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Abstract

Although it is well accepted that air pollution exposure exacerbates
preexisting airway disease, it has not been firmly established
that long-term pollution exposure increases the risk of new-onset
asthma or chronic obstruction pulmonary disease (COPD).
This Workshop brought together experts on mechanistic,
epidemiological, and clinical aspects of airway disease to review
current knowledge regarding whether air pollution is a causal factor
in the development of asthma and/or COPD. Speakers presented
recent evidence in their respective areas of expertise related to air
pollution and new airway disease incidence, followed by interactive
discussions. A writing committee summarized their collective
findings. The Epidemiology Group found that long-term exposure
to air pollution, especially metrics of traffic-related air pollution such
as nitrogen dioxide and black carbon, is associated with onset of

childhood asthma. However, the evidence for a causal role in adult-
onset asthma or COPD remains insufficient. The Mechanistic
Group concluded that air pollution exposure can cause airway
remodeling, which can lead to asthma or COPD, as well as
asthma-like phenotypes that worsen with long-term exposure to
air pollution, especially fine particulate matter and ozone. The
Clinical Group concluded that air pollution is a plausible
contributor to the onset of both asthma and COPD. Available
evidence indicates that long-term exposure to air pollution is a
cause of childhood asthma, but the evidence for a similar
determination for adult asthma or COPD remains insufficient.
Further research is needed to elucidate the exact biological
mechanism underlying incident childhood asthma, and the
specific air pollutant that causes it.

Keywords: air pollution; asthma; COPD; new-onset airway disease

You may print one copy of this document at no charge. However, if you require more than one copy, you must place a reprint order. Domestic reprint orders:
amy.schriver@sheridan.com; international reprint orders: louisa.mott@springer.com.

Supported by the American Thoracic Society. G.D.T. was also supported by New York University–National Institute of Environmental Health Sciences Center of
Excellence grant ES00260.

The contents of this article have been reviewed by the Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade
names of commercial products constitute endorsement or recommendation for use.

Correspondence and requests for reprints should be addressed to George D. Thurston, Sc.D., New York University School of Medicine, Department of
Environmental Medicine, 341 East 25th Street, New York, NY 10010. E-mail: george.thurston@nyu.edu.

Ann Am Thorac Soc Vol 17, No 4, pp 387–398, Apr 2020
Copyright © 2020 by the American Thoracic Society
DOI: 10.1513/AnnalsATS.202001-046ST
Internet address: www.atsjournals.org

American Thoracic Society Documents 387

http://crossmark.crossref.org/dialog/?doi=10.1513/AnnalsATS.202001-046ST&domain=pdf
http://orcid.org/0000-0001-9429-2267
http://orcid.org/0000-0002-2246-7002
http://orcid.org/0000-0003-1540-9805
http://orcid.org/0000-0002-9033-7269
http://orcid.org/0000-0003-2538-391X
http://orcid.org/0000-0002-1689-4446
http://orcid.org/0000-0002-6340-9300
http://orcid.org/0000-0001-7475-2035
http://orcid.org/0000-0003-2455-6575
http://orcid.org/0000-0003-4682-0824
http://orcid.org/0000-0001-9086-4774
http://orcid.org/0000-0003-2948-8452
http://orcid.org/0000-0001-6333-1024
http://orcid.org/0000-0003-4911-5290
http://orcid.org/0000-0001-5243-6410
http://orcid.org/0000-0001-5668-2782
http://orcid.org/0000-0001-9047-0353
http://orcid.org/0000-0001-7878-1511
http://orcid.org/0000-0003-4594-9810
mailto:amy.schriver@sheridan.com
mailto:louisa.mott@springer.com
mailto:george.thurston@nyu.edu
http://10.1513/AnnalsATS.202001-046ST
http://www.atsjournals.org


Contents
Overview
Introduction
Methods
Epidemiological Evidence
Air Pollution and New-Onset Asthma
Nitrogen Oxides, BC, PM2.5, and

