of Nanobody (Compared 
with Antibody)
A key feature of nanobody is its good solubility. In tradi-
tional antibodies, there are a large number of hydrophobic 
residues in the FR2 region where VH interacts with VL 
(Figure 3B).23 In the absence of light chain VL, the hydro-
phobic residues on the surface of VH are exposed and 
aggregation is easy to occur in vitro.24 These hydrophobic 
residues were replaced by hydrophilic residues in VHH, 
which reduced the aggregation ability of VHH and 
improved the water solubility of VHH (Figure 3B and C). 
Other characteristics of nanobody include, (1) high thermo-
stability, Nb can maintain 80% activity at 37°C for one 
week.25 After denaturation at 90°C, Nb can restore its 
natural active conformation.26 Nb can also resist the effects 
of denaturants, proteases and extreme pH.12 (2) short 
development cycle, Nb can be manufactured in batch pro-
duction of large quantities via microbial systems, whereas 
the production of traditional monoclonal antibodies requires 
a eukaryotic expression system, the process is 

technologically elaborate and expensive to maintain. (3) 
the various screening approaches, in addition to the tradi-
tional methods of immunization, the production of Nb, 
using natural antibody library and antibody library synthe-
sized in vitro can overcome the shortcomings of 
immunization.27,28 What is more, its low molecular weight, 
high affinity and strong antigen recognition ability, Nb has 
more advantages than traditional antibodies in tumor diag-
nosis and treatment. In recent years, Nb has indeed shown 
promising potentials in the treatment of tumors.29

Nanobody as Tumor Therapeutic Agent
The traditional antibody has played a great role in the 
field of tumor diagnosis and treatment and opened the era 
of targeted therapy. At present, it has already been widely 
used as one of the primary methods in the guide of 
crizotinib therapy and has created considerable socioeco-
nomic benefits.30 On condition that traditional antibodies 
contain Fc domains, and cancer cells can be killed by 
antibody-dependent cell-mediated cytotoxicity (ADCC) 

Figure 3 Comparison between traditional IgG antibody and camelid heavy-chain antibody. (A) Traditional IgG antibody has two identical heavy chains, consisting of VH, 
CH1, CH2, and CH3 domains, and two identical light chains, consisting of VL and CL domains. (B) Camelid heavy-chain antibody contains one VHH and two constant 
domains (CH2 and CH3). A Nb is the VHH domain of heavy-chain antibody obtained by recombinant gene technology. (C) The difference in amino acid sequence of VH and 
VHH. The average length of the CDR1 and CDR3 is better in the VHH domain than in the VH domain. The dotted line indicates the additional disulfide bond between 
CDR1 and CDR3 of the VHH domain. The Numbering of the international ImMunoGeneTics-IMGT information system is pointed out. Adapted from J Biotechnol, 74(4), 
Muyldermans S. Single domain camel antibodies: current status. 277–302, Copyright (2001), with permission from Elsevier.196
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and complement-dependent cytotoxicity (CDC).31 

However, the molecular weight of a traditional antibody 
is as high as 150 kb,32 and its penetration ability is poor, 
so it is sometimes difficult to reach the target tissue. 
Relatively speaking, the molecular weight of Nb is 
small, so it is easy to penetrate the barrier to reach the 
cancerous tissue. For the moment, according to the 
above-mentioned characteristics of Nb, Nb drugs have 
been developed for different tumors (B-cell lymphoma, 
multiple myeloma, malignant glioma, colon cancer, liver 
cancer and breast cancer, etc.),33 which are widely related 
to tumor tracer diagnosis, direct targeted therapy, treat-
ment carriers and so on.

Nanobody Targeting Classic 
Tumor-Associated Receptor
Nb can be used as a new generation of drugs for the 
treatment of human diseases because of their unique phar-
macological and physicochemical properties. Nb is able to 
validly couple to the concaves on the appearance of 
protein.34 Furthermore, Nb has the capability of function-
ing in cells to target intracellular antigens.35,36 Nb has 
strong stability in extreme situations and can pass through 
the hemato-encephalic barrier.37 Because of its insuscept-
ibility to pepsin, oral administration may be used to 
enhance stomach function and improve gastrointestinal 
illness.38,39 In addition, Nb can easily be engineered for 
the new development of particular and efficient cures for 
certain diseases such as rotavirus infection.40 So far, apart 
from the application of Nb in microbial infection, treat-
ment of neurodegenerative diseases, anti-inflammation and 
immune regulation, the research results in tumor diagnosis 
and treatment are particularly outstanding.

EGFR (Epidermal Growth Factor Receptor) is highly 
expressed in almost most tumors and monoclonal antibodies 
have been produced on therapeutic drugs to target EGFR 
through 20 years’ endeavor in human malignancies.41,42 

