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Background: Observational studies have revealed a potential association between gastroesophageal 
reflux disease (GERD) and lung cancer (LC), but the genetic role in their comorbidity have not been fully 
elucidated. This study aimed to comprehensively dissect the genetic link underlying GERD and LC.
Methods: Using large-scale genome-wide association study (GWAS) data, we investigated shared genetic 
architecture between GERD and LC. Our analyses encompassed genetic correlation, cross-trait meta-
analysis, transcriptome-wide association studies (TWASs), and the evaluation of the causality though a 
bidirectional Mendelian randomization (MR) analysis with sufficient sensitivities.
Results: We identified a significant genome-wide genetic correlation between GERD and overall LC 
(rg=0.33, P=1.58×10−14), as well as across other subtype-specific LC (rg ranging from 0.19 to 0.39). After 
separating the whole genome into approximately 2,353 independent regions, 5 specific regions demonstrated 
significant local genetic correlation, with most significant region located at 9q33.3. Cross-trait meta-
analysis revealed 22 pleiotropic loci between GERD and LC, including 3 novel loci (rs537160, rs10156445, 
and rs17391694). TWASs discovered a total of 49 genes shared in multiple tissues, such as lung tissues, 
esophagus muscularis, esophagus mucosa, and esophagus gastroesophageal junction. MR analysis suggested 
a significantly causal relationship between GERD and overall LC [odds ratio (OR) =1.34, 95% confidence 
interval (CI): 1.19–1.51], as well as other subtype-specific LC (OR ranging from 1.25 to 1.76). No evidence 
supports a significant causal effect of LC on GERD.
Conclusions: Our findings suggest intrinsic genetic correlation underlying GERD and LC, which 
provides valuable insights for screening and management of LC in individuals with GERD.
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Introduction

Gastroesophageal reflux disease (GERD), characterized 
by troublesome symptoms and complications caused by 
the reflux of duodenogastric contents, is a common and 
chronic condition affecting approximately 2.5% to 33.1% 
of the global population (1,2). Recurrent micro-aspiration 
from the refluxed contents is associated with higher risk 
of multiple lung diseases, including pneumonia, asthma, 
bronchiolitis obliterans syndrome, idiopathic pulmonary 
fibrosis, and chronic obstructive pulmonary disease (3-6). 
Additionally, underlying links between GERD and non-
esophageal cancer have been also recognized (7). Lung 
cancer (LC), as one of the most prevalent malignancies, 
remains the leading cause in both incidence rate and 
mortality worldwide (8). Recent epidemiological studies 
have observed a significant phenotypic association between 
GERD and LC. Leveraging data from the National Health 
Insurance Research Database of Taiwan (15,412 cases 
and 60,957 controls), Hsu et al. found that patients with 
GERD were associated with significantly elevated risk of 
LC in comparison to those without (9). More recently, a 
multinational cohort study enrolled 812,617 patients with 
GERD to investigate the impact of anti-reflux surgery on the 
risk of distinct histological types of LC (10). Similarly, this 
study found that anti-reflux surgery significantly decreased 
the risk of small-cell lung cancer (SCLC) and lung squamous 
cell carcinoma (LUSC), and showed a protective trend for 
lung adenocarcinoma (LUAD). Despite this, phenotypic 

correlations revealed in conventional epidemiological studies 
were susceptible to potential biases, confounding factors, and 
reverse causality due to the observational nature (11).

Utilizing genetic data for phenotypic correlation analysis 
offers a distinct advantage over observational studies, as 
it can effectively circumvent the issue of reverse causality 
and can also minimize the potential confounding with 
meticulous design. With the increasing sample size of 
genome-wide association studies (GWAS), previous studies 
have identified a substantial number of genetic variants 
[single nucleotide polymorphisms (SNPs)] associated with 
GERD (88 SNPs) and LC (56 SNPs) (12,13). Furthermore, 
utilizing the design of the twin study, heritability of GERD 
and LC has been estimated as 30–31% (14,15) and 18–26% 
(16,17), respectively. This underscores a significant genetic 
component in disease susceptibility.

In this context, several Mendelian randomization (MR) 
studies have been conducted using genetic variants as 
instrumental variables (IVs), and consistently identified 
a causal association between GERD and LC, with odds 
ratio (OR) ranging from 1.25 to 1.37 (18-20). Nonetheless, 
multiple significant gaps in previous investigations remain 
to be filled. Firstly, prior MR studies used GWAS data 
with relatively small sample sizes (18,19), particularly for 
SCLC, which restricted the statistical power. Secondly, 
the insufficient sensitivity analyses did not guarantee 
the core model assumptions, thereby impeding the 
robustness of results (21). Finally, the adoption of limited 
confounders, such as smoking status and obesity, may 
not comprehensively account for potential pleiotropy in 
complex traits (20,22).

Therefore, a novel statistical genetic tool named genome-
wide cross-trait analysis was utilized to dissect shared 
genetic components in complex traits, using summary data 
from the large-scale GWAS studies (11,23). Specifically, 
we measured the genetic correlation, identified the shared 
loci, and finally inferred a putative causal association 
through the bidirectional two-sample MR analysis. Figure 1 
illustrates the overall study design. We present this article in 
accordance with the STREGA reporting checklist (available 
at https://tlcr.amegroups.com/article/view/10.21037/tlcr-
24-345/rc) (24). 