Other Traffic-related Pollution
TRAP studies in children
TRAP studies in adults

Ozone
Potential PM Composition

Influences

Conclusions Regarding the
Epidemiology of New-Onset
Asthma

Air Pollution and New-Onset COPD
Conclusions Regarding the

Epidemiology of New-Onset
COPD

Mechanistic Evidence
Asthma Development
Early-Life Exposure Causes Immune

Changes, Including Type 1/Type 2
Skewing

A Mechanism for Nonatopic Asthma

COPD Development
Modifiers of the Impact of Air
Pollution on Airway Disease

Gaps in the Evidence and
Opportunities for FutureResearch

Mechanistic Conclusions
Clinical Considerations

Clinical Conclusions
Workshop Conclusions and

Recommendations
Future Directions

Overview

This workshop was convened to evaluate
the evidence regarding outdoor air
pollution as a causal factor in the
development of new-onset asthma and/or
chronic obstructive pulmonary disease
(COPD). The available evidence on
epidemiological associations, biological
mechanisms, and clinical considerations
was evaluated. Workshop participants
presented the current state of the
science in their respective fields, based
on their expertise and review of the
latest research available. Key conclusions
and recommendations included the
following:

d The weight of the evidence is consistent
with a causal relationship between new
onset of childhood asthma and long-term
exposure to outdoor air pollution,
especially metrics of traffic-related air
pollution (TRAP), such as nitrogen
dioxide (NO2) and black carbon (BC).

d It is unclear whether direct effects
of NO2 (the best-studied TRAP
component in epidemiologic studies)
or other components of TRAP,
such as fuel combustion particles
(implicated in toxicologic animal
studies), explain the causal link with
asthma.

d Further studies are needed to
determine whether the relationships
found in TRAP studies can be
generalized to air pollution from
other combustion sources, and to assess
the impact of air pollution on the
development of adult-onset asthma and/
or COPD.

d The reduced incidence of new onset
of childhood asthma should be

included in future assessments of the
health and monetary benefits of lessening
exposures to air pollution, especially
TRAP.

Introduction

Acute exacerbation of existing
respiratory diseases by air pollution
is well established and is commonly
factored into the decision-making
process of policymakers. For example,
short-term outdoor air pollution
exposures, including fine particulate
matter (particulate matter less than or
equal to 2.5 mm in aerodynamic
diameter [PM2.5]) (1), ozone (O3) (2),
NO2 (3), and sulfur dioxide (4) have
been accepted by the U.S. Environmental
Protection Agency as causally related
to acute adverse respiratory health
effects. The effects of air pollution
on asthma include acute associations
with increased symptoms (5), rescue
medication use (6), school absences
(7, 8), emergency department visits
(9, 10), hospitalizations (11, 12),
asthma lung function deficits (13–15),
and airway hyperresponsiveness (16),
Similarly, documented adverse
COPD health associations with
short-term PM2.5 exposures include
reduced pulmonary function (17) and
increased emergency room visits
(18), hospital admissions (19), and
mortality (20).

Compared with acute exposures
and health effects, it has been more
challenging to study and evaluate
the effects of long-term exposure on

incident disease; thus, less evidence
has been available in the published
literature. However, there is growing
evidence that long-term outdoor air
pollution exposures may also cause new
onset of airway disease. This Workshop was
convened to evaluate the evidence of
outdoor air pollution as a causal factor in the
development of new-onset asthma and/or
COPD.

Methods

At the annual American Thoracic Society
(ATS) International Conference in May
2018, a cross-disciplinary group met to
evaluate the evidence regarding the potential
role of air pollution in the onset of new
airway disease. The group included
researchers experienced in the mechanistic
aspects of airway disease development, air
pollution epidemiologists, and clinicians
with expertise in airway disease pathology/
diagnosis. Participants presented the current
state of the science in their respective fields,
based on their expertise and a review of
latest research available on their specific
topics. This is a consensus document, rather
than a formal systematic examination of all
the evidence. Consensus was reached by
majority vote. A writing committee
summarized the Workshop findings, which
all participants could review for an accurate
reflection of the proceedings. Potential
conflicts of interest were handled in
accordance with the policies and procedures
of the ATS.

We focused on the development of
new-onset asthma or COPD related to
outdoor air pollution exposure by
addressing several key questions:
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d Does the available epidemiologic
evidence concerning long-term air
pollution exposure support an association
with new-onset asthma or COPD?

d Are there biological mechanisms by
which air pollution could plausibly cause
new asthma or COPD?

d Are the health effects of air pollution
identified through epidemiologic and
mechanistic studies consistent with the
diagnosis of new asthma or COPD in a
clinical setting?

d Is there sufficient overall evidence to
conclude that long-term exposure to air
pollution contributes to the induction of
new asthma and/or COPD?

In this Workshop report, we first
summarize the epidemiological associations
found to date, and then assess whether these
associations are biologically and/or clinically
plausible.