However, mAb cannot easily penetrate tumor tissues due 
to the limitation of large molecular weights. Oliveira et al 
developed a probe based on anti-EGFR nanobody 7D12 
which was linked with the near-infrared fluorophore 
IRDye800CW and made a comparison with an anti-EGFR 
mAb cetuximab. 7D12-IR allowed tumor microenviron-
ment visualizable approximately only 30 minutes post injec-
tion, but no signal was detectable around the tumor site for 
cetuximab-IR.43 Therefore, results highlight that the Nb is 
considered superior to the mAb in penetrating tumor tissue 

for optical molecular imaging. Moreover, EGFR specific 
antibodies screened from the Nb library can block the 
binding of EGF to its receptors, thus inhibiting EGFR- 
mediated motility of signal transduction and proliferation 
of cells.44,45 Its polyvalent antibody might suffice to further 
facilitate the appetency of EGFR Nb. Meanwhile, in order 
to prolong its half-life in vivo, the dual-valent Nb of EGFR 
or coupled with mouse serum albumin can better inhibit the 
growth of tumors.46 Oliveira et al injected the nanobody 
targeting EGFR into mice, found that it specifically com-
bined with EGFR in tumor cells, and detected that the 
expression of EGF was down-regulated.47 Roovers et al 
and Sebastian et al have confirmed in animal experiments 
that the specific nanobody targeting EGFR can reach the 
tumor body more effectively, and the growth of solid tumor 
cells can be more effectively inhibited by competing with 
epidermal growth factor to bind EGFR site.48,49 Tijink et al 
found that the bivalent nanobody targeting EGFR or mouse 
serum albumin was coupled. It can better inhibit the growth 
of tumor cells.50

Carcinoembryonic antigen (CEA) was highly 
expressed in epithelial-derived cancer cells, but not or at 
a low level in normal cells.51 Moreover, in normal colon 
tissue, CEA is only expressed on the epithelium of the 
lumen, which is impenetrable by IgG antibody.52 CEA Nb 
fuses with β-lactamases to localize β-lactamases inside the 
tumor and kill the tumor in situ by catalyzing β-lactam 
anti-tumor prodrugs to produce cytotoxic drugs.53 This 
antibody-dependent enzyme prodrug therapy system can 
cause specific transplant tumor decline or cure, and has 
a strong targeting for tumor therapy.54 It has been proved 
by experiment that this conjugate can establish a non- 
adverse effect tumor treatment method by selectively acti-
vating anticancer precursors.53 In addition, CEA Nb is 
more sensitive in clinical diagnosis and treatment of lung 
cancer than traditional antibodies.55

Mucin 1 (MUC1) is not only overexpressed in a variety 
of tumor tissues but also glycosylation does not comple-
tely expose the concealed epitopes under normal condi-
tions, which has become the target of immune diagnosis 
and therapy.56,57 Rahbarizadeh F’s team screened MUC1 
Nb from the immune library for the first time.58 The Nb 
was well expressed in Escherichia coli,59 Pichia pastoris,60 

tobacco,61 and the rest. Then, they used MUC1’s Nb to 
construct chimeric antigen receptor modified T cells 
(CAR-T cells) and introduced the T cells into tumor cells 
to play the role of cellular immunity.62
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Hypoxia-inducible factor-1 α (HIF-1α) is a crucial 
transcription factor that accommodates endosomatic oxy-
gen homeostasis.63,64 It promotes the proliferation and 
metastasis of tumor cells by regulating angiogenesis and 
glucose metabolism through downstream target genes.65,66 

The GROOT group screened the specific antibody against 
the oxygen-dependent domain (ODD) of HIF-1α from the 
unimmunized camel-derived Nb library.67 The antibody 
down-regulated the transcriptional activity of HIF-1α to 
the target gene by binding to the ODD domain of HIF-1α. 
Since then, they have made an in-depth study on the 
conditional inactivation of HIF-1α with HIF-1α specific 
Nb. Through the binding of HIF-1α nanobody to the active 
site of PAS-B, the amount of HIF-1 (only the dimerization 
of HIF-1α and HIF-1β and tying up the target gene has 
transcriptional activation to the target gene) can be 
reduced, thus inhibiting the proliferation and metastasis 
of tumors.

Polyvalent antibodies targeting two or more different 
tumor-associated antigens at the same time can theoreti-
cally improve the anti-tumor efficacy to a certain extent. 
The multivalent Nb effect of anti-VEGF coupled with anti- 
angiopoietin 2 (ANG2) Nb was better than that of their 
monovalent Nb.68 The polyvalent antibody MaAbNA 
formed by the coupling of anti-EGFR Nb with two anti- 
HER2 is being verified in vivo.69 The recombinant protein 
formed by the fusion of anti-EGFR Nb and highly perme-
able cancer-specific associative peptide iRGD can enhance 
the anti-tumor clinical efficacy, and improve the perme-
ability of tumor tissue.70 Besides, through the guidance of 
signal sequence, direct targeted delivery of Nb in vivo has 
also become one of the methods to raise the efficacy of 
Nb. For example, linking anti-CapG Nb to the signal 
sequence T3s of EspF (E. coli-secreted protein F), intra-
cellular delivery of tumor cells by bacteria with type III 
protein secretion, or targeted delivery of tumor cells 
through SP-neurokinin-1 receptor pathway have achieved 
good results.71

Nanobody Targeting New 
Tumor-Associated Receptor
In addition to the above common tumor targets. For exam-
ple, the two G protein-coupled receptors (GPCRs) 
C-X-C chemokine receptor type 4 (CXCR4) and atypical 
chemokine receptor 3 (ACKR3) are members of the class 
A chemokine GPCR family and embody biological targets 
for human immunodeficiency virus (HIV) infection, 

cancerous growth, and auto-immune and inflammatory 
disorders.72 Binding of synthetic nanobody to the intracel-
lular transducer pocket of the receptor stabilized the great 
conformational change profiles of activated GPCRs.73 

ACKR3, which involved in stages of tumorigenesis, 
there is no reported description of mAbs against ACKR3 
in the development of preclinical or clinical research cur-
rently, whereas the ACKR3 targeting nanobody NB1-NB3 
effectively reduced tumor growth and improved overall 
survival in a xenograft model system by using the head 
and neck cancer 22A cell lines which highly express 
ACKR3. The preliminary experimental results suggested 
that the NB1-NB3 nanobody did not affect cell-cycle 
progression but restrained the excretion of angiogenic 
factor CXCL1.74 Therefore, it demonstrated that nanobody 
is a potential alternative to mAb advancing GPCR target-
ing under the circumstances that there are still no selective 
antibodies approved against ACKR3, thus ACKR3 target-
ing nanobodies are expected to reverse the immunosup-
pressive cancer microenvironment and use as the new 
clinic therapeutics or research tools.