Methods

GWAS summary datasets

In the study, summary data from the hitherto largest GWAS 
of GERD and LC were leveraged for genetic analyses, both 
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exclusively focused on individuals of European ancestry. 
The detailed information for the GWAS data of both traits 
is shown in Table S1.

The largest GWAS study on GERD derived from the 
meta-analyzing data by Ong et al. in 2022 (12), which 
combined up to 367,441 (78,707 cases) European individuals 
from the UK Biobank (UKBB) study (35,4285 individuals) 
and Queensland Sun and Health Study (QSKIN) study 
(13,156 individuals). GERD was defined based on a 
combination of self-reported GERD symptoms such as 
heartburn, the use of GERD medication, and hospital 
records [The International Classification of Diseases, Tenth 
Revision (ICD-10)]. The Haplotype Reference Consortium 
(HRC) reference panel was used to impute the genotype 
data. To combine the GWAS data from the UKB and 
QSKIN cohorts, a fixed-effect inverse variance-weighted 
(IVW) meta-analysis was performed.

For overall LC and subtype-specific LC, the largest 
GWAS data were a meta-analysis of data from McKay 

et al. in 2017 (25). The GWAS summary data from 
the International Lung Cancer Consortium (ILCCO) 
combined a total of 29,266 LC cases and 56,450 controls, 
which included 11,273 LUAD, 7,426 LUSC, and 2,664 
SCLC. Imputation was performed on variants based on the 
1000 Genomes Project (1KGP) Phase 3 panel. The fixed-
effect IVW meta-analysis was carried out to combine the 
GWAS data. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Statistical analyses

Genome-wide genetic correlation analysis
We performed linkage disequilibrium (LD) score regression 
(LDSC) analysis to evaluate the genome-wide genetic 
correlations between two traits, utilizing GWAS summary 
statistics in the calculation (26). LDSC estimates genetic 
correlation (rg) on a scale from −1 to +1. It leverages the 
fact that when estimating the effect size of a specific variant, 

GWAS of GERD 
and lung cancer

GERD
Ncases: 78,707

Ncontrols: 288,734
PMID: 34187846

LC
Ncases: 29,266

Ncontrols: 56,450
PMID: 28604730 

LUAD
Ncases: 11,273

Ncontrols: 55,483
PMID: 28604730 

LUSC
Ncases: 7,426

Ncontrols: 55,627
PMID: 28604730 

SCLC
Ncases: 2,664

Ncontrols: 21,444
PMID: 28604730 

Genome-wide 
genetic correlation 
analysis (P<0.05)

Local genetic correlation 
by LD independent regions 
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Partitioned genetic 
correlation by functional 

categories (P<0.05)
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Figure 1 Overall study design of genome-wide cross-trait analysis. A global genetic correlation analysis between GERD and LC was performed. 
The global genetic correlation was further studied at LD independent regions and by functional categories. Cross-trait meta-analysis was 
used to identify pleiotropic loci, and a bidirectional two-sample Mendelian randomization analysis was applied to investigate potential causal 
association. GWAS, genome-wide association study; GERD, gastroesophageal reflux disease; LC, lung cancer; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; SCLC, small-cell lung cancer; LD, linkage disequilibrium; MR, Mendelian randomization.
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the combined effects of all variants that are in LD with 
that variant were considered. Thus, the idea of substituting 
the χ2 statistics with the product of z-scores from two 
traits and the LD scores allows us to calculate genetic 

correlations between traits: 1 2
1 2

1 2

ρ ρg s
j j j j

N N NE z z l l
M N N

  = +  ,  
where N i represents the sample size of each trait,  
M represents number of SNPs, ρg represents the genetic 
covariance, lj represents the LD scores, ρ represents the 
phenotypic link within overlapping samples, Ns represents 
the overlapping sample size. By performing a regression 
of the product of z-scores from two GWASs based on 
the reference LD scores from 1KGP European ancestry 
with SNPs mapped in the Hapmap3 reference panel, the 
genetic covariance between two traits can be estimated. 

Then, the genetic correlation can be calculated as 2 2
1 2

g
gr

h h

ρ
= ,  

where 2
ih  represents the heritability for each trait.  

Given the potential overlap in population between the 
GWAS data of GERD and LC, we also conducted LDSC 
with a constrained intercept, which is more robust in 
handling sample overlap (26). For multiple testing, the 
false discovery rate (Benjamini-Hochberg correction) was 
employed.

Local genetic correlation analysis
The global genetic correlation offers an assessment of the 
collective impact of genome-wide variants. However, it is 
conceivable that, despite exhibiting minimal global genetic 
correlation, certain regions of the genome may still have 
an impact on both traits. Thus, we computed pairwise 
local genetic correlation using SUPERGNOVA (27). This 
algorithm separates the entire genome into approximately 
2,353 independent regions, with each averaging about 
1.6 centimorgans in length. It then measures the genetic 
correlation specific to each of these genomic regions. 
To account for multiple testing, Bonferroni correction 
(P<0.05/2,353) was applied.

Partitioned LDSC analysis
Using partitioned LDSC (28), we investigated the genetic 
correlation between GERD and LC in multiple functional 
categories. This study included 14 common functional 
categories, including coding region, conserved region, 
DNase I digital genomic foot-printing region (DGF), 
DNase I hypersensitive sites (DHS), fetal DHS, intron, 
promotor, super enhancer, transcription factor-binding site 
(TFBS), transcribed region, and histone marks H3K27ac, 
H3K4me1, H3K4me3, and H3K9ac (28,29). For SNPs 

classified within each specific category, recalculated LD 
scores were utilized to estimate the genetic correlation 
between GERD and LC within that functional category.