Epidemiological Evidence

Air Pollution and New-Onset Asthma
Epidemiologic evidence linking exposure to
air pollution with the development of new-
onset asthma has grown in recent years.
Many studies have focused on surrogate
metrics of TRAP, as well as individual
ambient air pollutants. Commonly studied
TRAP components include nitrogen oxides,
NO2, BC, PM2.5, and PM less than or equal
to 10 mm in aerodynamic diameter (PM10).

Nitrogen Oxides, BC, PM2.5, and Other
Traffic-related Pollution

TRAP studies in children. TRAP exposures
were previously evaluated as a cause of
childhood or adult-onset asthma in Health
Effects Institute (HEI) Special Report 17
(21). This 2010 publication concluded that
living near busy roads is a risk factor for
onset of childhood asthma, but the data were
insufficient to conclude causality. Several
studies on the topic have been published
since the release of that report. For example,
the Southern California Children’s Health
Study (CHS) found an increased risk of new-
onset childhood asthma from TRAP at
home residences (22). Khreis and colleagues
subsequently synthesized 41 studies that
focused on children’s TRAP exposures as a
potential cause for asthma development
(23), and found associations with TRAP
metrics, especially NO2. (Figure 1). A 2017

meta-analysis of 18 studies of prenatal air
pollution exposures and childhood asthma
similarly found associations for NO2 and
PM10 (24). Findings were null for O3 and
PM2.5 mass (perhaps indicating that effects
varied by the PM2.5 constituent or source).
Other primary studies indicated that TRAP,
including prenatal exposure, contributes to
childhood asthma development (25–33).

In addition, in the United States, Latino
and black populations disproportionately
live in neighborhoods with higher air
pollution levels (34). Puerto Ricans and
black individuals have a higher prevalence
of asthma than white individuals (35).
The largest study of air pollution and
incident childhood asthma in U.S.
minorities found that early-life NO2

exposure was associated with childhood
asthma in Latinos and African Americans
(36). Since this Workshop was convened,
a multilevel longitudinal study drawn
from three waves of the CHS over a
decade of air pollution decline found
that decreases in ambient NO2 and
PM2.5 between 1993 and 2014
were significantly associated with lower
asthma incidence (37). This study is
consistent with an inference of causality
in the association between air pollution
and asthma incidence, as an intervention
to reduce exposure was followed by a
reduction in disease incidence.

TRAP studies in adults. A review and
meta-analysis of cohort studies found a
positive association between NO2 exposure
and asthma incidence in adults, but was based
on only three studies (38). Another review
found that the evidence was insufficient to
support a causal role for ambient air pollution,
but was qualitatively consistent with a role for
TRAP in the development of adult-onset
asthma (39). A Canadian study determined
that living near a major road was associated
with increased odds of new-onset asthma (40).
In the U.S. Sister Study (a large cohort of
U.S. women), incident asthma was positively
associated with PM2.5 and NO2, and both
pollutants were significantly positively
associated with incident wheeze, the cardinal
symptom of asthma (41). The ESCAPE
(European Study of Cohorts for Air Pollution
Effects) study, a meta-analysis involving six
European cohorts, reported positive
associations between TRAP and adult-onset
asthma (42), with several approaching
statistical significance, including NO2,
nitrogen oxides, and traffic intensity on
the nearest road. Two meta-analyses of

adult-onset asthma reported positive
associations with NO2 (13, 23), but only one
reached statistical significance (43). Since then,
there have been four studies in adult
populations (40, 44, 45). The largest of these
adult studies found a significant hazard ratio
for NO2 (45).

Overall, studies of new-onset asthma
and TRAP pollutants indicate the most
consistent positive relationship with NO2

exposure among children, but it remains
unclear whether NO2 itself is the causal
agent, simply has less measurement error
than other TRAP components, and/or is
simply a proxy for the combustion
component of TRAP (e.g., fossil fuel
combustion PM).

Ozone
There is extensive evidence that O3 exposure
acutely exacerbates asthma, but less support
for the hypothesis that long-term exposure
causes incident asthma. In a study of long-term
exposures, O3 was associated with new-onset
asthma in adult male Seventh-day Adventists
(46). A study in Taiwan indicated an
association between O3 exposure and risk of
childhood asthma (47). Also, the California
CHS found that in communities with high O3

concentrations, the relative risk of developing
asthma was increased in children who played
three or more sports as compared with
children who played no sports (48). However,
prenatal exposure toO3 has not been associated
with subsequent childhood asthma (24). Still,
the ambient quenching of O3 by traffic-
emitted nitric oxide (49) can cause a
negative correlation between O3 and NO2,
potentially confounding the relationships
between O3 and respiratory outcomes in
epidemiologic models.