Other new targets also provide a basis for Nb therapy. 
CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) is 
a member of a family of immunoglobulin-related receptors 
and serves as a critical regulator of T cell responses to 
tissues.75 Decreasing CTLA-4 function by nanobody 
blockade should activate self-reactive T cells and alter 
Treg homeostasis. Our previous study suggested that the 
CTLA-4 Nb16 induced CD8+ T cell activity with stronger 
cytotoxicity and anti-tumor effects against HepG2 cells for 
adoptive immunotherapy.76 CXCR4 is the receptor of che-
mokine CXCL12, and CXCL12 is likewise understood as 
stromal cell-derived factor-1 (SDF-1).77 CXCR4 Nb can 
block the formulation of CXCR4/CXCL12 axis,78 thus 
imposing restrictions on the propagation of cancer 
cells;79,80 Endothelial glycoprotein endoglin (CD105) Nb 
restricts endoglin-mediated signal transduction pathway 
and has an anti-proliferative effect on neovascular 
endothelial cells in tumor and neovascularization;81,82 

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) 
Nb inhibits the invasion and metastasis of tumor cells by 
controlling the expression of genes related to tumor 
progression;83–85 CapG Nb can control G-actin aggrega-
tion and strongly inhibit breast cancer metastasis;71 The 
novel, orally administered anti-TNF agent, nanobody 
V565, having achieved Phase II trials for treatment of 
Crohn’s disease.86 The α3β1 integrin (VLA-3) Nb can 
inhibit VLA-3-connected cell-matrix adhesion.87 The 
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increase of B cell-activating factor (BAFF) seemingly 
contribute to various B cell diseases. Anti-BAFF Nb can 
cut down extracorporeal cell proliferation in cancer 
tumors.88 Anti-BAFF/CD20 bispecific Nb can improve 
the tissue targeting of B-cell disease and change the drug 
resistance of patients with chronic lymphoblastic leukemia 
(CLL) to CD20 antibody therapy.89 CD38, as a cell surface 
antigen, can heavily be expressed in a number of hemato-
logical diseases, including multiple myeloma, and it has 
been verified to be a conducive target for immunotherapy 
strategy against this disease.90 A few Nb can influence 
CD38 activity in a dose-dependent mode and specifically 
target tumor cell CD38 in mouse xenotransplantation 
model.91,92 Because of its high solubility, Nb can form 
chimeric antibodies with hinge, CH2 and CH3 domains of 
human IgG1, this chimeric antibody can induce classical 
Fc-mediated cytotoxicity.93 Although Nb has made much 
exciting progress in the tumor therapy side, the pharma-
cokinetics, targeting effect and immunogenicity of Nb 
drugs undergo further optimization.

Nanobody as Targeting Ligand for Tumor 
Drug Delivery
In the design of the targeted nano-drug delivery system, 
the antibody-drug conjugates (ADCs) coupled with the 
surface of nanoparticles (NPs) or conjugated directly 
with drug molecules can achieve the targeted delivery of 
traditional anticancer drugs.94 ADCs are rather a concept 
of targeted drug design that has attracted much attention in 
clinical practice. Compared with small-molecule ligands 
such as folic acid and RGD (Arg-Gly-Asp) tripeptides, the 
most prominent advantage of antibodies is the excellent 
targeting performance of antibody-antigen binding.95,96 

Since Trasmzumab was used in the treatment of HER2+ 

breast cancer in 1998, the development of mAb antibody 
drugs targeting the EGFR family has been gaining 
momentum.97 The huge advantages in tumor clinical treat-
ment, such as reducing toxic and side effects and over-
coming multidrug resistance, make the research and 
application of antibody drugs in clinical treatment have 
a great prospect.98,99 Nb, a star molecule, is expected to 
replace mAb and becomes a feasible strategy to improve 
the effectiveness of nanomaterials-based cancer diagnosis 
and therapy. As early as 2004, Cortez-Retamozo and her 
team fused Nb targeting human tumor-associated embry-
ogenesis with Enterobacter Cloacae β-lactamase in the 
form of fusion expression to prepare nanobody 

conjugations which had better target ability in animal 
model experiments and has the obvious effect of decreas-
ing tumor size and even curing the animals.53

