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Abstract: Proper remediation of aquatic environments contaminated by toxic organic dyes has
become a research focus globally for environmental and chemical engineers. This study evaluates the
adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic
acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue
(MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye
concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and
the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the
T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams,
and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found
that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes
entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated
seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption
capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of
multicomponent dye bearing effluent in a fixed-bed column system.

Keywords: binary system; fixed-bed; thiourea-modified poly(acrylonitrile-co-acrylic acid); malachite
green; methylene blue

1. Introduction

The treatment of dye-bearing wastewater has become subject of great concern nowadays, due to
environmental pollution and its adverse effect on public health. Cationic dyes are highly soluble in
water and produce bright shining color. They are released as effluent water from industries such as
paint, textile, printing, pharmaceutical, rubber, leather, food, and cosmetics [1]. Cationic dyes and their
breakdown products are mutagenic, carcinogenic, and even toxic at trace level [2–4]. The separation of
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these organic dyes from industrial effluents is therefore germane, not only in terms of water resource
protection, but also for the preservation of ecological environment and human health.

The most widely applied technique for the removal of dyes and other emerging contaminants
from water is adsorption process, due to simple operating procedure, effectiveness and regeneration
capability. Besides, adsorption is use for wide range of pollutants even at low pollutant concentrations
in batch and continuous process mode [2,5]. Fixed-bed adsorption column are extensively used for
water purification and pollution control. Significant volumes of contaminated water are treated in a
short time of column operation. Moreover, fixed-bed columns are vital in the determination of key
adsorption test parameters such as breakthrough and saturated times, which are used to assess process
efficiency and it industrial applicability [6].

Although, the effectiveness of adsorption process is largely dependent on the adsorbent materials
and separation unit designation [7]. A good adsorbent material should be chemically stable with
outstanding mechanical property under severe conditions. This enhanced its regeneration for multiple
usage. Second, the adsorbent should possess accessible pores with large contact area to facilitate mass
diffusion within porous media. Its porous surface must contain functional groups which promotes or
determines selectivity and sorption capacity [8,9]. Numerous materials have been assessed for the
uptake of cationic dyes from aquatic environments.

Adsorption studies are often limited to batch experiments with single component
contaminant [10–12], which do not provide adequate scale-up data for possible multicomponent
industrial scale wastewater treatment. A knowledge gap exists in adsorption behavior in dynamic
systems, affirming the necessity of this work. This present paper presents a continuation of our
previous works, which prepared and identified thiourea-modified poly(acrylonitrile-co-acrylic acid)
as a potential adsorbent, for single and binary batch adsorption of malachite green and methylene
blue [13–16].

Few works have reported the binary dye adsorption using continuous flow conditions, which
are more relevant in large scale textile wastewater treatment. Thus, the main focus of this study was
to evaluate the binary adsorption of malachite green (MG) and methylene blue (MB) from aqueous
solution in a fixed-bed column system. The influence of column operation variables (pH, initial dye
concentration, bed depth, and flow rate) on binary dye adsorption were presented. The dynamic of the
adsorption process were also modeled with the Thomas, Bohart-Adams, and Yoon-Nelson models to
predict the column performance.

2. Materials and Methods

2.1. Chemicals

Acrylonitrile (AN), acrylic acid (AA) (Acros Organics, New Jersey, USA), aluminum oxide
(MERCK, Darmstadt, Germany), potassium persulphate, sodium bisulfate, thiourea (TU) (R&M
Chemicals, Essex, UK), hydrochloric acid, sodium hydroxide (R&M Chemicals, Essex, UK), methanol,
and ethanol were purchased from Systerm ChemAR (Shah Alam, Malaysia). All chemical reagents
were analytical grade, used without further purification except AN and AA purified by passing it
through Al2O3 in a glass column. Fine acid washed sea sand was purchased from Fisher Chemicals
(Thermo Fisher Scientific, Waltham Massachusetts, UK).

