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Background: The typical enhancement patterns of hepatocellular carcinoma (HCC) on
contrast-enhanced ultrasound (CEUS) are hyper-enhanced in the arterial phase and
washed out during the portal venous and late phases. However, atypical variations make a
differential diagnosis both challenging and crucial. We aimed to investigate whether
machine learning-based ultrasonic signatures derived from CEUS images could
improve the diagnostic performance in differentiating focal nodular hyperplasia (FNH)
and atypical hepatocellular carcinoma (aHCC).

Patients and Methods: A total of 226 focal liver lesions, including 107 aHCC and 119
FNH lesions, examined by CEUS were reviewed retrospectively. For machine learning-
based ultrasomics, 3,132 features were extracted from the images of the baseline, arterial,
and portal phases. An ultrasomics signature was generated by a machine learning model.
The predictive model was constructed using the support vector machine method trained
with the following groups: ultrasomics features, radiologist’s score, and combination of
ultrasomics features and radiologist’s score. The diagnostic performance was explored
using the area under the receiver operating characteristic curve (AUC).

Results: A total of 14 ultrasomics features were chosen to build an ultrasomics model,
and they presented good performance in differentiating FNH and aHCC with an AUC of
0.86 (95% confidence interval [CI]: 0.80, 0.89), a sensitivity of 76.6% (95% CI: 67.5%,
84.3%), and a specificity of 80.5% (95% CI: 70.6%, 85.9%). The model trained with a
combination of ultrasomics features and the radiologist’s score achieved a significantly
higher AUC (0.93, 95% CI: 0.89, 0.96) than that trained with the radiologist’s score (AUC:
0.84, 95% CI: 0.79, 0.89, P < 0.001). For the sub-group of HCC with normal AFP value,
the model trained with a combination of ultrasomics features, and the radiologist’s score
remain achieved the highest AUC of 0.92 (95% CI: 0.87, 0.96) compared to that with the
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ultrasomics features (AUC: 0.86, 95% CI: 0.74, 0.89, P < 0.001) and radiologist’s score
(AUC: 0.86, 95% CI: 0.79, 0.91, P < 0.001).

Conclusions: Machine learning-based ultrasomics performs as well as the staff
radiologist in predicting the differential diagnosis of FNH and aHCC. Incorporating an
ultrasomics signature into the radiologist’s score improves the diagnostic performance in
differentiating FNH and aHCC.
Keywords: ultrasonography, machine learning, focal nodular hyperplasia, hepatocellular carcinoma, ultrasomics
INTRODUCTION

The typical enhancement pattern of hepatocellular carcinoma
(HCC) on contrast-enhanced ultrasound (CEUS) is characterized
by hyper-enhancement in the arterial phase and wash out during
the portal venous and late phases (1). However, atypical variations
occur, especially in some well-differentiated tumors, accounting for
5–41% of HCC cases; such lesions may show sustained hyper-/iso-
enhancement in the portal venous and late phases and are defined
as atypical HCC (aHCC) (2–4). Meanwhile, most benign focal liver
lesions show complete hyper- or iso-enhancement in the portal
venous and late phases, making differential diagnosis both crucial
and challenging (5, 6). This diagnostic difficulty could be resolved
using CEUS techniques, such as micro-flow imaging to further
characterize the enhancement features in the arterial phase, e.g., a
spoke-wheel artery for focal nodular hyperplasia (FNH) and
chaotic vessel for HCC (7–10). However, the interpretation of
features involves the experience of radiologists, making inter-
reader variability inevitable.

In contrast to the traditional practice of treating medical images
as pictures intended solely for visual interpretation, radiomics
features could reflect not only the macroscopic manifestation but
also the cellular and molecular nature of tissues (11–13). Radiomics
offers a vast scale of imaging biomarkers that could potentially assist
in detecting and diagnosing, evaluating the prognosis and
predicting the therapeutic response, and monitoring the disease
status of cancer (11, 12, 14–16). Machine learning-based
ultrasomics approaches, derived from radiomics, involve the
analysis and transformation of ultrasound images into large sets
of quantitative data and have been identified as potential
alternatives to detect and classify lesions (17, 18).