Traditional small molecule anticancer drugs are often 
limited in clinical application due to side effects and drug 
resistance. The concept of nanodrug delivery system 
(nanoDDS) reflected the new design philosophy for drug 
delivery methods.100 Embedding small-molecule che-
motherapeutics with nanoscale drug carriers can not only 
solve the problem of hydrophobic drug solubility, the 
problem of easy removal of drugs in the blood circulation 
process, and the accumulation of difficult drugs in the 
treatment target.101 In addition, it is also possible to pre-
pare an integrated diagnosis and treatment system, a multi- 
drug co-transport system, chemotherapy combined with 
light and hyperthermia, or a combined system of che-
motherapy with other means of complex system.102 The 
multifunctional DNA-based nano platinum-drug delivery 
system provided a promising strategy for the treatment of 
tumors, an anti-EGFR Nb was conjugated to DNA and 
assembled on to double-bundle DNA tetrahedron, which 
presented the first example of DNA intercalator and EGFR 
blockade.103 By modifying nanoDDS with targeted func-
tions of ligands, the enrichment of nanomedicine in tumor 
tissues can be enhanced so as to improve the distribution 
of drug system in vivo and increase the specific uptake of 
nanoDDS by tumor cells.104,105 There are quite a few 
researches about modifying Nb on the outer layer of nano-
particles to enable nanoDDS actively targeted,106 such as 
liposomes,107 micelles,108 protein nanostructures,109 inor-
ganic nanoparticles,110 polymer composites,111 etc.

Although Nb has no Fc effector and does not produce 
cytotoxic effects such as ADCC like traditional antibodies, 
it can be used as a targeting moiety on liposomes or 
nanoparticles encapsulating cytotoxic drugs to enhance 
the killing effect of tumor because of its high specificity 
and strong tissue penetration in Figure 4.112,113 For exam-
ple, VEGFR2 Nb-associated Pseudomonas aeruginosa 
exotoxin has a better anti-tumor effect,114 and DM1, 
a microtubule polymerization inhibitor associated with 
major histocompatibility complex-II (MHC-II) Nb, also 
has a good therapeutic effect.94 The formation and 
mechanism of nanobody-drug conjugates for targeting 
tumor cell with overexpressing EGFR is systematically 
elucidated in Figure 5 and the nanobody-based platform 
for targeted treatment system has been developed.115 

Neural stem cells (NSC) were transfected with recombi-
nant proteins encoding bivalent anti-EGFR Nb and 
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Figure 4 Diagrammatic sketch of nanobody-based therapeutic drug design. Left: Receptor antagonists, interfere with signal transduction and receptor activation; Middle: 
Targeting part of effector domain, such as medicine or toxic peptides; Right: Targeting molecules on the surface of nanoparticles, such as micelles or liposomes. Adapted 
from Bannas P, Hambach J, Koch-Nolte F. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Front Immunol. 2017;8:1603. 
Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.20

Figure 5 Schematic illustration of the construction and mechanism of nanobody-drug conjugates for targeting tumor cell. Nanobody targeting intracellular tumor marker to 
inhibit growth and proliferation after intravenous injection of tumor-bearing mouse: effective accumulation in tumor tissues; penetrating into tumor parenchyma; and 
internalized into cancer cells to produce combined chemotherapy and immunotherapy. Adapted with permission from Wang F, Zhang L, Bai X, et al. Stimuli-Responsive 
Nanocarrier for Co-delivery of MiR-31 and Doxorubicin To Suppress High MtEF4 Cancer. ACS Appl Mater Interfaces. 2018;10(26):22767–22775. Copyright (2018) American 
Chemical Society.197
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cytotoxic TRAIL, which significantly reduced the viability 
of malignant glioma cells.116 A HER2-specific Nb comes 
complete with a molecule that can recruit anti- 
dinitrophenyl antibodies that can cause tumor cell 
destruction.117 Polymeric nanoparticles can serve as 
a vehicle for the delivery of cytotoxic proteins that have 
intracellular targets, that selective uptake can be attained 
by decorating the surface of the NPs with the 11A4 nano-
body that is specific for the HER2 receptor.118 The flexible 
nanobody-based system can be adapted to load pentami-
dine, and designed with components based on polyethy-
lene glycol (PEG) and were conjugated with a nanobody 
that specifically recognizes the protozoan pathogen 
Trypanosoma brucei.119 Simone and his group have pio-
neered the application of elastin-like polypeptides (ELPs) 
as the same category of peptide polymers that self- 
assembly into nanoparticles for drug delivery to optimize 
the ligand-nanoparticle interface to enhance cancer cell 
targeting by polymer micelles.120 In the antibody-directed 
enzyme-catalyzed prodrug therapy (ADEPT) experiment, 
it was found that the Nb of anti-CEA delivered the coupled 
β-lactamases to the surface of CEA+ tumor cells, activat-
ing the anticancer prodrug cephalosporin nitrogen mus-
tard, thus improving the selectivity of anticancer drugs to 
tumor cells.53 The relevant experimental results showed 
that the EGFR-Rapa-NPs system modified with EGFR 
antibody had a better tumor inhibition effect than the 
drug delivery particles without antibody conjunction, and 
at the same time had significant cellular selectivity.121 The 
Nb of the target EGFR was acylated by biotin and coupled 
with the colloidal particles coated with streptavidin, which 
could directly target EGFR+ liver tumor cells.122 Targeting 
plexinD1 (a membrane-penetrating protein expressed in 
tumor vessels) Nb-modified tumor vascular targeted poly-
merase represented a promising approach in treating diver-
gent carcinomatosis.104,123

Therefore, Nb can play an important role as a drug 
delivery system. The sealed drugs can be delivered to the 
action site by using the specificity of mass production of 
versatile nanobody repertoires.124,125 The Belgian pharma-
ceutical firm Ablynx stepped into standard nanobody ther-
apy which was tiny enough in volume that can be ingested, 
whereas the traditional antibody drug was given by injec-
tion to enter the bloodstream.126 This method can avoid the 
systemic toxicity caused by common drug administration, 
and allow hydrophobic drugs to be transported in hydro-
philic structures. In addition, large doses of drugs can be 
administered in this way, these drug delivery systems 

incorporated into Nb can protect drugs against oxide- 
reduction and enzymatic reactions, so as to avoid the immu-
nogenicity produced by multiple administration.127–129 

Coupled with the effect of other drugs and Nb itself can 
inhibit tumor growth, which is equivalent to the dual func-
tion of Nb.