Cross-trait meta-analysis
A significant genetic correlation suggests the presence 
of either horizontal pleiotropy (pleiotropy) or vertical 
pleiotropy (causality). To further investigate the pleiotropic 
SNPs associated with both traits (GERD and LC), we 
performed a cross-phenotypic association (CPASSOC) 
analysis (30). Utilizing summary data from single SNP-trait 
associations in GWAS, CPASSOC provides two estimates, 
SHom and SHet. Representing the maximum of the weighted 
sum of trait-specific genetic effects, SHom employs a fixed-
effect meta-analysis approach, which was more powerful 
when genetic effect sizes cross traits were homogenous. 
SHet, as an extension of SHom, assumes the presence of 
heterogeneity and computes corresponding P value via a 
sample size-weighted meta-analysis of GWAS summary data. 
For this analysis, we adopted the SHet method to correct for 
potential heterogeneity and ensure more robust results.

After CPASSOC analysis, independent loci were obtained 
using software PLINK (v1.9) with parameters: --clump-p1 
5E-8 --clump-p2 1E-5 --clump-r2 0.2 --clump-kb 500 (31). 
SNPs with the lowest P value within each independent 
locus were defined as index SNPs. Significant pleiotropic 
SNPs were defined as having PCPASSOC <5×10−8 and Psingle-trait 
<1×10−3 in both traits. These SNPs were further classified 
into four groups: (I) “known” shared SNPs, referring to 
SNPs that reach genome-wide significance in both traits 
(PGERD <5×10−8 and PLC <5×10−8); (II) “single-trait-driven” 
shared SNPs, referring to SNPs reaching genome-wide 
significance in one of the two traits, either PGERD <5×10−8 
or PLC <5×10−8; (III) “LD-Tagged” shared SNPs, referring 
to SNPs not reaching genome-wide significance in both 
traits (PGERD >5×10−8 and PLC >5×10−8), but showing LD 
(r2≥0.2) with index SNPs previously identified by single-
trait GWAS; and (IV) novel shared SNPs, referring to 
significant pleiotropic SNPs that did not reach genome-
wide significance in both traits (5×10−8< Psingle-trait <1×10−3) 
and were not in LD with previously identified SNPs in 
single-trait GWAS (r2<0.2) (32). To gain further insights 
into the biological implications in the shared SNPs, the 
linear closest genes of pleiotropic loci were annotated using 
the Ensemble Variant Effect Predictor (VEP) (33).

Fine-mapping credible set analysis
Index SNPs may not always be causal variants due to 
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the complex LD patterns across SNPs. To obtain a 
credible set of causal variants that have a 99% likelihood 
of encompassing causal variants for each shared loci, we 
employed the Bayesian fine-mapping algorithm—FM-
summary (34). For each shared locus, variants located 
within 500 kb of the index SNP were extracted (35). The 
FM-summary prioritizes the primary signal and applies a 
flat prior along with a steepest descent approximation (36).

Colocalization analysis
To determine whether the association signals for GERD and 
LC co-occurred at identified shared loci, we performed the 
colocalization analysis using the R package Coloc (37). Coloc 
employs the Bayesian algorithm to obtain five posterior 
probabilities for five different hypotheses: (I) H0, no causal 
variant; (II) H1 or H2, causal variant only for one trait; (III) 
H3, two distinct variants associated with both traits; and (IV) 
H4, shared variant correlated with both traits. The posterior 
probability for H4 (PPH4) was calculated using summary 
data for variants near loci shared between GERD and LC 
that were within 500 kb of the index SNP. If PPH4 exceeded 
0.5, a locus was labeled as a co-localized genetic variant.

Transcriptome-wide association studies (TWASs)
Many genetic variants have an effect on complex phenotypes 
by modulating gene expression. Therefore, determining 
overlapping genes underlying GERD and LC may shed 
light on the underlying causal mechanisms. Utilizing 
FUSION (38), the TWAS was performed to identify 
associations between GERD and LC regarding gene 
expression in multiple tissues. This involved integrating 
expression weights obtained from 49 tissues sourced from 
GTEx (version 8) with GWAS summary data (39). To 
obtain an independent set of gene-tissue pairs, a total of 
49 TWASs for each trait were systematically conducted, 
focusing on one tissue-trait pairing at a time. Subsequently, 
by intersecting across traits, shared gene-tissue pairs were 
identified. The Benjamini-Hochberg correction was used to 
correct TWAS P values, and a false discovery rate <0.05 was 
deemed significant.

Bidirectional MR analysis
Next, we investigated the putative causal association 
between GERD and LC through the bidirectional 
two-sample MR analysis. For GERD, genome-wide 
significant SNPs (P<5×10−8) were selected and clumped 
for independent IVs (r2=0.01 and window size =10 Mb). 
For LC, SNPs with P value <5×10−8 were obtained and 

clumped using parameters: r2=0.01 and window size =10 Mb. 
F-statistic was calculated to assess strength of selected IVs, 
where a value less than 10 indicates a weak instrument (40). 
Additionally, the statistical power of MR was evaluated 
using an online calculator (https://shiny.cnsgenomics.com/
mRnd/) (41).

