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Abstract: KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes
post-translational modifications at its C-terminal end. These modifications are essential for its
membrane location and activity. Despite significant efforts made in the past three decades to target
the mechanisms involved in its membrane localization, no therapies have been approved and taken
into the clinic. However, many studies have recently reintroduced interest in the development of
KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps
involved in post-translational KRAS modifications. In this review, we summarize the approaches
that have been applied over the years to inhibit the membrane localization of KRAS in cancer and
propose a new anti-KRAS strategy that could be used in clinic.
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1. Introduction

The RAS oncogenes (KRAS, HRAS, and NRAS) are frequently mutated in human
cancers, with KRAS being the most commonly affected [1]. RAS are small GTPases that
act as binary molecular switches by cycling between an active form bound to guanosine
triphosphate (GTP) and an inactive form bound to guanosine diphosphate (GDP)-bound.
The switching process and activity of RAS are regulated by guanine nucleotide-exchange
factors (GEFs) and GTPase-activating proteins (GAPs) [2]. GEFs induce the release of GDP
to GTP from G-proteins by modifying the nucleotide binding site, thereby changing their
conformation and increasing their binding affinity for effector proteins [3]. On the other
hand, GAPs enhance the hydrolysis of bound GTP to GDP of G-proteins blocking their
activities and stopping their downstream signaling pathways [4].

RAS family members are very similar in their catalytic domain, but differ in their
hypervariable regions (HVR) (amino acids (aa) 166–185). The catalytic domain (1-86 aa),
which has 100% homology between the RAS proteins, while the HVR, which is restricted
to the last C-terminal aa, has 10–15% aa identity between RAS proteins, with site-specific
amino acid variations that could affect intramolecular dynamics [5]. Oncogenic mutations,
particularly at positions 12, 13 or 61, block the negative regulation of RAS by GAPs, and
induce its activity. In the RAS family, the KRAS gene is the only one that is alternatively
spliced at the fourth exon, resulting in two isoform proteins: KRAS4A and KRAS4B. The
latter two have identical sequences except for their carboxyl terminus, which required
for post-translational modifications and intracellular transport [6]. The respective roles of
the two splice isoforms in tumorigenesis are still unclear, with some studies suggesting a
preponderant role for KRAS4B [7–9].

RAS proteins are located at the inner surface of the plasma membrane. This position
is crucial for their biological activity and depends on sequence motifs present in the HVR.
The first motif, which is common to all RAS proteins, is the C-terminal CAAX motif (C
stands for cysteine, A for aliphatic amino acid, X for any amino acid). This motif undergoes
a series of modifications required for the localization to the membrane [10,11]. The initial
step requires the addition of 15 carbon farnesyl polyisoprene lipid by farnesyltransfeRASe
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(FTase) to the cysteine via a stable thioether linkage. As a result, the farnesylated CAAX
motif is cleaved off by the farnesylcysteine-directed endoprotease, RAS-converting enzyme
(RCE1) that removes the AAX amino acids [12]. Afterwards, the carboxyl group of the
newly C-terminal farnesylcysteine undergoes a methylesterification by isoprenylcysteine
carboxylmethyltransfeRASe (ICMT) to produce RAS proteins with hydrophobic tails that
prevent plasma membrane repulsion [13]. The second motif is either a site present on
HRAS, NRAS, and KRAS4A required for palmitoylation by palmitoyl transfeRASe [14], or
a polybasic sequence of multiple lysines found on KRAS4B. These lysine residues confer
electrostatic interactions with the negatively charged head groups of the plasma membrane
lipids [15]. In addition, KRAS4B interacts with phosphodiesteRASe-δ (PDEδ) to promote
its translocation to the plasma membrane [16].

The central role that RAS genes play in tumorigenesis makes them the targets of choice
for cancer therapies. Unfortunately, despite enormous efforts, targeting RAS mutations
and developing clinically approved drugs has not been successful, leading some to refer
to oncogenic RAS mutations as “undruggable”. Since RAS proteins require association
with the membrane for their biological activity, many approaches have been developed
to disrupt this association and thus block their oncogenic function (Figure 1). Here, we
focus on the various methods that have been applied to target KRAS4A and KRAS4B
by interfering with their membrane association (Table 1) and trafficking, and highlight
recent advances in targeting these processes. These advances lead us to propose here a
new strategy to inhibit KRAS membrane localization, raising hopes that KRAS may be
“treatable” after all.

Table 1. List of the compounds that inhibit KRAS interaction with the plasma membrane.

Drug Target Mechanism

Deltarasin blocks interaction of PDEδ with KRAS4B

Memrasin
direct inhibitor of KRAS4B-PM interaction by forming

peptide-enriched domains in the membrane liquid-disordered (ld)
microdomains

Fendiline L-type calcium channel blocker that inhibits KRAS localization to
the plasma membrane

FTIs blocks KRAS membrane association by preventing the addition of
prenyl group

staurosporin inhibits KRAS plasma membrane binding by blocking endosomal
recycling of phosphatidylserine

AMG 510 locks KRASG12C in GDP inactive bound form by binding to its
cysteine residue

RCE1 and ICMT inhibitors blocks post-prenylation processing of KRAS and its membrane
association

Statin inhibits KRAS membrane association via blockage of prenylation

NADA inhibits KRAS plasma membrane translocation in a palmitoylation
dependent manner
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Figure 1. Overview of the post-translational modifications allowing membrane targeting of KRAS4A and KRAS4B and
the enzymes involved in these modifications. Effective inhibitors of these enzymes are shown in red. For more details, see
the text.