2.2. Synthesis of Thiourea Modified Poly(Acrylonitrile-Co-Acrylic Acid) (T-PAA)

Free radical polymerization (redox polymerization) of AN and AA was performed at 60 ◦C under
N2 gas in a three-necked round-bottomed flask, fitted with a water condenser. The monomers feed ratio
AN:AA was 97:3 (vol/vol). The reaction medium, 200 mL deionized (DI) water was purged firstly with
N2 gas for 30 min at 40 ◦C. Then, 0.275 mol of AN and 0.029 mol of AA were added into the reaction
medium followed by 2.16 g of potassium persulphate (KPS) and 2.09 g of sodium bisulfate (SBS) as
initiators. The solution was stirred mechanically at agitation speed of 200 rpm by using egg-shaped
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magnetic stirrer, and purged with N2 gas to promote redox polymerization. The polymerization
reaction was allowed for 2 h. The polymer formed was precipitated in methanol for 1 h. The polymer
was filtered and washed successively with methanol and DI water. The polymer, poly(AN-co-AA) was
dried in vacuo at 45 ◦C until a constant weight was obtained [17,18].

For surface modification, 6.0 g of thiourea and ethanol/deionized water (1:2 v/v) were mixed and
stirred at 200 rpm for 30 min at 70 ◦C temperature. Then, 5.0 g of poly(AN-co-AA) was added to
the solution, and stirred at 200 rpm for 5 h at 100 ◦C. Then, the resulting solids thiourea-modified
poly(AN-co-AA) (T-PAA), rinsed in ethanol/DI water solution, filtered, and dried at 50 ◦C to constant
weight. The synthesis and modification route are represent by Figure 1.
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thiourea (b) [13].

2.3. Preparation of Binary Dye Solution and Determination of Dye Concentration

The performance of T-PAA adsorbent towards binary cationic dye solution was evaluate using
malachite green (MG) and methylene blue (MB). The two dyes were purchased from Acros Organics,
New Jersey and used without purification. Their molecular structures and general properties are
shown in Figure 2 and Table 1, respectively.
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Figure 2. Molecular structure of (a) malachite green and (b) methylene blue.

The single component stock solution (1000 mg/L) of MG and MB were prepared by dissolving
1.0 g of each dye in 1000 mL of double distilled water in a volumetric flask, respectively. Prior to each
adsorption study, solutions of various dye concentrations (as presented in Table 2) were prepared via
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fresh dilution of the stock solution with distilled water. The mixing ratio of each binary solution sample
was 1:1; 100 mL of every cationic dye solution contains a mixture of 50 mL of MG and 50 mL of MB.

Table 1. General properties of cationic MG and MB dyes.

Name of the Commercial Dye Malachite Green, MG Methylene Blue, MB

Color Index Name Basic Green 4 Basic Blue 9
λ max (nm) 617 665

Molecular Weight (g/mol) 364.92 319.85
Charge (+) (+)

Chemical Formula C23H25ClN2 C16H18ClN3S

Calibration of cross-interference of binary dye solution was performed according to Adeyi et al.
(2019) [16], Idan et al. (2017) [19], and Wang et al. (2012) [20]. The components of a binary system MG
and MB were measured, respectively, at λ1,max (617 nm) and λ2,max (665 nm), to give the absorptivity’s
A1 and A2

CMG =
(KMB2 A1) − (KMB1 A2)

(KMG1 KMB2) − (KMG2 KMB1)
(1)

CMB =
(KMG1 A2) − (KMG2 A1)

(KMG1 KMB2) − (KMG2 KMB1)
(2)

KMG1, KMG2, KMB1, and KMB2 represent the calibration constants for dyes MG and MB at λ1,max
and λ2,max, respectively. CMG and CMB denote the concentrations of MG and MB, respectively.

2.4. Characterization of Thiourea Modified Poly(AN-co-AA) (T-PAA)

FT-IR spectra of T-PAA were taken (before and after adsorption) using Fourier transform infrared
spectrometer (Perkin Elmer, 1750X (PerkinElmer Inc., Waltham, MA, USA) by using potassium bromide
(KBr) pellets in resolution range of 4000 to 400 cm−1 at room temperature. This FT-IR was performed to
determine the surface functional groups of the modified polymer and ascertain the functional groups
involved in the sequestration of cationic dyes. Scanning electron microscope (SEM) micrographs
were acquired using a Hitachi S-3400N instrument (Hitachi Scanning Electron Microscope (SEM)
(Hitachi S-3400N High-Technologies Corporation, Minato, Tokyo, Japan). It was operated at 10 to
20 kV to examine the morphology of T-PAA before and after adsorption process. To ascertain the
percentage of carbon (C), hydrogen (H), nitrogen (N), and sulphur (S) contents in the polymer sample
prepared, CHNS elemental analysis was done. CHNS Elemental micro-analysis was performed using
LECO CHNS-932 (Leco Corporation, St. Joseph, MI, USA) spectrometer. Zeta potentials (surface
charges) of T-PAA were measured by Zetasizer Nano Series (Malvern Panalytical Limited, Malvern
Worcestershire, UK).