Potential PM Composition Influences
Exposure to PM air pollution has been
associated with chronic airway diseases,
including asthma (23, 30, 41). In a study of
TRAP and new-onset asthma in a high-risk
cohort, Carlsten and colleagues found that,
among the TRAP pollutants considered,
PM2.5 was the air pollutant most strongly
associated with new-onset childhood asthma
(50). PM, however, varies greatly in chemical
composition as a function of its size and
source (1). Also, traffic-related PM (indicated
by BC) was found to be significantly related
to an increased risk of new-onset asthma in
children (23) (Figure 2). Although the
investigators of the PIAMA (Prevention and
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Incidence of Asthma and Mite Allergy) birth
cohort identified traffic as the major
contributing factor in their study area, PM2.5

sulfur, a marker for fossil fuel combustion,
generally had the largest relative risk for
incident asthma among several PM
constituents examined (51), so the PM2.5 and
BC associations reported may not be specific
to TRAP only.

Conclusions Regarding the
Epidemiology of New-Onset Asthma
d Overall, long-term exposure to air

pollution, especially as represented by

common metrics of TRAP exposure, is
associated with onset of childhood
asthma.

d The strongest epidemiologic evidence
for a causal relationship with new-
onset childhood asthma comes from
studies that used NO2 as the TRAP
metric.

d Evidence suggests that TRAP plays a role
in adult-onset asthma, but it is not yet
compelling.

d Greater effects likely occur in subgroups
(e.g., genetically susceptible individuals
and minorities).

d NO2 may be acting as a marker for PM
secondary to combustion of fossil fuels,
other reactive gases, or other nontailpipe
TRAP pollutants.

Air Pollution and New-Onset COPD
The potential role of air pollution in COPD
onset was addressed in a 2010 ATS review
(52) and an HEI report (21). The ATS
review concluded that there was limited/
suggestive evidence, and the HEI report
concluded that there was insufficient
evidence of a causal association between
TRAP and COPD.

Study or Subgroup log[Odds Ratio] SE Weight
Odds Ratio

IV, Random, 95% CI
Odds Ratio

IV, Random, 95% CI
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0.1111
0.0698
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0.0289
0.1136
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0.574

–0.0679
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–0.0214

–0.0359

0.039
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0.069
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0.1268
0.0281

0.0269
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0.0048
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0.0196

0.04

1.25 [0.94, 1.66]
1.05 [1.02, 1.09]
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1.15 [1.00, 1.31]
1.04 [0.94, 1.15]
1.07 [1.02, 1.12]
0.93 [0.73, 1.19]
0.98 [0.87, 1.10]
1.09 [1.02, 1.16]
0.98 [0.94, 1.02]
1.07 [0.94, 1.23]
1.09 [1.05, 1.14]
1.12 [0.87, 1.43]
1.07 [1.01, 1.13]
1.78 [1.11, 2.83]
1.07 [1.01, 1.12]
0.96 [0.93, 1.00]
1.03 [0.90, 1.18]
1.12 [1.01, 1.24]
1.02 [1.01, 1.03]
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5.0%Dell et al. 2014 LUR - 5 to 9 y.o.
Deng et al. 2016 - 3 to 6 y.o.

Jerret et al. 2008 - 10 to 18 y.o.
Kim et al. 2016 - 6 to 7 y.o.

Nishimura et al. 2013 - 8 to 21 y.o.
Oftedal et al. 2009 - birth to 10 y.o.
Ranzi et al. 2014 - birth to 7 y.o.
Shima et al. 2002 - 6 to 12 y.o.
Tétreault et al. 2016 - birth to 12 y.o.

Total (95% CI)

Heterogeneity: Tau2 = 0.00; Chi2 = 54.38, df = 19 (P < 0.0001); I2 = 65%
Test for overall effect: Z = 3.76 (P = 0.0002)

Krämer et al. 2009 - 4 to 6 y.o.
Liu et al. 2016 - 4 to 6 years old
Maclntyre et al. 2014 - CAPPS&SAGE only birth to 8
McConnell et al. 2010 - 4th to 6th grade
Mölter et al. 2014 b - MAAS only birth to 8 y.o.

Gehring et al. 2015 b - BAMSE birth to 16 y.o.
Gehring et al. 2015 b - PIAMA birth to 14 y.o.
Gehring et al. 2015b - GINI&LISA North birth to 15
Gehring et al. 2015b - GINI&LISA South birth to 15

Clark et al. 2010 LUR - at mean age of 4 y.o.