Nanobody in Combination with 
Other Tumor Therapies
Nanobody Combining with Radioimmune 
Therapy (RIT)
At present, the main radionuclides used in clinic are β- 
decay nuclides, including 90Y, 131I and 177Lu, but some α- 
decay nuclides have been used.130 The radionuclide labeled 
anti-CD20 monoclonal antibody (90Y-ibritumomab tiuxe-
tan) approved by FDA has been put on the market,131 and 
44 kinds of these drugs in the treatment of solid tumors and 
hematological malignant tumors are in clinical trials.132,133 

When common radiopharmaceuticals are used in RIT, while 
the advantage of long half-life brings bad pharmacokinetic 
characteristics to radionuclides and poor permeability to 
tumors, which limits their targeting effect. By comparison, 
the radiolabeled Nb is more targeted and can be quickly 
removed from the blood.134 177Lu-labeled targeted 
M protein (M protein is a monoclonal antibody produced 
by malignant plasma cells) Nb is being used in the treat-
ment of multiple myeloma in order to inhibit the progres-
sion of the disease.135 The 2Rs15d of 177Lu labeled targeted 
HER2 was prepared. The metal binding region of the 
bifunctional joint 1B4MDTPA was connected with radio-
nuclides and the chemically active region was connected 
with Nb.136 In order to avoid radiation damage caused by 
the accumulation of Nb in renal tissue, co-administration 
with plasma expander succinyl gelatin (Gelofusin) could 
almost completely block the growth of tumor in HER2+ 

tumor-bearing mice. There was critical variation among 
event-free survival (EFS) between the treated group and 
the non-treated group.137

Nanobody Combining with Photodynamic 
Therapy (PDT)
In contrast to radionuclides in RIT, PDT can damage 
irreparably tumor cells via motivating photosensitizer 
(PS).138 On the basis of PDT preponderance for precise 
treatment and slight side effect,139 currently at the fore-
front of research, PS takes on a shape of treelike gold 
nanoparticles (branched gold NP), because of its huge 
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absorption cross section, NP will destroy tumor cells 
through heat production after laser irradiation.140 The 
junction which might selectively accumulate in vivo 
between Anti-HER2 nanobody and PS can give rise to 
striking inhibitory effect on especially against trastuzumab 
HER2+ breast carcinoma with a single course of therapy, 
the tumor extinction was positive dose dependent, which 
will greatly enhance specifical targeting for photothermal 
anticancer agents.141 The combination of molecular ima-
ging and tumor therapy in the connection application of 
Anti-EGFR univalent or multivalent Nb and traceable PS 
(IRDye-700DX) is major progress in the clinical applica-
tion of PDT technology.142

Nanobody-Modified CAR-T Therapy
Nb can be more than just steering anti-tumor function, 
medicine carrier system or radionuclide treatment, but act 
an adjustive character on macrophages which have long 
been considered to be important immune effector cells.143 

Cytokines are molecules which possess broad develop-
ment prospect to be used in anti-tumor immune treatment 
on account of irritating the natural killer cells of both 
innate and acquired immunity.144,145 According to the 
theory that FcγRIIIa (CD16a) on immune effector cells 
can mediate cytotoxicity, two Nb (C21 and C28) specifi-
cally binding to FcγRIIIa isolated from camel immune 
library indirectly mediate the ADCC effect of NK 
cells.146 If the Nb is linked to anti-CEA Nb, it can dissolve 
CEA+ tumor cells through NK cells in vitro models of 
human cells and tissues, and also suppress cancer cell 
growth in CEA+ tumor transplanted mice, which fosters 
new thinking on the development of anti-tumor Nb.147

There was too much of a correlation between immune 
infiltration and tumor microenvironment (TME), which 
has turned out to be enormously successful in clinical 
cancer immunotherapeutic.148,149 CAR-T cell therapy is 
one of the research hotspots of tumor immunotherapy 
and has a good prospect for the treatment of hematological 
tumors, which makes patients’ own T cells genetically 
modified to better attack cancer cells (Figure 
6B).150,151,195 Compared with traditional antibodies, Nb 
has more advantages in the process of constructing CAR- 
T cell.152 At present, the binding sites of antigens recog-
nized in CAR are mostly designed based on the scFv 
(Figure 6A), which has high immunogenicity. Nb can 
reduce this kind of immunogenicity.153 CAR-T cells 
obtained by using Nb as a connecting or targeting part is 
also one of the effective ways to avoid tumor escape. At 

the same time, it was found that Nb-based CAR-T could 
fully exert its advantages of T cell immunotherapy, such as 
resultful tumor invasion and metastasis, induced the 
release of inflammatory cytokines and cytotoxic action. 
On the Nb treatment side, which also has relative com-
parative advantages in small size, decreased immunogeni-
city and strong specificity of related tumor antigens.154 For 
instance, CAR targeting melanocyte differentiation antigen 
gp100 Nb can inhibit the development of melanoma 
in vivo.155