2.5. Fixed-Bed Column Experiments

The efficiency of T-PAA for MG and MB adsorption from binary solution was evaluated using
designed laboratory scale continuous fixed-bed column. Fixed-bed adsorption column consist of
cylindrical glass tower (internal diameter: 2.5 cm; height: 30 cm) packed with T-PAA adsorbent and
coupled to a peristaltic pump (MasterFlex Console Drive, model 77521-47, Cole Parmer Instrument
Company, Essex, USA). Prior to loading of T-PAA adsorbent, glass wool was fixed at the bottom of
cylinder and then compacted using fine acid washed sea sand. The glass wool serves as packing to
prevent adsorbent loss and provide even distribution flow across the column. T-PAA particles was
then added to the column and packed with acid washed sand. The packed-bed was washed first with
deionized water to avoid subsequent bed blocking. The T-PAA was compacted via natural gravity to
form a uniform bed and complete expulsion of air bubbles. A binary mixture of MG and MB solutions
were fed into column top with downward flow using peristaltic pump. The effluent aliquots were
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periodically withdrawn, and the supernatant MG and MB was scanned and measured. The initial pH,
inlet dye concentration, mass of T-PAA, and flow rate were altered, respectively, as designed in Table 2
to investigate effect of column parameters.

Table 2. Column experimental conditions during the binary adsorption of MG and MB dye onto T-PAA.

Influent pH Initial Concentration (mg/L) Bed Depth (cm) Flow Rate (mL/min)

3, 5, 9 50 6 3
9 20, 50, 80 6 3
9 50 4, 6, 8 3
9 50 5 1.5, 3.0, 5.0

Evaluation of the column performance based on the shape of the breakthrough curve is according
to previous literatures [21,22]. The breakthrough curves were obtained from the plot of Ct/Co versus
time (t). The breakthrough point or time (tB) and bed saturation/exhaustion time (te) chosen for this
research were time when outlet concentration (Ct) reached 50% and 90% of inlet concentration (Co),
respectively. The total mass of MG and MB adsorbed, qtotal (mg), were calculated from the area under
the breakthrough curve using Equation (3):

qtotal =
Q

1000

∫ t=total

t=0
Caddt (3)

where the adsorbed dye concentration and volumetric flow rate are denoted by Cad (mg/L) and Q
(mL/min), respectively.

The experimental uptake capacity, qB (mg/g), is estimated by Equation (4), where tB is the
breakthrough time (min) at 50% and mads represent weight of T-PAA in the column (g).

qB =
QCotB

mads
(4)

2.6. Dynamic Adsorption Models

The design of an adsorption column requires precise prediction of concentration-time profile
from breakthrough curve of discharged effluent from the column. The breakthrough time and curve
shape (or slope) are key parameters, determining operations and dynamic response of adsorption in
plug flow system. The Thomas, Bohart-Adams, and Yoon–Nelson equations were used to analyze the
experimental data.

2.6.1. The Thomas Model

Thomas model assumed that the sorption process follows Langmuir isotherm and pseudo-
second-order kinetics of adsorption–desorption without axial dispersion [23,24]. The Thomas model is
one of the most widely used model for describing adsorption process in a packed-bed tower. This
model is expressed as:

Co

Ct
= 1 + exp

(
KTH qo mads

Q
−KTH Co t

)
(5)

The linear form of the model is given as

ln
(Co

Ct
− 1

)
=

KTH qo mads

Q
−KTH Co t (6)

where Co and Ct are the inlet and outlet MG concentrations. KTH represents the Thomas kinetic
coefficient (mL/mg min); Q and t are volumetric flow rate (mL/min) and sampling flow time (min),
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respectively; and qo and mads denote adsorption capacity (mg/g) and mass of T-PAA in the column (g),
respectively.