Recently, few applications of machine learning in HCC
diagnosis have been reported (19, 20). Most machine learning
systems have demonstrated excellent diagnostic performance,
with the area under the receiver operating characteristic curve
(AUC) of 0.89-0.97 for HCC characterization (19, 20). Gatos
et al. applied radiomics to segment and classify focal liver lesions
on non-enhanced T2-weighted images, providing a non-invasive
method for assessing liver lesions (21). Some studies have shown
that multi-modal ultrasound images also perform well for the
detection and classification of focal liver lesions (19, 22, 23).
However, most studies have only compared the diagnostic
performance between machine learning systems and
radiologists. The influence of the performance of these systems
on radiologists when used in clinical practice has not been
2

evaluated. Thus, the added clinical value of machine learning
systems to observers is necessary to determine and validate.

The purpose of our research was to develop a machine
learning-based ultrasomics approach to assess ultrasomics
features for improving the diagnostic performance in
differentiating FNH and aHCC.
PATIENTS AND METHODS

Patients
This retrospective analysis obtained ethical approval and waived
the informed consent requirement. From December 2013 to
January 2018, 119 patients with FNH and 107 patients with
aHCC lesions were included in the study based on the inclusion
and exclusion criteria. The inclusion criteria were as follows:
(a) CEUS was performed; (b) lesions were visually hyper-
enhanced during the arterial phase and sustained hyper- or
iso-enhanced during the portal venous and late phases;
(c) HCC was diagnosed by pathological examinations and
FNH was confirmed by pathological examinations or
supported by CT or MRI findings with a minimum 1 year
follow-up; and (d) no treatment was conducted before CEUS.
Patients were excluded if they had multiple tumors. Baseline
clinical trial data, including age, gender, and some blood test,
such as hepatitis background and alpha-fetoprotein (AFP), were
performed no more than 7 days before or after the
CEUS examination.

Image Acquisition
US examinations were performed using an Aplio 500 scanner
(Canon Medical Systems, Tokyo, Japan), equipped with a 375BT
convex transducer (frequency, 3.5 MHz) and an Aixplorer
scanner (Supersonic, Paris, France) with an SC6-1 curvilinear
transducer (frequency, 1–6 MHz). Contrast harmonic imaging
(CHI) and contrast pulse sequencing (CPS) were used with a
mechanical index of 0.06–0.10. Baseline ultrasonography was
performed to scan the liver thoroughly before CEUS.
Additionally, the target lesions were identified and observed
carefully during the baseline observation in B mode. The
imaging settings, such as the gain, depth, and focus, were
optimized for each examination. After the CHI or CPS mode
was activated, a bolus intravenous injection of 2.4 mL of
SonoVue (Bracco, Milan, Italy) was administered, followed by
flushing with 5 mL of saline. The targeted lesion was observed
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continuously for 5 minutes. The arterial, portal venous, and late
phases were defined as 10–30 seconds, 31–120 seconds, and 121–
300 seconds after injection, respectively. CEUS examinations
were performed by one of two radiologists (WW and X-YX) with
at least 10 years’ experience of performing CEUS. Three images
from the same section, which showed the maximum observation
of the target lesion, were taken from each patient, (a) a baseline
ultrasound; (b) an arterial phase image at the enhancement time
of 25–30 seconds; and (c) a portal phase image at the
enhancement time of 60–70 seconds.