2. Inhibition of CAAX Prenylation

Since CAAX prenylation is required for oncogenic transformation [17], many efforts
have been made to target this process leading to the development of a large number
of farnesyltransfeRASe inhibitors (FTIs) drugs, such as L-739,750 [18], FTI-276 [19], or
lonafarnib. Many agents entered into clinical, with tipifarnib being the most studied FTI,
with phase III clinical trials in cancer [20,21].

Despite promising results in preclinical studies showing that FTIs can effectively
suppress tumor growth with low toxicity, the results of clinical trials have not been satis-
factory. FTIs were found to lack anti-tumor effect in KRAS (and NRAS) mutant cancers.
This led to the conclusion that blocking KRAS membrane association may be a misap-
plication. However, a broader understanding of KRAS modification and trafficking has
shown that the failure is due to the alternative geranylgeranylation of KRAS by geranylger-
anyltransfeRASe (GGTase) when farnesylation is impaired, thereby restoring membrane
association [22–25]. Interestingly, FTIs were found to be effective in cancers with oncogenic
H-RAS in the absence of alternative prenylation [22].

The contributions of GGTase-I to RAS prenylation have been validated by both phar-
macological and molecular approaches [26]. An inhibitor of GGTase-I (GGTI-2418) was
tested in phase I clinical trials but was discontinued due to lack of efficacy in patients [27].
The ability of FTase to bypass inhibition of GGTase and vice versa makes monotherapy with
these inhibitors quite challenging. Therefore, it has been investigated whether effective
inhibition of prenylation and localization of KRAS is possible by dual inhibition of FTase
and GGTase-I. Hence, considerable efforts have been made to synthesize dual prenyltrans-
feRASe inhibitors. L-778123, for instance, has probably been the most studied. It has
entered clinical trials partly because it can completely inhibit KRAS prenylation. Notwith-
standing the confirmation of the pharmacological profile of L-778123 in humans as a dual
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inhibitor of FTase and GGTase-I, L-778123 was to not able to inhibit KRAS prenylation
in vivo [28].

Nevertheless, a dual inhibitor (FGTI-2734) has recently been developed and has shown
to prevent membrane localization of KRAS, overcoming the previous problem of resistance
of KRAS to prenylation inhibition. Using pharmacologic and genetic approaches, it has
been shown that the cytosolic KRAS is still able to bind RAF-1 but cannot activate it,
possibly due to inhibition of binding to the scaffold protein KSR, which plays an important
role in RAS activation of RAF [29]. These results warrant further preclinical and clinical
studies with this compound.

In addition, statin was recently shown to enhance the immunogenicity of KRAS-
mutant cancer by inhibiting its prenylation. In addition, statin administration in combina-
tion with oxaliplatin, an immunogenic cell death inducer, was found to elicit an effective
antitumor immune response in genetically engineered KRAS tumor models. Furthermore,
the addition of checkpoint inhibitors to the aforementioned combination therapy sensitizes
tumors to PD-1 blockade, triggering tumor suppressive effects [30].

3. Targeting the Post-Prenylation CAAX Processing

It is known that post-prenylation CAAX processing enzymes contribute to RAS mem-
brane association, making them therefore attractive targets for drug development. The
activity of RCE1 is critical for the proper localization of RAS to the plasma membrane.
Studies using in vivo and in vitro reporters of RCE1 activity have shown that enzyme
activity depends on the prenylation status of the substrates and the identity of the aliphatic
amino residues. The second amino residue (A2) in the CAAX sequence is most critical for
recognition, and favors Ile, Leu, or Val [31]. There are several categories of RCE1 inhibitors,
namely non-specific protease inhibitors, substrate mimetics, including natural products,
and small-molecule inhibitors.

Non-specific inhibitors include an irreversible serine/cysteine-protease inhibitor,
called Nα-tosyl-l-phenylalanine chloromethyl ketone (TPCK) [32,33], and organomer-
curials (para-hydroxymercuribenzoic acid, para-hydroxymercuriphenylsulfonic acid, and
mersalyl acid) [32,34]. Substrate mimetics that inhibit RCE1 are based on isoprenylated pep-
tides, or isoprenoids. RPI was the first non-hydrolyzable isoprenylpeptide to be described;
it mimics the CAAX motif of KRAS4B [35]. Later on, many others isoprenylated peptides
were developed; however, they were all less potent compared to RPI [36]. In addition,
isoprenyl mimetic substrates that possess farnesyl substituent with a polar headgroup
have been defined. Barangcadoic acid A and rhopaloic acids, for example, are both marine
natural products derived from Hippospongia species that have a farnesyl substituent and
can inhibit RCE1 [37]. BFCCMK and UM96001 are two chloromethyl ketones that possess
a farnesylated cysteine and can effectively inhibit the growth of RAS-transformed rodent
and human cancer cells [38,39].