2.6.2. The Bohart-Adams Model

The Bohart and Adams model was derived based on the surface reaction theory with assumption
that equilibrium is not instantaneous. Therefore, adsorption rate is proportional to residual capacity of
adsorbent and concentration of adsorbate. The model was used to described the relationship between
Ct
Co

and t in a plug flow system for the sorption of chlorine on activated charcoal [25]. It established a
correlation between time and bed depth of the column and expressed as

Co

Ct
= 1 + exp

(KAB No Z
Uo

−KAB Co t
)

(7)

Linearized form of the Bohart–Adams equation can be written as

ln
(Co

Ct
− 1

)
=

KAB No Z
Uo

−KAB Co t (8)

KAB, No, Uo, and Z represent Bohart–Adams kinetic coefficient (L mg−1 min−1), saturation
concentration (mg L−1), superficial velocity (cm min−1), and bed depth (cm), respectively.

2.6.3. The Yoon-Nelson Model

A simple model was also developed by Yoon and Nelson (1984) for analyzing the column’s
breakthrough performance. The model is based on the assumption that the decreasing rate of the
adsorption for each of the adsorbate particle is directly proportional to both the adsorbate adsorption
and the adsorbate breakthrough on the adsorbents [26]. Yoon-Nelson model required no elaborate
details or data concerning the characteristics of adsorbate, type of adsorbent or its physical features.
The Yoon and Nelson model is given by

Co

Ct
= 1 + exp (τ KYN −KYN t) (9)

The Yoon-Nelson model is linearized for a single component system and expressed as

ln
( Ct

Co −Ct

)
= KYN t− τ KYN (10)

The Yoon-Nelson rate constant is denoted by KYN (min−1), τ is the required time for 50% adsorbate
breakthrough (min), and t is the sampling time (min).

The dynamic adsorption model parameters were determined by fitting of the three models with
experimental data through linear regression. The superiority or suitability of each model was measured
via coefficient determination (R2) and analysis of error.

2.7. Column Regeneration

Experimental study on the possibility of desorbing MG and MB ions from T-PAA adsorbent is highly
important for potential industrial application. Seven regeneration cycles on adsorption-regeneration
were performed for adsorbed dye-loaded T-PAA polymer. The mixed solution of 1.0 M HNO3 and
0.5 M thiourea was used as eluent at 3 mL/min flow rate for 30 min. Post-regeneration, the T-PAA
polymer was washed with distilled water for 10 min and reused in the next cycle of the column binary
adsorption study.
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3. Results and Discussion

3.1. Surface Characterization of the Synthesized T-PAA

Detail morphological and physiochemical characterization of T-PAA adsorbent has been reported
in our previous studies [13–15]. Table 3 shows the surface characterization and micro-elemental analysis
of the T-PAA polymeric adsorbent. According to International Union of Pure and Applied Chemistry
(IUPAC) classification, T-PAA is mesoporous with 47.93 nm average pore diameter [27–29]. T-PAA was
negatively charged in acidic, alkaline, and neutral conditions, based on the zeta potential measurement,
as indicated by Figure 3. The values of zeta potentials of T-PAA negatively increased with increases
in the solution pH from 3 to 9. The variations in zeta potential at every pH strongly support the
successful modification of the poly(acrylonitrile-co-acrylic acid) by thiourea [30–32]. This showed
the existence of negatively charged functional groups at the edges of T-PAA, as thioamide, carbonyl,
and hydroxyl groups leads to hydrophilic/hydrophobic balance with negative charge density [33,34].
Catherine and coworkers, in 2018, reported similar trends of higher negative surface charge of graphene
oxide (GO) nanoflakes at higher pH [34]. This indicates that T-PAA was stable and confirmed the
presence of negatively charged functional groups on the edges of T-PAA surface that enhanced the
adsorptive activity.

Table 3. Surface characterization of the T-PAA adsorbent.