We implemented the IVW method as the principal 
approach, assumes all IVs to be valid and offers the highest 
statistical power (42). Additionally, we performed several 
complementary sensitivity analyses to evaluate the robustness: 
(I) MR-Egger regression, identifying and mitigating bias 
resulting from directional pleiotropy (43); (II) weighted 
median, offering a consistent estimate of causality even with 
more than 50% invalid IVs (44); (III) Causal Analysis Using 
Summary Effect estimates (CAUSE) and MR-Pleiotropy 
Residual Sum and Outlier (MR-PRESSO), evaluating and 
adjusting for the potential correlated and uncorrelated 
horizontal pleiotropy (45,46); (IV) removing pleiotropic 
IVs associated with potential confounding factors based on 
the Phenoscanner (47); (V) removing palindromic IVs with 
strand ambiguity; and (VI) leave-one-out analyses, evaluating 
the potential impact of each SNP on the IVW estimate. We 
further utilized multivariable MR (MVMR) (48) to adjust 
for influence of significant confounding factors, including 
body mass index (BMI) (49), smoking status (50), alcohol 
consumption (50), physical activity (51), and sleep duration (52). 
These confounders were integrated individually as well as 
collectively with GERD to ensure a comprehensive analysis. 
Finally, a reverse-direction MR analysis was carried out 
to determine if genetic predisposition to LC has a causal 
impact on GERD.

All MR analyses were carried out utilizing the following 
R packages: “TwoSampleMR” (v0.5.6), “MRPRESSO” 
(v1.0), “CAUSE” (v1.2.0), and “MVMR” (v0.3), in R 
software (v4.2.3).

Results

Global genetic correlation

We observed a strongly significant global genetic correlation 
between GERD and overall LC (rg=0.33, P=1.58×10−14) 
after adjusting for multiple testing (Table 1). The genetic 
correlation continued to be significant in subtype-
specific LC (LUAD: rg=0.19, P=6.64×10−6;  LUSC: 
rg=0.39, P=2.22×10−12; SCLC: rg=0.39, P=5.27×10−12). 
Given the potential sample overlap in GWAS data, the 
intercepts of genetic covariance were constrained to zero, 

https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
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which exhibited increased power, while also marginally 
reducing standard errors. Using constrained LDSC, the 
genetic correlation remained significant for LC (rg=0.36, 
P=3.28×10−37) as well as subtype-specific LC (LUAD: 
rg=0.20, P=5.27×10−12; LUSC: rg =0.41, P=1.53×10−34; 
SCLC: rg=0.39, P=7.31×10−25).

Local genetic correlation

After separating the genome into multiple LD-independent 
regions, 5 local regions with significant genetic correlation 
were detected, including 1 region (Chr2: 103,264,434–
104,481,488) shared by overall LC and LUAD, and 1 region 
(Chr9: 126,927,204–128,926,989) shared by overall LC and 
LUSC (Figure 2). The most significant region was located 
at 9q33.3 (Chr9: 126,927,204–128,926,989, P=6.76×10−10), 
which harbors PBX3, a factor interacts with the promoter 
of tumor suppressor p53 associated with LC tumorigenesis 
(53,54).

Partitioned genetic correlation

We further partitioned genetic correlation across 14 distinct 
functional categories, considering the highly positive 
genetic correlations observed between GERD and LC 
(Figure 3, Table S2). In 13 of the 14 functional categories, 
GERD was significantly correlated with overall LC, of 
which rg values ranged from 0.17 (super enhancer) to 0.38 
(conserved regions). Extending to subtype-specific LC, we 
noted significant associations in 10/14, 12/14, and 12/14 
functional categories for LUAD, LUSC, and SCLC, 
respectively. Notably, the conserved region (rg=0.30), 
conserved region (rg=0.38), and promotor (rg=0.41) 
displayed strongest genetic correlation for LUAD, LUSC, 
and SCLC, respectively.

Cross-trait meta-analysis and pleiotropic loci

The strong genetic correlation inspired us to locate 
pleiotropic loci between GERD and LC by performing 
CPASSOC. Cross-trait meta-analysis included a total of 
2,194,995, 2,197,591, 2,197,145, and 2,202,470 SNPs 
shared between GERD and overall LC, LUAD, LUSC, 
and SCLC, respectively. Finally, CPASSOC identified 22 
independent loci with genome-wide significance (PCPASSOC 
<5×10−8 and Psingle-trait <1×10−3), including 14 pleiotropic loci 
between GERD and overall LC, 4 pleiotropic loci between 
GERD and LUAD, 8 pleiotropic loci between GERD and 
LUSC, and 2 pleiotropic loci between GERD and SCLC 
(Table 2, Figure S1). Near these shared loci, some widely 
reported oncogenes, such as PTPRF, PBX3, RAB5B, and 
TCF4 (related SNPs: rs2782641, rs10156445, rs773109, and 
rs4500831), were observed.

After removing loci identified in previously reported 
single-trait GWASs or loci in LD (r2≥0.2) with previously 
identified loci, 3 loci were categorized novel pleiotropic 
loci: 2 shared between GERD and overall LC, and 2 shared 
between GERD and LUAD, with 1 locus overlapped 
between overall LC and LUAD. The most significant novel 
locus was rs537160, which was mapped to complement 
factor B (CFB), a pivotal component of the alternative 
signaling pathway in complement activation (55). 
rs10156445, as the second most significant novel locus, was 
near PBX3, a member of the PBX family interacting with 
the promoter of tumor suppressor p53 (54).