Radiologist’s Scoring
Two staff radiologists (B-WZ and L-DC) reviewed ultrasound
images and videos retrospectively, and they had more than 5
years of experience in assessing liver CEUS data. The radiologists
were not involved in the feature extraction process below. All
patient identification information from the images was removed,
and the researchers were unaware of all the clinicopathological
Frontiers in Oncology | www.frontiersin.org 3
information. The diagnostic criteria for HCC and FNH were based
on the 2012 guidelines issued by the European Federation of
Societies for Ultrasound in Medicine and Biology (EFSUMB) (2).
The diagnostic criteria for HCC were the manifestation of basket
pattern and/or chaotic vessels (Figure 1A) and non-enhanced areas
(Figure 1B). The diagnostic criteria of CEUS feature for FNH were
centrifugal enhancement (Video 1), spoke-wheel artery (Figure
1C), unenhanced central scar (Figure 1D), and feeding artery.

For each group, the diagnostic confidence was scored using a
subjective three-point scale (grade 1, definitely or most likely
FNH; grade 2, indeterminate; and grade 3, most likely or
definitely HCC). If there was inconsistency, we performed a
consensus reading, and the consensus data were used for
subsequent analysis.

Ultrasomics Feature Extraction
Digital imaging and communications in medicine (DICOM)
images were used to extract ultrasomics features using the in-
FIGURE 1 | Typical features for HCC and FNH lesions. (A) the basket pattern and/or chaotic vessels; (B) non-enhancing areas (arrow); (C) spoke-wheel arteries;
and (D) unenhanced central scar (arrow). Annotations of the ROI generated by the radiologists around the tumor outline are delineated in red.
March 2021 | Volume 11 | Article 544979
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house designed Ultrasomics-Platform software (Version 1.0;
Ultrasomics Artificial Intelligence X-lab, Guangzhou, China).
After an image was imported, the radiologist drew a region of
interest (ROI) on the largest cross-section along the tumor contour.
Next, the software automatically extracted the features from the
ROIs. In total, 1,044 features could be extracted from a single
image. These 1,044 features extracted from a single image consisted
of five categories of features: histogram parameters, textural
parameters, form factor parameters, grey-level co-occurrence
matrix (GLCM) parameters, and run length matrix (RLM)
parameters. Detailed information on the features is provided in
Supplementary Material S1. Finally, 3,132 features were extracted
from the baseline US, arterial phase and portal phase of CEUS
images of each patient. Initially, two radiologists (WL and YH, with
at least 5 years of experience in performing US examinations) were
required to trace out ROIs on the selected images. The inter-
observer and intra-observer reproducibility in feature extraction
were assessed and are described in Supplementary Material S2.
The remaining images were delineated by the first radiologist.

Feature Selection and Model Development
for Prediction
Of the 3,132 features from each patient, many were highly
redundant, which could degrade the classification. We eliminated
redundant features by using a two-step feature selection method.
First, if two features were highly-correlated with a correlation
coefficient higher than 0.95, one of the features was removed.
Second, we eliminated features with an AUC less than 0.6.
According to the Harrell guidelines for multivariate analysis, the
number of events should be at least 10 times greater than that of the
included covariates (24). The least absolute shrinkage and selection
operator (LASSO) regression was used to perform the ultrasomics
features selection in the training dataset. All ultrasomics feature
values were normalized by using the mean and variance of the
feature values to be within similar dynamic ranges.

A support vector machine (SVM) based on the radial basis
function (RBF) kernel was trained from the selected feature
subset produced by the preceding steps. The entire data set
was randomly divided into a training dataset (comprising 80% of
subjects) and a validation dataset (comprising the remaining
20% of subjects). The training dataset was used to construct a
model, which was then evaluated using the validation dataset. A
10-fold cross-validation method was adopted to ensure the
robustness of the classifiers to training and testing data. All
processes were repeated 10 times with random seeds, generating
10 different training and validation datasets. We built the model
using the training dataset and then evaluated it using the
validation dataset repeatedly. Subsequently, the model with the
best classification performance was selected as the best model.