Physiochemical Features T-PAA

BET surface area (m2/g) 26.31
Total pore volume (cm3/g) 0.158

Average pore size (nm) 47.93 (mesoporous material)
Carbon (wt%) 61.94

Hydrogen (wt%) 5.618
Nitrogen (wt%) 25.06
Sulphur (wt%) 3.187
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The FTIR spectra (Figure 4) indicated that the T-PAA adsorbent was posed with prominent IR
stretching peaks at around wave numbers 3345 cm−1, 2935 cm−1, and 1614 cm−1, which, respectively,
were due to presence of –OH/–NH2, –CH2, and –C=N– vibrations [30–32]. Besides, –C=S bands was
also prominent at 1015 cm−1 and 729 cm−1. This confirmed the successful introduction of thioamide
groups into the adsorbent surface. Apparently, the shift in transmittance from 3345 cm−1, 729 cm−1
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to 3319 cm−1, 733 cm−1 confirmed that the thioamide and hydroxyl group functionalities of T-PAA
were involved in the entrapment of MG and MB dyes. This is due to existence of strong interactions
between dye cations and anionic T-PAA (consisting probably of inner sphere surface complexation).
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Figure 5 presents the SEM images of T-PAA before and after cationic dyes sequestration. Prior
to adsorption, T-PAA exhibits corrugated surface and irregular pores/shapes. After adsorption,
a compactly packed and accumulated morphology could be observed with no any perceivable voids,
signifying that MG and MB cations were entrapped via a pore-filling mechanism.
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3.2. Effect of Initial pH

The influence of solution pH on the percentage removal of cationic MG and MB in a binary system
onto T-PAA were explored at varied pH (3, 5, and 9), while concentration, flow rate, and bed depth
were kept constant. The breakthrough curves for MG and MB are, respectively, presented in Figure 6.
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Figure 6. Breakthrough curves for adsorption of MG and MB in the binary system at varied solution
pH (C0: 50 mg/L; Z: 6 cm; Q: 3.0 mL/min).

The T-PAA breakthrough bed capacity was minimum at pH 3 (MG: 5.4 mg/g; MB: 6.0 mg/g) and
maximum at pH 9 (MG: 22.8 mg/g; MB: 24.9 mg/g) as reported in Table 4. This is due to the fact that
MG and MB dye exists in the dissociated form in aqueous solutions as cationic dye ions. At low pH, H+

compete with dye ions, causing a reduction in the uptake of both dyes from the liquid phase. However,
with an increase in solution pH, the negatively charged surface of T-PAA increased. This condition
enhanced the dye uptake due to the electrostatic force of attraction between the negative sorption sites
of adsorbent and cationic dye. These findings are supported by Alqadami and co-workers who have
reported the removal of MG and MB by metal-organic framework (MOF) nanocomposite [35].

Table 4. Column adsorption data for MG and MB onto T-PAA in the binary system.

Dye pH Co (mg/L) Z (cm) Q (mL/min) tB (min) te (min) qB (mg/g) qsat (mg/g)

MG

3 50 6 3.0 180 340 5.40 10.20
6 50 6 3.0 420 560 12.60 16.80
9 50 6 3.0 760 950 22.80 28.50
9 20 6 3.0 1200 1340 14.40 16.08
9 80 6 3.0 530 720 25.44 34.56
9 50 4 3.0 310 450 15.50 22.50
9 50 8 3.0 1010 1170 21.64 25.07
9 50 6 1.5 1190 1340 17.85 20.10
9 50 6 5.0 480 660 24.00 33.00

MB

3 50 6 3.0 200 380 6.00 11.40
6 50 6 3.0 450 620 13.50 18.60
9 50 6 3.0 830 1020 24.90 30.60
9 20 6 3.0 1270 1410 15.24 16.92
9 80 6 3.0 600 760 28.80 36.48
9 50 4 3.0 380 510 19.00 25.50
9 50 8 3.0 1040 1200 22.29 25.71
9 50 6 1.5 1250 1440 18.75 21.60
9 50 6 5.0 530 720 26.50 36.00
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3.3. Effect of Inlet Dyes Concentration

The change in the influent dye concentration had a notable effect on the breakthrough curves as
illustrated in Figure 7. It was observed that breakthrough and saturation time was reached earlier
when the concentration of the binary dye mixture was higher. Additionally, at high inlet concentrations,
the breakthrough curves appeared steeper compared to lower dye concentration with shorter mass
transfer zone. The results demonstrated high bed capacity with an increase in initial dye concentration
due to the change in the rate of adsorption. Therefore, the adsorption of binary cationic dyes at
breakthrough and exhaustion were quite greater at high concentrations because higher concentrations
effect a stronger driving force and smaller mass resistance for dye uptake in a continuous column
study. This phenomenon was also reported by López-Cervantes et al. (2017) and Idan et al. (2017) for
column adsorption of azo dye and anionic acid dye, respectively [36,37].Molecules 2020, 25, x FOR PEER REVIEW 10 of 18 
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Figure 7. Breakthrough curves for adsorption of MG and MB in the binary system at varying initial
concentrations (pH: 9; Z: 6 cm; Q: 3.0 mL/min).