Identification of causal variants and colocalization

Using FM-summary algorithm, each of the identified 
pleiotropic variants established a 99% credible set of causal 
variants, which offers potential targets for subsequent 

Table 1 Genome-wide genetic correlations between GERD and LC using constrained and unconstrained LDSC

Trait 1 Trait 2
Unconstrained LDSC Constrained LDSC

rg rg_se P value rg rg_se P value

GERD Overall LC 0.33 0.04 1.58×10−14 0.36 0.03 3.28×10−37

GERD LUAD 0.19 0.04 6.64×10−6 0.20 0.03 5.27×10−12

GERD LUSC 0.39 0.05 2.22×10−12 0.41 0.03 1.53×10−34

GERD SCLC 0.39 0.06 5.27×10−12 0.39 0.03 7.31×10−25

GERD, gastroesophageal reflux disease; LC, lung cancer; LDSC, linkage disequilibrium score regression; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; SCLC, small-cell lung cancer; rg, genetic correlation; se, standard error.

https://cdn.amegroups.cn/static/public/TLCR-24-345-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-345-Supplementary.pdf
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Figure 2 Manhattan plots for local genetic correlation between GERD and LC. (A) GERD and LC; (B) GERD and LUAD; (C) GERD 
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Table 2 Significant pleiotropic SNPs identified by cross-trait meta-analysis (PCPASSOC <5×10−8 and Psingle-trait <1×10−3, clumping r2=0.2)

SNP CHR: position A1/A2
Beta Psingle‑trait

PCPASSOC Gene†

GERD LC GERD LC

GERD and over all LC

rs17391694 Chr1: 78623626 C/T −0.04 0.11 2.54×10−7 2.62×10−8 7.94×10−10 –

rs2782641 Chr1: 44013355 G/A −0.03 −0.04 4.33×10−8 6.26×10−4 5.67×10−10 PTPRF

rs6711584 Chr2: 104421692 G/A −0.03 0.04 2.66×10−11 1.52×10−4 2.13×10−13 –

rs329122 Chr5: 133864599 G/A 0.03 −0.05 3.05×10−9 1.69×10−5 2.35×10−11 JADE2

rs13207689 Chr6: 27369704 C/G 0.05 0.14 9.32×10−10 9.29×10−11 1.35×10−14 ZNF391, RP1-153G14.4

rs13220495 Chr6: 26441640 C/T 0.04 0.13 1.96×10−8 7.74×10−9 2.91×10−12 BTN3A3

rs17526722 Chr6: 25918855 G/A 0.03 0.13 5.59×10−5 1.26×10−8 1.58×10−8 SLC17A2

rs2232423 Chr6: 28366151 A/G 0.05 0.15 1.37×10−11 8.04×10−12 2.54×10−17 ZSCAN12

rs537160‡ Chr6: 31916400 A/G −0.03 0.05 5.08×10−8 3.98×10−5 8.46×10−10 CFB, NELFE, C2, CYP21A2

rs215614 Chr7: 32347335 G/A 0.03 0.04 4.08×10−11 4.29×10−4 1.31×10−13 –

rs10156445‡ Chr9: 128617244 A/G −0.02 −0.04 6.33×10−7 7.81×10−4 1.51×10−8 PBX3

rs9328534 Chr9: 134874805 C/T 0.03 0.04 1.35×10−8 4.67×10−4 1.25×10−10 MED27

rs773109 Chr12: 56374695 G/A 0.04 −0.04 8.71×10−14 5.14×10−4 5.40×10−16 RAB5B, RP11-603J24.7

rs4500831 Chr18: 53097544 G/A 0.03 0.05 1.21×10−7 3.42×10−4 1.47×10−9 TCF4

GERD and LUAD

rs6695572 Chr1: 77945635 G/A −0.02 0.12 4.09×10−4 8.34×10−9 2.14×10−8 AK5

rs17391694‡ Chr1: 78623626 C/T −0.04 0.14 2.54×10−7 3.83×10−7 8.34×10−9 –

rs6711584 Chr2: 104421692 G/A −0.03 0.07 2.66×10−11 2.89×10−5 8.68×10−13 –

rs537160‡ Chr6: 31906797 A/G −0.03 0.06 5.08×10−8 7.89×10−4 8.21×10−9 CFB, NELFE, C2, CYP21A2