Figure 1. Meta-analysis of studies of nitrogen dioxide and new-onset asthma in children. Reprinted by permission from Reference 23. CI = confidence
interval; I2 = percentage of variation across studies due to heterogeneity; IV = instrumental variable; SE= standard error.
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Figure 2. Meta-analysis of black carbon soot associations with new-onset asthma. Reprinted by permission from Reference 23. CI =confidence interval;
I2 =percentage of variation across studies due to heterogeneity; IV= instrumental variable; SE=standard error.
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Since the publication of those reviews, a
few new COPD studies have emerged. Some
included new onset of chronic bronchitis
symptoms and/or emphysema as COPD
surrogates, and found positive (but not
statistically significant) associations with air
pollution (53, 54). An analysis of the
European Community Respiratory Health
Cohort yielded significant associations
between NO2 and chronic bronchitis (55).
The ESCAPE study found significant
associations between COPD incidence
and TRAP among females (56). Most
studies that assessed COPD using
spirometry revealed positive associations
with NO2 and/or PM2.5 (45, 57–60). One
study investigated the development of
asthma and COPD overlap syndrome
(ACOS) in patients with asthma, and found
a significant association between long-term
PM2.5 exposure and ACOS development
(60). Associations found between indoor
exposures to biomass pollution and
increased risk of COPD, albeit at
much higher than usual ambient PM2.5

levels, are consistent with an association
between fine PM and the development of
COPD (61).

Only a limited number of studies have
examined the associations between O3 and
COPD. A study of adults >40 years of age
found no association between COPD
development and O3 (58). A survey-based
study of 6,040 adults found that O3 exposure
was associated with the development of
ACOS in adults with asthma (60), but the
association was nonsignificant after
adjustment for PM2.5. However, because the
large hospital databases or survey cohorts
used in these studies lacked important
individual risk factors, the results should be
interpreted with caution. Overall, there is
little firm evidence that O3 causes new-onset
COPD.

Conclusions Regarding the
Epidemiology of New-Onset COPD
d Studies indicated that exposure to traffic

has adverse effects on COPD, but were
not conclusive. The strongest evidence
comes from meta-analyses of COPD, and
few longitudinal studies have been
conducted.

d Overall, the available epidemiological
evidence regarding an association
between air pollution and new-onset
COPD remains insufficient to indicate a
causal relationship.

Mechanistic Evidence

A key factor that should be considered in
evaluating the causality of the above-
discussed epidemiological associations is
their biological plausibility (62, 63). The
mechanistic literature regarding air
pollution and asthma includes animal
models and exposure paradigms, but only a
few such studies have focused on COPD.
Several mechanisms can plausibly explain
how air pollution can induce new-onset
airway disease with implications for both
asthma and COPD, including 1) structural
remodeling of lung components,
predisposing to respiratory disease; 2)
induced immune changes, promoting
allergic sensitization or prolonged
inflammation; 3) changes in innate
cells (e.g., group 2 innate lymphoid cells
[ILC2]) in nonatopic asthma; and 4) other
modifiers of exposure, including genetics
and stress.

Repeated inflammation and long-term
air pollution exposure leads to airway
remodeling. Early-life changes, including
airway remodeling and oxidant stress, can be
related to the onset of COPDor asthma, which
may further progress to COPD (64). The
conducting airways are an epithelial
mesenchymal trophic unit (65) composed of
airway epithelium, extracellular matrix, and
fibroblasts, which interacts with nerves,
smooth muscle, and immune cells. These
elements grow interactively in a progressive
fashion that may be disturbed by air pollution
exposure. Alveolar growth and septation occur
through young adulthood (66, 67), providing
a substantial window of opportunity for air
pollution–induced disruption.

Asthma Development
Animal studies have demonstrated that
early-life air pollution exposures alter
conducting airway and alveolar growth
(68–70). Air pollutants impact alveolar
growth by pre- and postnatal exposures
in mice (71), as well as by postnatal
exposures in primates (72). Evidence
strongly suggests that the cellular
mechanism underlying this altered
growth involves decreased cellular
proliferation (73). In nonhuman primates,
which have a postnatal maturation pattern
and lung anatomy similar to those of
humans, O3 (70) and O3 plus allergic
sensitization to allergen induce substantial
airway (74) and alveolar (75) remodeling

during the early postnatal period. These
changes include alterations in smooth
muscle, innervation, mucous cell
abundance, and allergic sensitization
linked to airway hyperresponsiveness
(76). The most oxidizing particles,
similarly to traffic combustion
particles, change airway and/or lung
size (68, 69). Thus, oxidant stress may
be a common link with reduction in
lung growth.