3.4. Effect of Adsorbent Bed Height

The influence of column bed height (mass of T-PAA) on binary adsorption of cationic dye was
investigated. Figure 8 shows the breakthrough curves as a function of time at varied bed height (4, 6,
and 8 cm). As depicted by Table 4, the breakthrough and saturation time increased with increasing
bed depth. The breakthrough time increases from 310 min to 1010 min, and 380 min to 1040 min,
respectively, for MG and MB when bed depth increases from 4 cm to 8 cm. This is due to an increase
in the total number of binding sites (for dye entrapment) with higher bed height which contains
more T-PAA adsorbent [38]. Insufficient diffusion time is associated with a column with reduced or
lower bed depth, resulting in lower values of bed capacities. The result obtained exhibit enhanced
column performance at higher adsorbent load. The same result phenomenon has been reported also
by Nath et al. (2016) for MG uptake using calcium alginate immobilized Baccillus cereus adsorbent [39].
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Figure 8. Breakthrough curves for adsorption of MG and MB in the binary system at varied bed height
(pH: 9; C0: 50 mg/L; Q: 3.0 mL/min).

3.5. Effect of Influent Flow Rate

Figure 9 shows the breakthrough curves with respect to time at three distinct flow rates (1.5,
3.0, and 5.0 mL/min). Table 4 depicts lower breakthrough and saturation time at a higher flow rate.
At 5.0 mL/min, tB was 480 min for MG and 530 for MB, respectively, while this time was 1190 min and
1250 min when the flow rate was 1.5 mL/min. Similar result trends were also observed and reported
by Charola et al. (2018) [40] and Zhou et al. (2015) [22]. Obviously, the increment in the residence
time distribution of the bi-solute in the column results in longer contact time between adsorbate and
T-PAA, therefore, equilibrium was attained. Conversely, the breakthrough bed capacities were high at
5.0 mL/min. This probably suggests that desorption took place at longer residence time.
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Overall, the slight variation in the preference for individual cationic dye with respect to qB and qsat

at all column parameters (as observed from Table 4), indicates that T-PAA has more affinity towards
MB than MG. The triangular and linear molecular structures (Figure 1) of MG and MB, respectively
may account for preferential dye uptake.

3.6. Application of Thomas Model

The values of Thomas model constant, KTH, q0, and statistical parameters (R2, SSE) were calculated
using linear regression analysis (Figure S1) and are presented in Table 5. The values of KTH slightly
declined as the bed height increased from 4 to 6 cm. This decrement in KTH value is probably linked to
the mobility of MG and MB ions within the mass transfer zone. Table 5 shows that the adsorption
capacity q0 increased with initial dye concentrations and T-PAA load. The calculated bed capacity q0

was 25.32 mg/g (MG) and 28.51 mg/g (MB) at pH 9, 6 cm bed depth, 3.0 mL/min flow rate, and 80 mg/L
initial binary dye concentration.

Table 5. Thomas model constants and statistical parameters for MG and MB adsorption by T-PAA at
different column conditions.

Column Variables Thomas

Dye pH Co
(mg/L) Z (cm) Q

(mL/min)
KTH × 10−4

(L/min mg)
qo(mg/g) qB (mg/g) R2 SSE

MG

3 50 6 3.0 3.54 5.49 5.40 0.975 1.72
5 50 6 3.0 3.31 12.23 12.60 0.962 2.68
9 50 6 3.0 3.40 23.08 22.80 0.947 4.08
9 20 6 3.0 0.12 14.46 14.40 0.968 3.17
9 80 6 3.0 1.96 25.32 25.44 0.987 1.11
9 50 4 3.0 3.74 15.84 15.50 0.982 1.18
9 50 8 3.0 3.15 21.28 21.64 0.983 1.48
9 50 6 1.5 3.81 17.70 17.85 0.979 1.92
9 50 6 5.0 3.45 23.61 24.00 0.957 3.91