However, CAR-T cells are not good at treating solid 
tumors because it is difficult to find tumor-specific proteins 
that can be used as safe targets in solid carcinoma.156 

Given the current situation that CAR-T cell treatment has 
yet to be extrapolated to solid malignancies, researchers 
plan to solve this problem according to the characteristics 
of Nb, which can advance CAR-T cell technology for 
therapy of carcinoma.149 One of the unique properties of 
Nb is its enhanced targeting ability to carry imaging agents 
so that metastatic tumors can be visualized accurately. 
Jailkhani and his team directed these Nb to the tumor 
extracellular matrix (ECM) or as targeted imaging agents 
for ECM, mainly targeting the tumor microenvironment 
that surrounds cancer cells.157 The CAR-T cells con-
structed by some investigators are embedded with Nb, to 
recognize specific proteins in the tumor microenviron-
ment, and Nbs usually carry signals that guide them to 
kill the cells they can bind to.158,159 For example, a protein 
called EIIIB is a variant of fibronectin and is found only in 
neovascularization that provides nutrients for tumors.160 

The other is PD-L1, an immunosuppressive protein that 
is used by most tumors to silence neighboring T cells.161 

Use these relatively specific antigens to prepare Nb-based 
CAR-T cells. By testing in two different melanoma mouse 
models, these cells can kill tumor cells and significantly 
improved the survival of these mice without distinct side 
effects. Targeting EIIIB may damage blood vessels in 
a way that reduces the tumor’s blood supply while making 
them more permeable to tumor drugs. The preliminary 
results show that the method may achieve ideal results 
for many solid tumors, such as pancreatic cancer and 
cholangiocarcinoma models.149

Although CAR-T can effectively induce T cells to 
attack tumor cells, it can also produce side effects such 
as cytokine storm syndrome.162 In order to further reduce 
this side effect and improve the curative effect, some 
researchers developed a T cell antigen coupling agent, 
which can couple the chimeric antigen of endogenous 
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TCR, namely chimeric TAC-T (T cell antigen coupler-T 
cell).163 It mainly includes the design of three key parts: 
one is that the extracellular antigen binding domain is 
changed into Nb, the second part is extracellular anti- 
CD3 scFv, and the third part is the membrane-penetrating 
CD4 domain connecting protein kinase LCK. TAC-T 
represents a significant advance in CAR-T and TCR-T 
therapies because TAC is able to identify tumor cells 
more selectively, utilize natural activation and regulatory 
mechanisms to activate T cells through natural TCR, and 
lack tonic signaling, so that T memory cells persist 
(instead of being depleted).164,165 Thus, TAC engineered 
T cells can reasonably hope to facilitate a treatable tumor- 
specific reaction that reduces toxicity and eliminates solid 
tumors.166 In the solid tumor model, TAC-T cells showed 
stronger anti-tumor effect, lower cytotoxic side effects, 

faster tumor penetration and higher therapeutic index 
than CAR-T cells activated by the second signal based 
on CD28. According to the efficacy of TAC-T cells and 
the biological characteristics of Nb, TAC-T-like cells 
based on Nb may also produce more ideal therapeutic 
effects.167

Challenges and Prospects in 
Nanobody-Related Tumor Therapy
Antibodies have been used more than decades for ectophy-
laxination to treat infected patients. While polyclonal anti-
bodies produce superior neutralization and thus better 
protection under normal circumstances, monoclonal Nb 
selected for recognition of special epitopes might reach an 
exceedingly high-neutralization potency.168 Although the 
current research results show that Nb has great potential 

Figure 6 A brief flow chart of engineered-T cell therapy. (A) represents the CAR, which includes the single-chain variable fragment (scFv) that binds to tumor antigens, 
fused to a spacer and transmembrane domain. The intracellular domain contains costimulatory domains, such as CD28 and 4–1BB and the CD3ζ chain, which cause signal 
activation and amplification of CAR T cells. S–S denotes disulfide bond. Adapted from Tyagarajan S, Spencer, Smith J. Optimizing CAR-T Cell Manufacturing Processes during 
Pivotal Clinical Trials. MOI Ther Methods Clin Dev. 2020;16:136-144. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/ 
legalcode.194 (B) shows a process of CAR-T therapy, firstly apply the patient’s own T lymphocytes, which have been reconstructed in the laboratory and loaded with 
receptors and co-stimulating molecules that recognize tumor antigens. After amplification in vitro, they are re-introduced to the patient to recognize and attack their own 
tumor cells. Adapted from Tyagarajan S, Spencer, Smith J. Optimizing CAR-T Cell Manufacturing Processes during Pivotal Clinical Trials. MOI Ther Methods Clin Dev. 
2020;16:136-144. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.194
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in tumor treatment,169 the application of Nb still has some 
weaknesses: (1) The immunized animals such as camels are 
relatively expensive compared with the frequently used 
mice for the production of antibody.113 (2) Their small 
dimension is also a disadvantage in cancer treatment as 
they are rapidly eliminated from the blood via individual 
kidney glomerular filtration, hence a small proportion of the 
total Nbs aggregate at the site of action, which might be 
settled by administration of standard and high dose 
regimens.170 (3) The negative impact that Nb will not 
biodegrade immediately when they are released into the 
environment due to it yields higher stability,171 therefore 
the risks of Nb need to be evaluated due to antibiotics 
release in groundwater can destruct agriculture.172