Numerous studies have demonstrated
pulmonary responses to oxidant stress
after exposure to air pollution. These
responses occur in mice and rats with
long-term exposure to particulate air
pollution (77, 78), diesel exhaust (79–81),
iron soot (82), and ambient PM (83),
with changes in the antioxidant enzymes
8-hydroxydeoxyguanine (8-OHdG) and
glutathione/oxidised glutathione (GSH/
GSSG), and oxidation of lipids. Increases in
tissue expression of antioxidant genes and
proteins are a common response to long-
term exposure. Treatment with antioxidants
blunts the oxidant effects of particles
(84, 85), but early-life responses to
oxidant stress may differ from those
observed in adults (86). In neonatal
rats exposed to polycyclic aromatic
hydrocarbon–laden ultrafine PM,
which is similar to traffic PM,
antioxidant gene and protein expression
was not upregulated to levels similar
to those observed in adults (87–89).
There may be critical windows of time
during postnatal lung development
when antioxidant defenses are less able
to upregulate.

Early-Life Exposure Causes Immune
Changes, Including Type 1/Type 2
Skewing
Early-life air pollution exposure
promotes allergic sensitization. PM
components, such as diesel emission
particles (DEP) (90–93), ultrafine particles
(94–96), and PM2.5 (97–99), can act as
allergen-like adjuvants. Such particles have
redox-active metals, can induce
inflammation and oxidative stress, shift
immune function from a T-helper cell type 1
(Th1) to a Th2 response, and drive
lymphocyte proliferation and IgE
production.

Particle chemical composition is
important to biologic potency (99, 100).
Simultaneous intranasal administration
of ultrafine carbon black particles (CBP)
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and allergen (95), has demonstrated
increased adjuvant activity. Thus, CBP
can directly stimulate dendritic cell
maturation (94). DEP and residual
oil fly ash (ROFA) can act as adjuvants
to increase IgE, bronchoalveolar lavage
eosinophilia, lymphocyte reactivity,
Th2 cytokine (interleukin-5 and tumor
necrosis factor) production, cholinergic
airway responses, and allergen-induced
bronchoconstriction (95), as can
hydrocarbons and soluble transition metals
present in DEP and residual oil fly ash,
respectively. Thus, DEP and ultrafine
particles (UFP) can act as adjuvants in the
initial events of allergen sensitization,
increasing cytokine production,
inflammation, airway hyperresponsiveness
(AHR), and airways obstruction.

The role of oxidant stress as a link
between air pollution and asthma onset is
also supported by studies showing
susceptibility based on functional genetic
variants in pathways predicted by
mechanistic toxicology. For example,
Salam and colleagues found that epoxide
hydrolase 1 and glutathione-S-transferase
variants contribute to the occurrence
of childhood asthma and increase
asthma susceptibility to pollution
exposures from major roads (101). The

roles of these enzymes in asthma stem
from their function in important xenobiotic
metabolic pathways and the subsequent
oxidant stress–mediated tissue damage that
can contribute to the pathogenesis of asthma.

A Mechanism for Nonatopic Asthma
Consistent with air pollution–induced
nonatopic asthma, mice repeatedly exposed
to O3, without allergen exposure, were found
to develop nasal type 2 immunity and
eosinophilic rhinitis with mucous cell
metaplasia (Figure 3) (102). These O3-
induced airway alterations are mediated by
ILC2s, rather than by the more classical T
and B lymphoid cells that are important in
adaptive immune responses typically
associated with allergic rhinitis and allergic
asthma (103). Furthermore, repeated
exposure to O3 induces ILC2-mediated
airway type 2 immunity, eosinophilic
inflammation, and mucous cell metaplasia in
the pulmonary airways (104, 105). Thus,
repeated O3 exposures may induce a
nonatopic asthma phenotype characterized
by innate type 2 immunity, eosinophilic
inflammation, and mucous cell
metaplasia. These findings provide
plausible paradigms for biological
mechanisms underlying the
epidemiologically identified associations

between airway eosinophilic inflammation
and new onset of nonatopic asthma
(106, 107). In addition, after this
Workshop was conducted in May 2018,
another study evaluated the current scientific
evidence of a causal link between DEP and
asthma, and found consistent evidence of
physiological mechanisms by which DEPs
can cause new asthma (108).