GERD and LUSC

rs2782641 Chr1: 44013355 G/A −0.03 −0.07 4.33×10−8 2.76×10−4 4.98×10−9 PTPRF

rs329122 Chr5: 133864599 G/A 0.03 −0.08 3.05×10−9 2.28×10−5 5.12×10−10 JADE2

rs13191445 Chr6: 26015489 G/A 0.03 0.25 5.35×10−5 1.06×10−11 5.56×10−11 HIST1H1A, HIST1H1PS2, 
U91328.22

rs9379899 Chr6: 26603015 T/A 0.04 0.11 1.25×10−9 2.17×10−4 1.07×10−10 ABT1

rs3922717 Chr6: 27030924 A/G 0.04 0.08 5.35×10−13 3.75×10−4 3.81×10−14 VN1R13P

rs13219181 Chr6: 27136225 A/G 0.03 0.11 1.32×10−8 2.56×10−5 7.00×10−10 –

rs200968 Chr6: 27859568 T/C 0.04 0.11 3.94×10−11 4.25×10−5 1.62×10−12 HIST1H2BO, HIST1H3J, 
HIST1H2AM

rs2232426 Chr6: 28360659 G/C 0.05 0.22 1.39×10−11 1.02×10−10 1.63×10−14 ZSCAN12

GERD and SCLC

rs3172494 Chr3: 48731487 G/T 0.05 −0.15 6.71×10−9 9.28×10−4 5.12×10−9 IP6K2

rs2232423 Chr6: 28366151 A/G 0.05 0.20 1.37×10−11 2.14×10−4 2.02×10−12 ZSCAN12
†, gene symbol mapped by VEP; ‡, novel SNPs, defined as shared SNPs that are neither driven by a single trait nor in LD with index 
SNPs identified in single-trait GWAS (LD r2<0.2). SNPs, single nucleotide polymorphisms; CPASSOC, cross-phenotypic association; 
CHR, chromosome; A1, effect allele; A2, alternative allele; GERD, gastroesophageal reflux disease; LC, lung cancer; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small-cell lung cancer; VEP, Variant Effect Predictor; LD, linkage 
disequilibrium; GWAS, genome-wide association study.
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experimental research (Tables S3-S6). As a result, we 
identified a set of 352, 42, 219, and 18 causal variants for 
overall LC, LUAD, LUSC, and SCLC. For the novel 
pleiotropic loci, we identified 1, 3, 11, 75 causal variants 
for rs17391694, rs537160, rs537160, and rs10156445, 
respectively.

To evaluate whether genetic variants influencing 
the association across traits were shared or distinct, 
the colocalization analysis was further performed. 
Approximately  a  hal f  of  p le iotropic  loci  showed 
colocalization at same candidate causal variants with PPH4 
>0.5: 8/14 between GERD and overall LC, 2/4 between 
GERD and LUAD, 4/8 between GERD and LUSC, and 
1/2 between GERD and SCLC (Table S7).

TWASs

After multiple testing (FDR <0.05) and intersecting the 
single-trait TWAS results across traits, multiple TWAS-
significant gene-tissue pairs shared between GERD and LC 
were identified, including 30 genes shared between GERD 
and overall LC, 10 genes shared between GERD and 
LUAD, 11 genes shared between GERD and LUSC, and 
12 genes shared between GERD and SCLC (Tables S8-S11, 
Figure S2). Among these gene-tissue pairs between GERD 
and overall LC, ERAP1, FUBP1, and CEP57 were most 
frequently identified genes and simultaneously discovered in 
lung tissues and esophagus tissues (i.e., esophagus mucosa, 
esophagus muscularis, and esophagus gastroesophageal 
junction). As a member of the M1 family of aminopeptidases, 
ERAP1 was previously implicated in autoimmunity and 
signals a role in susceptibility of LC (56). As a versatile 
DNA and RNA binding protein, FUBP1 plays a role in 
multiple biological processes, and serves as an oncoprotein 
associated with multiple malignancies, including LC (57,58). 
CEP57, a centrosomal protein, is involved in the processes 
of microtubule nucleation and bundling associated with 
cell division error and thus potentially promote malignant 
progression (59,60). Additionally, PBX3, a factor interacting 
with the promoter of p53 (54), was frequently identified in 
gene-tissue pairs between GERD and LUSC.

Bidirectional MR

Finally, we evaluated the causal association between 
GERD and LC by performing a two-sample MR. We 
identified a total of 91 GERD-associated SNPs as IVs, and 
F-statistics calculated >10 suggested strong IVs (Table S12).  

Utilizing the IVW method, GERD was found to be 
significantly associated with the risk of overall LC (OR 
=1.34, P=1.33×10−6), which remained consistent in weight 
median (OR =1.28, P=2.03×10−4), MR-PRESSO (OR =1.37, 
P=1.51×10−7), and MR-CAUSE (OR =1.30, P=6.11×10−3) 
(Figure 4, Table S13, Figures S3-S6). The estimates 
continued to be directionally consistent with MR-Egger 
regression, despite no significance (OR =1.08, P=0.82). 
Consistent results were also observed after excluding 
pleiotropic SNPs (OR =1.30, P=1.34×10−5) or palindromic 
SNPs (OR =1.40, P=2.80×10−7). No significant horizontal 
pleiotropy was observed (PMR-Egger intercept =0.54), and leave-
one-out analyses detected no obvious outlying variants 
(Figure S7). Looking into the subtype-specific LC, 
significant causal associations also were identified in LUAD 
(IVW OR =1.25, P=2.71×10−3), LUSC (IVW OR =1.52, 
P=9.59×10−9), and SCLC (IVW OR =1.76, P=1.27×10−5), 
which were further confirmed in sensitivity analyses except 
MR-Egger regression. Additionally, the power of all MR 
analyses was calculated to be 100% using estimates from 
IVW, suggesting a satisfactory statistical power (Table S14).  
Potential confounders were accounted for using MVMR, 
yielding estimates that exhibit a more pronounced 
magnitude and statistical significance, which suggests that 
the causal relationship between GER and LC remains 
independent of common confounding factors (Figure S8).

In the reverse-direction MR analysis, we identified a total 
of 14, 15, 13, and 4 SNPs for overall LC, LUAD, LUSC, 
and SCLC as IVs, with all F-statistics >10 suggesting strong 
IVs (Table S15). We observed no significant causal effect 
of LC on GERD: overall LC (IVW OR =1.02, P=0.24), 
LUAD (IVW OR =1.00, P=0.95), LUAD (IVW OR =0.99, 
P=0.46), and SCLC (IVW OR =0.98, P=0.27) (Figure 5).