On account of nanobodies connect the salutary prop-
erties of micromolecule and monoclonal antibodies, an 
attractive agent for new therapeutic strategies is likely to 
emerge. Until now, biomedical engineering is turning 
into a level of subcellular, which is advanced with 
a rapid-developing field of research on nano diagnostics, 
nanomedicine and nano therapy in joint with the success 
of nanoparticles on sickness prevention and health 
promotion.173 Cancer treatment has hit a bottleneck, 
tumor cells proliferate in complicated tumor microenvir-
onments, thus causing heterogeneous diseases, usually 
with a fatal outcome in later stages for the patient. 
Therefore, nanobody emerges as the times require. 
Nanobody is a new and unparalleled class of multiple 
antigen-binding fragments, which originated from 
heavy-chain antibodies extracted from the serum of 
camelids naturally. Their favorable characteristics like 
small size, strong consistency, top antigen-binding affi-
nity, natural formation and water-soluble material might 
generate the next cancer drug. Consequently, Nb has 
extraordinary potential in cancer care and control, and 
is anticipated to make a significant breakthrough tech-
nology in immunotherapy field. Their small volume 
acquires them conducive to target antigens residing in 
different tissues that are impotently vascularized and 
barely accessible.

The infiltration and growth of certain types of solid 
tumors typically hinge on the generation of new blood 
vessels and acceleration of their maturation and stabiliza-
tion. Previous studies have shown that a few nanobodies 
take part in impacting this phenomenon of 
vascularization.174 Up to now, potential targets applied to 
nanobody-based therapies are extracellular targets. For 
instance, ligand receptors or transmembrane proteins with 

differential expression in major target cells. For this pur-
pose, nanobodies against transmembrane growth factor 
receptors EGFR, VEGFR-2, c-Met and chemokine recep-
tor type 7 (CXCR7) have been developed.175–179 those 
receptors have been related to cancerous growths. 
Moreover, in oncologic therapeutic areas understanding 
the molecular biology of the disease increases; thus, the 
chances of developing specific targeted drugs increase. So 
nanobodies can be used either as antagonists, to prevent 
ligand binding and causing conformational changes that 
lead to activation of signaling cascades for the cancer 
therapy, their superior properties (small size, high antigen- 
binding affinity, low immunogenicity, high stability and 
solubility) allowed for several groups to conduct clinical 
trials.180–182

Based on the fact that nanobodies can bind to each 
protein and enzyme to form a combination with dual 
functions, the inactive prodrugs can be transformed into 
active drugs that can kill cancer cells, so as to focus on 
targeted chemotherapy of tumor cells, to achieve high 
efficiency and without any adverse reactions. It is envi-
saged that the construction of nanobodies and molecular 
drugs for the treatment of cancer will make use of the 
targeting and good tissue permeability of nanobodies. It 
will make antineoplastic drugs cease a more directly effec-
tive function especially in imaging and radionuclide 
therapy.183

The construction of multi-target nanocomposite anti-
body or multi-target combination of drugs will bring 
a new perspective to the treatment strategy of malignant 
diseases and play a better curative effect. With the in- 
depth study of biochemistry and human genomics and the 
exploration and development of nanobodies, an increase 
number of therapeutic targets for cancer will be found. 
Recently a shuttling-nanobody FC5 that targets immuno-
logical access linked to neuroinflammation for drug 
delivery technique of breaking brain barrier has been 
developed.184 According to this, an ideal nanomedicine 
might have the following characteristics, which include 
tumor accumulation, deep penetration, long circulation, 
cellular internalization, and drug release for highly effi-
cient tumor-associated therapeutic strategies (Figure 7). 
In the context of the global outbreak of COVID-19 pan-
demic and urgent demand of pressing development for 
effective prophylactics or therapeutics especially for 
immunocompromised patients. LQ050, the world’s first 
inhaled COVID-19 neutralizing nanobody drug, due to its 
excellent stability profile, and superior nebulization, 
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might be the first nanobody drug against SARS-COV 
with the delivery manner of respiratory drug.185 As 
a result, the targeted therapy of nanobodies for tumor 
treatment has entered a new era.

The optimization of phage display technology will pro-
mote the construction of Nb library and the screening of 
specific Nb. The improvement of humanized Nb will further 
reduce the immunogenicity of Nb and improve the safety and 
effectiveness. Its strong tissue penetration will facilitate the 
intervention and treatment of solid tumors, especially the 
local microenvironment.186 Nano-carriers carrying radionu-
clides, toxins or chemotherapeutic drugs will provide more 
treatments for tumor patients. CAR-T or TAC-T based on Nb 
will become the replacement of traditional CAR-T. The 
nanobody platform is now a main focus for immuno- 
oncology discovery research for pharmaceuticals giant and 
nanobody is now being tested in a series of clinical trials 

which are shown in Table 1.187 In a word, Nb will achieve 
a breakthrough in replacing traditional targeted antibody 
drugs, ADC drugs, fusion proteins, local tumor intervention 
therapy and oral antibody therapy.