MB

3 50 6 3.0 3.28 6.51 6.00 0.950 3.56
5 50 6 3.0 3.52 13.69 13.50 0.986 0.95
9 50 6 3.0 3.09 25.17 24.90 0.960 3.27
9 20 6 3.0 0.11 15.38 15.24 0.973 3.02
9 80 6 3.0 1.94 28.51 28.80 0.966 3.21
9 50 4 3.0 4.61 19.26 19.00 0.932 8.36
9 50 8 3.0 3.37 22.34 22.29 0.968 3.16
9 50 6 1.5 3.54 18.74 18.75 0.958 4.03
9 50 6 5.0 3.55 26.99 26.50 0.970 3.25

The experimental breakthrough bed capacity, qB, was in good agreement with q0 predicted by
the Thomas model. Additionally, the value(s) of the correlation coefficient, R2 at different column
operating conditions, ranges between 0.95 and 0.99 for both cationic dyes and found to be significant
statistically at the 95% confidence level. This signifies that binary cationic dye entrapment process is
controlled by mass transfer at the interface, characterized by monolayer adsorption and yet not limited
by chemical reaction [37,41].

3.7. Application of Bohart-Adams Model

Table 6 summarized the Bohart-Adams model constants and statistical factors that were deduced
from the gradient and intercept of the linear model fittings (Figure S2) for binary MG and MB uptake by
T-PAA in a column mode. It is observed that the value of KBA declined with an increase in bed height
and dye inlet concentrations. This might be associated with the dominance of the external mass transfer
at the initial part of the dye sorption process. Lower bed depth as well as lower concentration cause
entrapment of more dye in the column. This outcome is supported by the research findings of [42–44].
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The correlation coefficient value (R2: range between 0.77 and 0.99) and SSE value are comparable to
the corresponding values obtained from Thomas model. This suggests that the Bohart-Adams model
is also suitable for the process description.

Table 6. Bohart-Adams model constants and statistical parameters for MG and MB adsorption by
T-PAA at different column conditions.

Column Variables Bohart-Adams

Dye pH Co
(mg/L) Z (cm) Q KBA × 10−4

(L/mg.min)
No × 103

(mg/L)
qB

(mg/g) R2 SSE

MG

3 50 6 3.0 2.00 7.15 5.40 0.9882 1.19
5 50 6 3.0 3.44 9.69 12.60 0.9717 1.86
9 50 6 3.0 3.40 14.74 22.80 0.9468 4.08
9 20 6 3.0 5.00 13.68 14.40 0.7718 7.89
9 80 6 3.0 1.96 19.50 25.44 0.9868 1.11
9 50 4 3.0 3.74 9.63 15.50 0.9818 1.18
9 50 8 3.0 3.15 15.99 21.64 0.9822 1.48
9 50 6 1.5 3.81 14.75 17.85 0.9794 1.92
9 50 6 5.0 3.44 17.20 24.00 0.9569 3.91

MB

3 50 6 3.0 3.20 7.87 6.00 0.9801 1.76
5 50 6 3.0 3.40 12.43 13.50 0.9962 0.36
9 50 6 3.0 2.95 17.86 24.90 0.9810 1.42
9 20 6 3.0 6.00 12.63 15.24 0.7988 9.72
9 80 6 3.0 1.97 20.51 28.80 0.9652 3.01
9 50 4 3.0 4.61 12.94 19.00 0.9318 8.36
9 50 8 3.0 3.37 16.92 22.29 0.9679 3.16
9 50 6 1.5 3.54 15.62 18.75 0.9578 4.03
9 50 6 5.0 3.55 19.99 26.50 0.9704 3.25

3.8. Application of Yoon-Nelson Model

Figure S3 shows the linear fitting of the experimental data into the Yoon and Nelson model
(Equation (10)). The constants of the Yoon-Nelson model and statistical parameters at various
operational conditions are summarized in Table 7.

Notably, the Yoon–Nelson model constant KYN decreased with increasing initial dye concentrations
and bed depth. This is attributed to mass transfer resistance during cationic dye entrapment. While
the predicted breakthrough time, τ increased as pH and T-PAA load increases, which is linked to
the electrostatic attraction between the positively charge adsorbate and anionic polymeric adsorbent
surface as well as the availability of more sorption site [45]. It was observed from Table 7, that the
experimental breakthrough time tB and predicted breakthrough time agreed well, and the model
applicability was supported by high values of correlation coefficient (R2

≥ 0.95).
Overall, according to the values of linear regression coefficients R2 and sum of square errors,

SSE listed in Tables 5–7 for the entire breakthrough curves, the three models had a good account and
suitable descriptions of the adsorption data at various column operating conditions. This confirms the
applicability of the three models to column design and analysis. A similar behavior was report by [46].
All the three models were also reported valid for binary adsorption of anionic dyes, acid blue 25 (AB)
and acid green 25 (AG) by [37].
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Table 7. Yoon-Nelson model constants and statistical parameters for MG and MB adsorption by T-PAA
at different column conditions.