COPD Development
Relatively few toxicological studies
have focused on COPD and air
pollution, as most animal models
replicate only a few COPD features,
and are expensive, technologically
challenging, and time-consuming
(109, 110). One recent development
is spontaneously hypertensive rats
that require less time (14 wk vs. 6 mo)
to induce COPD-like changes (111).
A ferret model developed airway
obstruction characteristic of bronchitis and
bronchiolitis (112). Short-term PM
exposures caused increased pulmonary
injuries and attenuated lung antioxidant
responses in spontaneously hypertensive
rats, providing further evidence of this
model’s sensitivity to respiratory changes
(113). Long-term exposures to O3 or
diesel exhaust are known to induce

Daily exposures to Ozone

Mucous cell
metaplasia

hyperplasia
hypertrophy
hyalinosis

Epithelial cell death

Key Events in Ozone-
Induced Murine Rhinitis and
Nasal Epithelial Remodeling

Nasal airway epithelium

Lamina propria Neutrophils IL-13

IL-5
Eosinophils

Lymphocyte
Blood vessel

1 day 9 days

Figure 3. Long-term ozone exposure effects consistent with a role for air pollution in airway inflammation and remodeling leading to asthma development.
IL-5 = interleukin-5; IL-13= interleukin-13; ILC= innate lymphoid cells. Image by Jack R. Harkema.
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remodeling in distal airway regions, which
are key to COPD airway obstruction (114–
116).

Modifiers of the Impact of Air Pollution
on Airway Disease
Interindividual variation has been
identified in susceptibility to the pulmonary
effects of air pollution, via both extrinsic
(environmental) and intrinsic (host)
factors (117). Extrinsic factors include
socioeconomic status, exposure to other
environmental stimuli, nutrition, and
coexposures/infections. Intrinsic factors
include age, sex, preexisting disease, and
genetic background. Other risk factors
include host/maternal obesity (118, 119),
diabetes and diet (120), childhood rhinovirus
and respiratory syncytial virus infections,
and psychosocial and maternal stressors
(105).

Gaps in the Evidence and
Opportunities for Future Research
Various inbred strains and genetic
models have been used to investigate

susceptibility to respiratory disease;
however, these models do not reflect the
genetic heterogeneity found in humans.
Collaborative Cross and Diversity
Outbred models more closely mimic human
genetic variability (121). Furthermore, a
number of promising animal models of
COPD have been developed (111, 112)
and used to study factors involved in
tobacco smoke–induced COPD, but not
air pollution. Because of the structural
and immunologic similarities between
humans and nonhuman primates,
long-term studies in nonhuman primates
would be fruitful (122).

Mechanistic Conclusions
d There are asthma-like phenotypes that

increase in incidence/severity with
long-term exposure to air pollution,
especially to PM and O3, consistent
with the biological plausibility of air
pollution as a causal factor in asthma
development.

d Repeated and intermittent air pollution
exposures can cause airway remodeling,

which leads to the development of
asthma, and may also lead to COPD.

d Sufficient toxicological evidence for air
pollution as a cause of COPD is still
lacking.

d There remain multiple gaps in our
knowledge about airway disease
development, including a lack of
validated mechanistic models for studies
at environmentally relevant exposure
levels, and evaluations of epigenetic and
genetic influences.

Clinical Considerations

Many of the clinical parameters considered
in a diagnosis of asthma or COPD, such
as symptoms of wheeze, cough and
mucus production, dyspnea, airway
hyperresponsiveness, reduced lung function,
and airway remodeling, are also caused by
long-term air pollution exposure (123). Air
pollution is therefore a plausible contributor
to the risk of a new clinical diagnosis of
asthma or COPD. However, there are

• Air pollution causes lung function deficits, airway remodeling, and other clinical
  parameters considered in the diagnosis of asthma and COPD
• Air pollution is a clinically plausible contributor to the development and
  diagnosis of both asthma and COPD

Clinical Considerations

Epidemiologic Evidence

• Strong evidence for childhood asthma and
  long-term air pollution exposure, especially
  TRAP as measured by NO2 and BC
• Suggestive, but insufficient, evidence for adult
  asthma and TRAP

Asthma

• Few studies of long-term air pollution exposure
   and COPD onset
• Overall, insufficient evidence

COPD

Mechanistic Evidence

• Support for biological plausibility
• Air pollution, especially PM2.5 and O3,
  demonstrated to cause airway remodeling and
  increases in incidence/severity of asthma-like
  phenotypes

Asthma

• Limited availability of appropriate animal
  models for COPD
• Overall, insufficient evidence