Conclusion
To summarize, nanobodies are versatile molecules with favor-
able properties and have been evaluated for both therapeutic 
and diagnostic applications, as well as research tools. 
Nanobodies are featured by their small size, increased solubi-
lity as well as desirable stability opening up the gate towards 
previously inaccessible antigens in cancer immunotherapy. 
These tiny antibodies outperform conventional antibodies in 
quite a few respects and thrive in extreme conditions, ulti-
mately, they will occupy a momentous portion of the antibody 
reagent market. After the initial research on functional heavy 
chain antibodies in alpaca, the versatility of antigen-binding 

Figure 7 Nanoparticles as antitumor Drugs. The overall therapeutic efficiency of a nanobody-based compound medicine is determined by its efficiency in each step. During 
the transportation of blood lumen and tumor tissue, it must hold the drug tightly without burst release, and synchronously release the drug until at the intracellular site to 
exert its pharmaceutical action. Adapted with permission of Royal Society of Chemistry, Chem Soc Rev, from Influence of nanomedicine mechanical properties on tumor 
targeting delivery. Li Z, Xiao C, Yong T, Li Z, Gan L, Yang X.  49(8):2273–2290, copyright 2020; permission conveyed through Copyright Clearance Center, Inc.198
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proteins, strategies for their functionalization and methods for 
their cellular delivery lay a potent foundation for next- 
generation diagnostics and therapeutic tools with outstanding 
properties. The way is now open to further exploit the inex-
haustible potential of nanobodies and to further position them 
as pharmaceuticals for use in daily clinical practice.

Abbreviations
scFv, single-chain variable fragment; Nb, nanobody; sdAb, 
single domain antibody; HcAb, heavy chain antibody; 
CDR, complementarity determining region; CH, constant 
domains of heavy chain; CL, constant domain of light 
chain; Fab, antigen-binding fragment; Fc, fragment crystal-
lizable region; FR, frame region; VH, variable domain of 
heavy chain; VHH, variable domain of heavy chain anti-
bodies; VL, variable domain of light chain; ADCC, anti-
body-dependent cell-mediated cytotoxicity; CDC, 
complement-dependent cytotoxicity; EGFR, epidermal 
growth factor receptor; CEA, carcinoembryonic antigen; 
MUC1, Mucin 1; CAR-T cells, chimeric antigen receptor 

modified T cells; HIF-1α, hypoxia inducible factor-1 α; 
ODD, oxygen-dependent domain; ANG2, angiopoietin 2; 
EspF, E. coli-secreted protein F; GPCRs, G protein-coupled 
receptors; CXCR4, chemokine receptor type 4; ACKR3, 
atypical chemokine receptor 3; HIV, human immunodefi-
ciency virus; CTLA-4, cytotoxic T lymphocyte-associated 
antigen-4; SDF-1, stromal cell derived factor-1; CD105, 
endoglin; hnRNP K, heterogeneous nuclear ribonucleopro-
tein K; VLA-3, α3β1 integrin; BAFF, B cell-activating 
factor; CLL, chronic lymphoblastic leukemia; ADCs, anti-
body-drug conjugates; NPs, nanoparticles; nanoDDS, nano-
drug delivery system; MHC-II, major histocompatibility 
complex-II; NSC, neural stem cells; PEG, polyethylene 
glycol; ELPs, elastin-like polypeptides; ADEPT, antibody- 
directed enzyme-catalyzed prodrug therapy; RIT, radioim-
mune therapy; EFS, event-free survival; PDT, photody-
namic therapy; PS, photosensitizer; TME, tumor 
microenvironment; ECM, extracellular matrix; TAC-T, 
T cell antigen coupler-T cell; CXCR7, chemokine receptor 
type 7; TNF, tumor necrosis factor; IL, interleukin; RANK, 

Table 1 Nanobody in Clinical Trials

Molecule Target Disease Examples Current 
Status

References/ 
Sponsor

Caplacizumab (ALX-0081) Von Willebrand factor Acquired thrombotic 

thrombocytopenic purpura

Approved [182,188]

Ozoralizumab (ATN-103) TNF-α Rheumatoid arthritis Phase 2 Ablynx

M1095(ALX-0761) IL-17A, IL-17F Psoriasis Phase 1 [189]

Vobarilizumab (ALX-0061) IL-6R Rheumatoid arthritis, systemic lupus 
erythematosus

Phase 2 [190]

ALX-0141 RANK ligand Osteoporosis, bone metastasis Phase 1 Ablynx

BCMA nanobody CAR-T 

cells

BCMA Relapsed/Refractory Myeloma Phase 1 Yongping 

Song

αPD1-MSLN-CAR T cells MSLN Non-small-cell Lung Cancer, 

mesothelioma, colorectal cancer, 
ovarian cancer

Early 

Phase 1

Xiaorong 

Dong

M6495 A Disintegrin and Metalloproteinase With 
Thrombospondin Motifs-5 (ADAMTS-5)

Osteoarthritis, Knee Phase 1 [191]

CD20/HER2 Bispecific 
Nanobody-derived CAR-T 

Cells

CD20, HER2 B cell leukemias, lymphomas Preclinical [192]

ALX-0651 CXCR4 Healthy Volunteers Phase 1 Ablynx

ALX-0171 RSV F-protein RSV Infection Phase 2 [193]

Notes: Ablynx, Clinicaltrials.gov, PubMed, FDA. 
Abbreviations: TNF, tumor necrosis factor; IL, interleukin; RANK, receptor activator for nuclear factor-κ B; BCMA, B cell maturation antigen; MSLN, mesothelin; HER2, 
c-erbB-2; CXCR4, C-X-C motif chemokine receptor 4; RSV, respiratory syncytial virus.
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receptor activator for nuclear factor-κ B; BCMA, B cell 
maturation antigen; MSLN, mesothelin; HER2, c-erbB-2; 
RSV, respiratory syncytial virus.
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