Discussion

As far as we know, this genome-wide cross-trait analysis 
represents the first comprehensive investigation into the 
genetic correlation, pleiotropic loci, association between 
gene expression and trait, and causal relationship between 
GERD and LC, providing valuable insights into this complex 
genetic interplay. Our findings revealed a significantly 
genetic correlation underlying GERD and overall LC. 
After partitioning the whole genome, significant genetic 
correlations were identified within five genomic regions and 
multiple functional categories (e.g., conserved region, and 
promotor). The underlying genetic link was further divided 
into two categories: pleiotropy and causality, corresponding 
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Exposure to outcome No.SNP OR (95% CI) P value Exposure to outcome No.SNP OR (95% CI) P value

GERD to LC GERD to LUAD

GERD to LUSC GERD to SCLC

All SNPs

Inverse-variance weighted
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Weighted median

MR-PRESSO

MR-CAUSE

Excluding pleiotropic SNPs

Excluding palindromic SNPs

87

87

87

84
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1.34 (1.19−1.51)

1.08 (0.54−2.17)
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1.40 (1.23−1.58)
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2.03 × 10−4

1.51 × 10−7

6.11 × 10−3

1.34 × 10−5

2.80 × 10−7

All SNPs

Inverse-variance weighted

MR-Egger

Weighted median

MR-PRESSO

MR-CAUSE

Excluding pleiotropic SNPs

Excluding palindromic SNPs

87

87

87

−

653

79

72
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1.43 (1.24−1.65)

1.61 (1.37−1.90)

9.59 × 10−9
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1.90 × 10−3

1.14 × 10−2
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Figure 4 Estimates of causal effect sizes of GERD on LC using all GERD-associated SNPs, excluding pleiotropic SNPs or palindromic 
SNPs. Inverse variance-weighted approach was used as the primary outcome, while MR-Egger, weighted median, MR-PRESSO, and MR-
CAUSE were applied as complementary analyses. GERD, gastroesophageal reflux disease; LC, lung cancer; MR, Mendelian randomization; 
PRESSO, Pleiotropy Residual Sum and Outlier; CAUSE, Causal Analysis Using Summary Effect estimates; SNPs, single nucleotide 
polymorphisms; LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; SCLC, small-cell lung cancer; OR, odds ratio; CI, 
confidence interval.

Figure 5 Estimates of causal effect sizes of LC on GERD using all LC-associated SNPs. Inverse variance-weighted approach was used as the 
primary outcome, while MR-Egger and weighted median were applied as complementary analyses. GERD, gastroesophageal reflux disease; 
LC, lung cancer; MR, Mendelian randomization; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small-cell 
lung cancer; SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.
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with the identified pleiotropic loci from CPASSOC, the 
shared genes from TWAS, and the causal association 
through the bidirectional MR analysis. For subtype-specific 
LC, similar results were also observed for LUAD, LUSC, 
and SCLC. Taken together, these findings advance our 
understanding of the intricate link between a digestive disease 
and a respiratory malignancy, offering valuable implications 
for LC prevention in individuals with GERD.

Despite a significant global genetic correlation detected 
in LDSC, the estimated intercept of genetic covariance 
ranging from 0.001 to 0.008 suggested a presence of 
potential bias from sample overlap. Therefore, we 
employed LDSC with a constrained intercept to address 
this issue, and similarly, detected a significant global genetic 
correlation between GERD and LC (26). When separating 
the entire genome into approximately 2,353 distinct 
regions, a significant local genetic correlation between 
GERD and overall LC, as well as LUSC, was identified, 
specifically at 9q33.3. This genomic region contains PBX3, 
which has previously been reported to be associated with 
GERD and LC (12,53,54). Furthermore, we observed 
significant genetic correlations in multiple annotated 
regions of the genome using stratified LDSC. Notably, 
the conserved region exhibited the highest partitioned rg, 
while other non-coding regions, including specific histone 
modification marks, such as H3K4me1 and H3K27me3, 
and histone acetylation marks, such as H3K27ac, H3K9ac, 
also showed significant partitioned rg. These findings align 
with prior studies highlighting the crucial role of epigenetic 
modification in LC development (61,62).

Through the cross-trait meta-analysis, we revealed 22 
pleiotropic loci between GERD and LC, among which 18 
loci have been reported to be associated with either one 
or both traits. For instance, the shared SNP rs4500831 
(18q21.2) showed LD with rs1942262 (r2=0.21) previously 
identified in the GWAS study of GERD (12), which was 
mapped to TCF4 implicated in the development of LC (63). 
Additionally, several pleiotropic loci were mapped to genes 
associated with risks of various carcinomas, such as PTPRF, 
JADE2, SLC17A2, MED27, and RAB5B. Multiple genes, 
including PTPRF, JADE2, ZNF391, SLC17A2, MED27, 
RAB5B, and ZSCAN12, exhibited significant evidence 
of colocalization (PPH4 >0.5), indicating etiological 
correlations. Cross-trait meta-analysis has the advantage 
of revealing signals that have not reached genome-wide 
significance in a single-trait analysis (64). Within these loci 
in our study, we identified four novel loci associated with 
both GERD and LC, among which we highlight two genes 

(CFB and NELFE), both mapped by the same locus (index 
SNP: rs537160).