COPD

Workshop Conclusions
   Epidemiologic and toxicological evidence convincingly indicate a causal induction of new childhood
  asthma by long-term outdoor air pollution exposure
   Although combined evidence supports the hypothesis that air pollution is related to adult onset
  asthma and COPD, additional evidence is needed to definitively conclude a causal connection

Figure 4. Workshop findings and conclusions. BC=black carbon; COPD=chronic obstructive pulmonary disease; NO2=nitrogen dioxide;
PM2.5 = particulate matter less than or equal to 2.5 mm in aerodynamic diameter; TRAP= traffic-related air pollution.
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challenges in translating epidemiological and
toxicological findings to the clinical context.
Large observational epidemiological studies
often do not have the same information that
may be incorporated into a clinician’s
diagnostic decision. Studies of exposures to
air pollution and the risk of new-onset
asthma or COPD have generally relied on
self-reported physician diagnoses. For both
asthma and COPD, a self-reported physician
diagnosis is relatively specific but not
sensitive, and cases may be missed or
overreported in epidemiologic studies.
Additional medical information, including
medical history, response to therapeutic
medication, physical examination, and lung
function measurements, used for the
diagnosis of asthma or COPD, may be
lacking in epidemiologic studies. For
example, pre- and postbronchodilator
spirometry and/or methacholine challenge
can contribute to a diagnosis, but may not
always be included in large epidemiological
studies.

Asthma is clinically defined by a history
of intermittent respiratory symptoms (e.g.,
wheeze, shortness of breath, chest tightness,
and cough) with reversible airways
obstruction and/or hyperresponsiveness
(124). Several phenotypes (e.g., allergic and
nonallergic) and endotypes (e.g., with or
without biomarkers of enhanced Th2
response) have been described (125), and
air pollution may have differential effects
on the risk for new-onset asthma depending
on genetic susceptibility, the presence
of allergy, coexposures, obesity, age, and
sex. The etiology of asthma is likely
multifactorial, and air pollution
alone may rarely be the sole or even
primary cause.

COPD is a condition characterized by
more persistent respiratory symptoms (e.g.,
shortness of breath, chronic cough, and
sputum production), defined by fixed
airways obstruction that does not reverse
with bronchodilator administration (126).
COPD also has several phenotypes (e.g.,
chronic bronchitis and emphysema) and
endotypes (e.g., sputum with or without
eosinophils) (127). Spirometry is required
for a COPD diagnosis (112), but many
published observational studies of air
pollution exposures and COPD have not
used spirometry to define the outcome.
It is well recognized that COPD is
clinically underdiagnosed (128). Another
challenge is inadequate data to adjust
for possible confounding from smoking,

occupational exposures, or household
air pollution from combustion of solid
fuels for cooking and heating, and the
long latency period for COPD development
(52). COPD is likely multifactorial, and
air pollution is often working in
concert with other determinants of
disease risk.

Clinical Conclusions
Many of the clinical parameters
considered in a diagnosis of asthma or
COPD (e.g., lung function deficits and
airway remodeling) are also caused by
long-term air pollution exposure, as
documented above, indicating that air
pollution is a clinically plausible contributor
to the development and diagnosis of both
asthma and COPD.

Workshop Conclusions
and Recommendations

A summary of the Workshop findings
and conclusions is presented in Figure 4.
At the end of the Workshop, votes
were taken on each of the overarching
questions, and there was unanimous
agreement that:

1. There are biological mechanisms by which
air pollution could plausibly cause the
induction of new asthma and/or
COPD.

2. Air pollution’s known effects on the lung
and airways could plausibly contribute to
a diagnosis of asthma or COPD in a
clinical setting.

3. Epidemiologic and toxicological
evidence convincingly indicates a causal
link between long-term exposure to
outdoor air pollution (especially TRAP)
and new childhood asthma.

4. Based on the above, it is concluded that
there is sufficient scientific evidence to
conclude that long-term outdoor air
pollution exposure causally contributes
to the development of new childhood
asthma.

5. Although combined toxicological and
epidemiological evidence supports the
hypothesis that long-term air pollution is
related to adult-onset asthma and COPD
onset, further investigations are needed
to definitively conclude that there is a
causal connection.

Future Directions

1. Developing long-term, well-
characterized mechanistic air pollution
inhalation exposure models for asthma
and COPD.

2. Gaining a better understanding of
whether the epidemiological associations
found for TRAP are due to direct effects
of NO2, or to a component of the PM2.5

mass with which NO2 is commonly
associated (e.g., fossil-fuel combustion
fine particles).

3. Conducting further investigations of
air pollution’s impacts on the development
of COPD and adult-onset asthma. n
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