Column Variables Yoon-Nelson

Dye pH Co
(mg/L) Z (cm) Q

(mL/min)
KYN × 10−2

(min−1)
τ tB (min) R2 SSE

MG

3 50 6 3.0 1.76 182 180 0.975 1.72
5 50 6 3.0 1.65 408 420 0.962 2.68
9 50 6 3.0 1.70 769 760 0.947 4.08
9 20 6 3.0 2.31 1205 1200 0.968 3.17
9 80 6 3.0 1.57 527 530 0.987 1.11
9 50 4 3.0 1.87 317 310 0.982 1.18
9 50 8 3.0 1.57 993 1010 0.983 1.48
9 50 6 1.5 1.90 1180 1190 0.979 1.92
9 50 6 5.0 1.72 472 480 0.957 3.91

MB

3 50 6 3.0 1.64 217 200 0.950 3.56
5 50 6 3.0 1.76 456 450 0.986 0.95
9 50 6 3.0 1.55 839 830 0.956 3.26
9 20 6 3.0 2.24 1279 1270 0.973 3.02
9 80 6 3.0 1.55 594 600 0.967 3.21
9 50 4 3.0 2.31 385 380 0.932 8.36
9 50 8 3.0 1.69 1042 1040 0.968 3.16
9 50 6 1.5 1.77 1249 1250 0.958 4.03
9 50 6 5.0 1.78 540 530 0.970 3.25

3.9. Regeneration of T-PAA Adsorbent

The regeneration and reusability of adsorbent materials is a vital factor in industrial scale viability.
The column regeneration of dye-saturated T-PAA adsorbent was performed using a mixture of nitric
acid and thiourea as best eluent according to [14,15]. Figure 10 shows the respective breakthrough
(corresponding to 50% of influent concentration) time at successive regeneration cycle. At the end
of the seventh cycle, the regenerated efficiencies of T-PAA were dropped to 81.1% and 75.3% for
MG and MB, respectively, concerning the fresh adsorbent. The regenerated polymeric adsorbent
demonstrates the capacity for multiple usages with little reduction in breakthrough time. This reduction
in regeneration efficiency is associated with the difficulty in driving the elution process to completion;
therefore, more binding sites were occupied by the accumulated non-desorbed dye ions [47,48]. This
results show that T-PAA has an outstanding potential for entrapment of cationic dyes after seven
adsorption–desorption cycles.Molecules 2020, 25, x FOR PEER REVIEW 15 of 18 
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4. Conclusions

In this work, a thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent was
applied to remove cationic MG and MB dye simultaneously in a fixed-bed column. The effect of
solution pH, inlet dye concentration, flow rate, and sorbent bed depth on binary adsorption process
was investigated, and the experimental breakthrough curves were obtained. It was observed that
the dye removal capacity found to significantly affect the shape of breakthrough curves and the rate
of adsorption by the various column operation parameters. The result demonstrated that moderate
concentration of dyes, suitable flow rate, high pH, and bed depth are vital for higher sorption efficiency.
In comparison, experimental breakthrough data were well fitted by Thomas, Bohart-Adams, and
Yoon-Nelson dynamic models. Furthermore, reusability study conducted in continuous column
operations revealed that T-PAA adsorbent can be repeatedly used for removal of dye from liquid phase
after seven adsorption-elution cycles. Based on experimental findings, the T-PAA polymer proved
to be valuable and regenerable adsorbent towards the separation of cationic dyes from the binary
solution, and possible water reuse in the industry or irrigation purpose.
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Figures: Linear Regression Analysis for breakthrough curve modeling by Thomas model (Figure S1), Bohart-Adams
model (Figure S2) and Yoon-Nelson model (Figure S3) for adsorption of MG and MB onto T-PAA in a binary
solutions at different column conditions; (a) pH, (b) Concentration (mg/L), (c) Bed height, and (d) Flow rate
mL/min.
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