CFB is a factor that binds C3 to form C3B in the 
alternative pathway, playing a pivotal role in labeling 
target particles and thereby contributing to effective target 
clearance (65). Through the integration of proteomic 
analysis, CFB has been identified as a potential biomarker 
for pancreatic cancer (66). Also, a recent study found that 
elevated CFB expression serves as an independent predictor 
of long-term survival of LUAD (65). Furthermore, 
complementary pathway may play a critical role in the 
development of GERD. Previous studies reported that 
the transcription factor NF-κB is associated with the 
development of GERD, and the activation of NF-κB is 
mediated through the alternative pathway (67,68). These 
observations underscore the potential etiology of CFB 
underlying GERD and LC.

Additionally, NELFE is RNA-binding protein that 
plays a role in tumor biology and progression (69,70). 
Prior study has revealed that NELFE has the potential to 
induce hepatocellular carcinoma by regulating the MYC 
signaling pathway (71). Furthermore, NELFE may promote 
the tumorigenesis and metastasis of pancreatic cancer via 
the Wnt/β-catenin signaling pathway (72). Through the 
whole-exome sequencing of early non-smokers with LUAD, 
NELFE was also identified as a candidate driver marker (73).  
Nevertheless, further study is warranted to validate and 
explore the biological mechanism of NELFE in the 
tumorigenesis of LC.

The TWAS analysis evaluated pleiotropy at the level 
of gene expression by combining GTEx tissue-specific 
expression data and GWAS summary data. Specifically, 
both CPASSOC and TWAS identified PTPRF and PBX3 as 
relevant genes. Furthermore, PBX3, located at 9q33.3, was 
also identified in the local genetic correlation analysis. Two 
shared genes, CEP57 and FUBP1, were also identified by 
TWAS, and have been reported to have a direct or indirect 
association with GERD and LC (12,56,58). In summary, 
these shared biological targets between GERD and LC 
suggest potential therapeutic strategies for the coexisting 
groups in clinical practice. Further studies are warranted to 
elucidate the underlying mechanisms.

Utilizing a comprehensive bidirectional MR analysis, 
our results revealed a significant causal association between 
GERD and LC, further extending to subtype-specific 
LC. Of note, the strength of the causal estimates between 
GERD and LC largely aligns with the genetic correlation; 
specifically, the correlation is strongest between GERD 
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and LUSC/SCLC, whereas the correlation with LUAD 
is the weakest. Compared with prior MR studies, our 
research significantly advances previous findings in several 
crucial aspects (18-20). We leveraged the GWAS of LC 
with an expanded sample size, substantially enhancing 
the statistical ability to discover causal relationships. For 
example, the causal association between GERD and SCLC 
was not discovered from the MR study by Liu et al., who 
utilized limited sample size GWAS data from the FinnGen 
database (only 461 cases) (18). Additionally, the sensitivity 
analyses were performed to scrutinize the assumptions of 
MR, thereby offering further support for the reliability of 
our main findings. To ensure causal estimates independent 
of potential confounding factors, comprehensive MVMR 
analyses were carried out. Through a reverse directional 
MR design, we found no significant causal association of 
genetically predicted LC on the risk of GERD, which had 
not been previously explored in prior MR studies (18-20).  
Taken together, the estimated causal effects were 
consistently affirmed among multiple sensitivity analyses 
and statistical approaches, indicating its robustness. In line 
with our findings, previous population-based epidemiologic 
studies also reported positive associations of GERD and LC 
(9,10,74). Interestingly, a large-scale cohort study reported 
that anti-reflux surgery led to a significant reduction in the 
risk of LUSC [standardized incidence ratio (SIR) =0.75, 
95% CI: 0.60–0.92] and SCLC (SIR =0.63, 95% CI: 0.44–
0.90), with a protective trend in LUAD (SIR =0.80, 95% 
CI: 0.62–1.03) (10). These observations closely resemble 
the findings of our study, finding a significantly positive 
causal effect between GERD and LUSC/SCLC, while the 
correlation with LUAD is marginally significant.

Several limitations in the current study should be 
acknowledged. Firstly, to mitigate potential bias from 
population stratification, we focused exclusively on 
individuals of European ancestry for our genetic data. 
However, it is important to note that the incidence of 
GERD may exhibit racial disparities (75), suggesting the 
need for further research to validate the generalizability 
of our findings in other ethnic populations. Secondly, our 
study was limited to data from autosomes due to existing 
limitations in the analytical software, which does not 
support the analysis of sex chromosomes. Thirdly, while 
we mapped pleiotropic SNPs to relevant genes, further 
investigations are warranted to pinpoint the causal genes 
responsible for the observed signals. Finally, our study 
relied on summary-level data rather than individual-level 
data, determined by data limitations. While summary-

level data provide a larger sample size, leading to increased 
statistical power in causal estimates (42), it is important to 
acknowledge its drawbacks. Compared with individual-
level data, summary-level data do not account for some 
important confounders for each individual, such as local 
socioeconomic, medical situations, and other factors.

Conclusions

In summary, using a novel statistical genetic approach based 
on the hitherto largest GWAS summary data, the study 
sheds light on the observational association between GERD 
and LC. These findings provide valuable evidence of genetic 
correlation, identifying pleiotropic loci, and suggesting a 
potential causal association between GERD and LC. This 
study conveys a crucial public health message: managing 
individuals with GERD may potentially contribute to 
reducing the long-term burden of malignant diseases.
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