Statistical Analysis
Descriptive statistics are summarized as the mean ± standard
deviation (SD) or median and interquartile range. Comparisons
between groups were tested using Student’s t test or the Mann-
Whitney test for quantitative variables and the chi-squared test
or Fisher’s test for qualitative variables.
Frontiers in Oncology | www.frontiersin.org 4
A weighted kappa statistics test was used to assess the two
radiologists’ scores. We evaluated the reproducibility of the
ultrasomics feature extraction using the “irr” package in R. The
LASSO regression was performed using the “glmnet” package.

All observations of patients with known outcomes were
classified into three datasets (1): radiologist ’s score,
(2) ultrasomics features, and (3) a combination of ultrasomics
features and radiologist’s score. The diagnostic performance of
the radiologist’s score was evaluated by plotting receiver operating
characteristic (ROC) curves. The diagnostic performance in
discriminating between FNH and aHCC is expressed as the
AUC. The ultrasomics features and the combination of the
ultrasomics features and radiologist’s score were further
compared through an SVM classifier using the “rattle” package in
R. The performance of the SVM model was tested using the AUC.
Paired comparisons of AUC values were performed by a two-sided
Wilcoxon signed-rank test at a significance level of 5%. The
predictive sensitivity (SEN), specificity (SPE), positive predictive
value (PPV), negative predictive value (NPV), positive likelihood
ratio (+LR), and negative likelihood ratio (-LR) were calculated at a
cut-off point that maximized the value of the Youden index.
Comparisons among the three datasets were performed using the
Delong test. Decision curve analysis (DCA) was performed with the
“dca.R” function. All statistical tests were two-sided tests, and
P< 0.05 indicated statistical significance. All Statistical analyses
were performed using R version 3.3.3 (http://www.r-project.org/).
RESULTS

Clinical Characteristics
The clinical characteristics are listed in Table 1. The study
included 226 patients; 107 (47.3%) patients (mean age, 54.0 ±
11.9 years old) had a final diagnosis of HCC; and the remaining
119 (52.7%) patients (mean age, 34.5 ± 11.7 years old) had a final
diagnosis of FNH. 20 FNH lesion were confirmed by pathological
examinations (11 by biopsy, 9 by surgery), while 99 cases were
supported by CT or MRI findings with a minimum one-year
follow-up. No significant difference was found in the tumor
number between the two groups (P=0.118). The average lesion
size of FNH and HCC was 3.3 ± 1.8 cm (range: 0.8-10.2 cm) and
4.8 ± 3.4 cm (range: 0.8-18.6 cm), respectively.

Ultrasomics Signature Construction
and Validation
After the feature selection and dimensional reduction process, 14
selected features were taken as the input of the SVM to train a
prediction model, including 6 features derived from baseline US
images, 3 from arterial phase images, and 4 from portal phase
images (Figure 2, Supplementary Material S3). All feature
values were normalized to achieve similar dynamic ranges. The
parameter C which is used to control the error-margin trade-off
was set at 1, and the kernel width sigma was 0.012. Next, the
training and validation procedures for tumor classification were
employed with 10-fold cross-validation.
March 2021 | Volume 11 | Article 544979
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Diagnostic Performance of Ultrasomics
Features and Radiologist’s Score Models
A total of 83 FNHs were correctly identified while 36 lesions were
incorrectly identified as HCC, leading to a specificity of 69.8% by
the radiologists. For combined model, 100 FNHs were correctly
classified whereas 19 lesions were incorrectly assigned to HCC,
resulting in a specificity of 84.0%. Comparing the performance of
the radiologists' score and the combined model, twenty-four
cases have a different result; consequently, the combined model
leads to an additional 15 FNHs and 5 HCCs being
correctly classified.

The model trained with the combination of the ultrasomics
features and radiologist’s score performed significantly better
(AUC: 0.93, 95% CI: 0.89, 0.96) than that trained with the
ultrasomics features (AUC: 0.86, 95% CI: 0.80, 0.89, P < 0.001)
and radiologist’s score (AUC: 0.84, 95% CI: 0.79, 0.89, P < 0.001).
Overall, the model based on the radiologist’s score had the
highest diagnostic SEN of 94.4% (95% CI: 88.2%, 97.9%) but
the lowest SPE of 69.8% (95% CI: 60.7%, 77.8%) compared with
the combined model (SEN: 93.5% [95% CI: 87.0%, 97.3%], SPE:
84.9% [95% CI: 77.1%, 90.8%]), and the ultrasomics features
model (SEN: 76.6% [95% CI: 67.5%, 84.3%], SPE: 80.5% [95% CI:
70.6%, 85.9%]). Furthermore, when the ultrasomics features
were combined with the radiologist’s score, the diagnostic
performance was significantly improved in terms of the AUC,
SPE, and PPV and + LR (AUC: 0.93, SPE: 84.9%, and PPV:
84.7%, +LR 6.2) compared with the performance of the other two
models. The performance measurements of each dataset are
reported in Table 2 based on each ROC curves to distinguish
between FNH and aHCC (Figure 3).
Frontiers in Oncology | www.frontiersin.org 5
The DCA shows that within most reasonable threshold
probability ranges, the combined model showed the highest
overall net benefit than the radiologist’s score or ultrasound
feature model. The DCA results for the three models are
presented in Figure 4.
TABLE 1 | Clinical Characteristics and Laboratory Information of the Patients.

Patients FNH(N=119) aHCC(N =107) P value

Gender (male/female) 61/58 92/15 <0.001
Age (years) 34.5 ± 11.7 54.0 ± 11.9 <0.001
HBsAg (IU/ml) <0.001
≤0.05 116 (97.5) 15 (14.0)
0.05–250 1 (0.8) 34 (31.8)
>250 2 (1.7) 58 (54.2)

HBV-DNA (IU/mL) <0.001
<100 118 (99.2) 46 (43.0)
100–105 0 44 (41.1)
>105 1 (0.8) 17 (15.9)

HCV-Ab (S/CO) 0.212
<1.0 119 (100) 105 (98.1)
≥1.0 0 2 (1.9)

AFP (mg/L) <0.001
<20 117 (98.3) 38 (35.5)
20–400 2 (1.7) 40 (37.4)
>400 0 29 (27.1)

Tumor number 0.118
1 112 (94.1) 92 (86.0)
2 4 (3.4) 8 (7.5)
≥3 3 (2.5) 7 (6.5)

Tumor size (cm) 3.34 ± 1.80 4.76 ± 3.35 <0.01
<3 64 (53.8) 37 (34.6)
3-5 35 (29.4) 35 (32.7)
>5 20 (16.8) 35 (32.7)
Data are the number of patients, with the percentage in parentheses unless indicated.
aHCC, atypical hepatocellular carcinoma.
FIGURE 2 | Radiomics feature selection using the least absolute shrinkage
and selection operator (LASSO) regression model. The 10-fold cross-
validation (CV) process was repeated 50 times to generate the optimal
penalization coefficient lambda (l) in the LASSO model. The value of l that
produced the minimum average binomial deviance was used to select
features. Dotted vertical lines were drawn at the optimal values using the
minimum criteria and the 1 standard error of the minimum criteria (the 1-SE
criteria). A l value of 0.043 was chosen (the 1-SE criteria) according to
10-fold CV, where optimal l resulted in 14 nonzero coefficients.
TABLE 2 | Diagnostic Performance of the Three Models in Differentiating Focal
Nodular Hyperplasia and Atypical Hepatocellular Carcinoma.

Ultrasomics
score

Radiologist’s
score

Combined

Sensitivity (%) 76.6 (67.5-84.3) 94.4 (88.2-97.9) 93.5 (87.0-97.3)
Specificity (%) 80.5 (70.6-85.9) 69.8 (60.7-77.8) 84.9 (77.1-90.8)
PPV (%) 76.6 (67.5-84.3) 73.7 (65.5-80.9) 84.7 (77.0-90.7)
NPV (%) 79.0 (70.6-85.9) 93.3 (85.9-97.5) 93.5 (87.1-97.3)
+LR 3.7 (3.2-4.2) 3.1 (2.7-3.5) 6.2 (5.6-6.8)
-LR 0.3 (0.2-0.5) 0.1 (0.04-0.2) 0.1 (0.03-0.2)
AUC of training set 0.94 (0.89-0.99) 0.93 (0.85-0.98) 0.99 (0.94-1.00)
AUC of validation
set

0.86 (0.80-0.89) 0.84 (0.79-0.89) 0.93 (0.89-0.96)
Marc
h 2021 | Volume 11
Data in parentheses are 95% confidence interval. PPV, positive predictive value; NPV,
negative predictive value; +LR, positive likelihood ratio; -LR, negative likelihood ratio; AUC,
area under the curve.
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Validation in the Sub-group of HCC With
Normal AFP Level
Forty patients were confirmed to develop HCC with normal AFP
level. The model trained above performed significantly better (AUC:
0.92, 95% CI: 0.87, 0.96) with the combination of the ultrasomics
features and radiologist’s score than that with the ultrasomics features
(AUC: 0.86, 95% CI: 0.74, 0.89, P < 0.001) and radiologist’s score
(AUC: 0.86, 95% CI: 0.79, 0.91, P < 0.001) (Table 3).
DISCUSSION

In this study, we derived and validated an ultrasomics-based
machine learning approach to analyze ultrasound images for the
preoperative individualized diagnosis of FNH and aHCC. Our
analysis reveals that the diagnostic performance of ultrasomics is
comparable to that of a staff radiologist in differentiating between
FNH and aHCC. Furthermore, when adding ultrasomics to the
radiologist’s classification, the diagnostic performance was
improved significantly with an AUC ranging from 0.84 to 0.93
(P < 0.001). Our study shows that ultrasomics may increase the
diagnostic confidence of radiologists in CEUS examinations and
potentially improve their accuracy when facing atypical features.
Thus, clinicians would benefit from this decision-making process
in the diagnosis of HCC.

In clinical practice, when radiologists face a lesion that shows
hyper-enhancement in the arterial phase and sustained
enhancement in the portal vein and late phases, it is difficult to
diagnose HCC. However, the high sensitivity and negative
Frontiers in Oncology | www.frontiersin.org 6
predictive values of the radiologist would be useful in clinical
practice for excluding disease; thus, HCC would be excluded by
the radiologist if the result was considered to be FNH by
ultrasomics. Therefore, this system would help to reduce
unnecessary biopsies or active clinical treatment requested by
experienced radiologists.

In contrast, ultrasomics, referred to as high-throughput
computing, extracts innumerable quantitative features from US
images (18). By transforming digital medical images into mineable
high-dimensional data, ultrasomics yields features, such as textural
features, that could objectively reflect the homogeneity or
heterogeneity of an image. These patterns could represent
enhancement features just as heterogeneity might represent
chaotic vessels and necrosis. Focal liver lesions can be featured
by typical features in the arterial phase and wash-out during the
portal and late phases. In this study, the features displayed in the
arterial phase could provide a major benefit for the diagnosis of
liver tumors. In previous studies, we utilized a maximum intensity
projection technique of micro-flow imaging and achieved higher
spatial resolution and higher temporal resolution when detecting
vessel contours. Compared to conventional CEUS features (AUC:
0.84), micro-flow imaging technology provided significant
improvements over the detection rates achieved for the staff
radiologists (AUC: 0.89) (10). In this study, ultrasomics features
alone can achieve a similar diagnostic performance (AUC: 0.86) as
FIGURE 3 | Receiver operating characteristic curves of the combination of
ultrasomics features and radiologist’s score (blue curve), ultrasomics features
(green curve), and radiologist’s score (orange curve). The areas under the
curves are 0.93, 0.86, 0.84, respectively.
FIGURE 4 | Decision curve analysis for each model. The y-axis measures the
net benefit. The net benefit was calculated by summing the benefits (true
positive results) and subtracting the harms (false-positive results), weighting
the latter by a factor related to the relative harm of undetected cancer
compared with the harm of unnecessary treatment. The combined model
(yellow line) had the highest net benefit compared with the other two models
(blue line and red line) and simple strategies, such as the follow-up of all
patients (grey line) or no patients (horizontal black line), across the full range
of threshold probabilities at which a patient would choose to undergo a
follow-up imaging examination.
March 2021 | Volume 11 | Article 544979
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micro-flow imaging (AUC: 0.868–0.873). Ultrasomics could reach
such achievement because it analyzes textural features objectively
and quantitatively to describe the intrinsic characteristics of
tumors, in particular heterogeneous tumors. Ultrasomics
analysis has already been applied to various types of disease,
such as HCC, liver fibrosis, and breast cancer (18, 25–27). The
potential of ultrasomics has already been demonstrated for liver
imaging in some studies (17, 18).

In this study, we additionally evaluated the benefit of ultrasomics
in assisting doctors with the interpretation of medical images. As an
interdisciplinary technology, it combines elements of imaging
generation, digital image processing, statistical imaging, and
knowledge engineering to manage the volume of information
related to the diagnostic process and outcome prediction (17, 18,
25). In our study, the additional information in the combinedmodel
led to improved diagnostic performance (AUC: 0.93) and higher
specificity of 84.9% compared with the ultrasomics (AUC: 0.86,
specificity: 80.5%) and radiologist’s score (AUC: 0.84, specificity:
69.8%) models. The combined model was also comparable to the
ML model based on multi-modal ultrasound images (AUC: 0.94,
sensitivity: 91.0%, specificity: 86.0%) (19). The results are also
comparable to and even better than those of MRI (AUC: 0.89,
sensitivity: 82.2%, specificity: 71.4%), as previously reported (20).
However, the use of artificial intelligence is not intended to replace
expert diagnosticians because no solution is guaranteed and
knowledge-based maintenance is required. Artificial intelligence is
also affected by several elements, such as the source of images and
the cognition of disease. Presently, most domains of large data have
not tapped the full potential of artificial intelligence technology.
However, rapid developments in the area will add more potential to
the advantages. Therefore, the most important role of artificial
intelligence is to help improve diagnostic accuracy and assist rather
than replace clinicians in making treatment decisions. It is worth
noting that the combined model greatly improved the diagnostic
ability of radiologists. A similar conclusion was obtained in another
study (28).

Our research has some limitations. First, this study was
retrospective and conducted in one center. This may cause
potential variations and selection bias in the patient population
and imaging methods, which is difficult to generalize the
outcomes to other agencies. Second, due to the relative rarity
of aHCC, the sample size is relatively small, which may cause
over-fitting to this particular population. Hence, large-scale
multicenter studies are necessary for the future to validate the
results. Third, only two radiologists were involved in the
assessment of the basic imaging features and feature extraction.
All outcomes were based on the features extracted by one
radiologist, which may not be generalizable to all radiologists.
Frontiers in Oncology | www.frontiersin.org 7
Fourth, the machine and imaging settings in this study were
inconsistent, which may affect the ultrasomics features (29, 30).

In conclusion, an ultrasomics approach was developed to
investigate the association between the quantitative ultrasound
features and pathological characteristics of tumors effectively and
objectively. We evaluated the added value of ultrasomics to the
radiologist, and this approach improved the performance of
CEUS by providing quantitative and standardized criteria to
radiologists, thereby enabling the more confident application of
CEUS in detecting HCC to achieve better treatment planning.
Our findings can assist clinicians in the differential diagnosis
between FNH and aHCC accurately using CEUS images, and this
allows for early and precise medical management and treatment.
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