Small-molecule inhibitors are preferred over peptide and isoprenoid-based inhibitors
as they are expected to have better cell permeability, stability and easier chemical synthesis.
A library screening for farnesyl transferase inhibitors (FTIs) identified non-peptidic and
non-prenylic inhibitors of RCE1 termed Non-Peptidic Protease Inhibitor (NPPI-A, B, and
C) [40]. Another screening approach identified nine small-molecule inhibitors of RCE1,
including NSC 1011, 73101, 295642, 321237, and 609974 [41]. Recently, it has been published
that the anti-HIV protease inhibitors Ritonavir and Lopinavir can suppress RCE1 and
CAAX Rab proteins, sensitizing the liver to organelle stress and injury [42].

None of the above inhibitors have yet produced encouraging results in preclinical
tests, raising the question of whether inhibiting RCE1 is an attractive strategy for inhibiting
KRAS. At the very least, further studies are needed to better understand exactly how RCE1
functions. While the topology and crystal structure of RCE1 are known from the yeast
Saccharomyces cerevisiae [43] and the archaea Methanococcus maripaludi [44], the structure of
human RCE1 has not yet been elucidated. This makes the selective inhibition of RCE1 a
difficult problem.
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In addition to RCE1, ICMT is also known to be involved in the post-prenylation
modifications of RAS and its proper cellular localization. Expression of GFP KRAS fusion
proteins in homozygous Icmt knockout embryonic stem cells showed an accumulation of
KRAS in the cytoplasm [45,46]. This makes ICMT a potent target for anti-cancer therapy.
To date, many small molecule compounds have been developed to inhibit ICMT.

Screening of a chemical compound library of about 10,000 compounds led to the
identification of a group of compounds with an indole core structure [47]. Cysmethynil is
the most potent of these. It is highly specific, as it has not been shown to not inhibit other
enzymes involved in the C-terminal modification such as FTase, GGTase-I, or RCE1. The
role of cysmethynil in affecting tumor growth is well established in vivo and in vitro [48,49].
In addition, another class of ICMT inhibitors was developed by using a substrate-based
approach, which led to the identification of the adamantyl derivative and its analogs [50].
In a complementary approach, FTPA triazole was identified as another potent inhibitor
of ICMT1 [51].

ICMT inhibitors have been shown to regulate the activation of RAS, making them a
potential therapeutic approach against cancer. However, none of the ICMT inhibitors de-
veloped to date have been shown to be therapeutically effective in clinical trials. Moreover,
inactivation of Icmt enhanced KRAS-induced pancreatic cancer in mice [52], suggesting that
inhibition of ICMT activity may be counterproductive in some cancers. Therefore, more
studies are still needed to develop a successful therapeutic strategy with ICMT inhibitors.

4. Disrupting KRAS4A Palmitoylation

Palmitoylation acts as a second signal to stabilize the membrane association of NRAS,
HRAS and KRAS4A. Therefore, its interference could disrupt the activity of these RAS
isoforms. Palmitoylation is a post-translational protein modification in which a palmitic
acid is attached to cysteine residues via a thioester bond. Protein acyltransferases (PATs),
also known as palmitoyltransferases, catalyze this reaction by transferring the palmitoyl
group of palmitoyl-CoA to the thiol group of cysteine residues. To the best of our knowl-
edge, there are still no drugs that specifically target palmitoylation, as the development of
specific inhibitors has been limited due to the lack of suitable tools.

However, there are some possibilities that deserve to be explored in more detail.
Although it is unlikely that 2-bromopalmitic acid (2-BP), a non-metabolizable palmitate
used to inhibit palmitoylation, will be developed into a drug given the large number of
palmitoylated proteins in humans, efforts continue to be made to develop pharmacological
modulators of palmitoylation for the treatment of diseases. This has been especially true
since the identification of 23 DHHC (aspartic acid-histidine-histidine-cysteine tetrapeptide
motif) proteins in the repertoire of mammalian protein acyltransferases (PATs) [53]. DHHC,
initially known as an enzyme with a zinc finger motif, was first identified in yeast in 2002,
where it was shown to catalyze the S-palmitoylation of a yeast homologue RAS [54].

Library screening identified more selective inhibitors of palmitoylation, leading to the
discovery of five compounds (I–V) that inhibited cellular processes mediated by palmitoy-
lation [55]. However, follow-up studies revealed that only compound V was able to inhibit
the activity of all four DHHC proteins tested [56] and PAT auto-acylation [57]. Despite the
antitumor activity of the compound V and its ability to inhibit DHHC PATs, clinical trials
have not yet been conducted.

Interestingly, a recent work has shown that the palmitoylation status of individual
proteins can be selectively altered by manipulating the recruitment of specific substrates to
specific PATs [58]. This provides a valuable tool for future studies to profile protein palmi-
toylation, particularly to explore the possibility of identifying novel inhibitors of KRAS4A.

Since it is known that some palmitoylated proteins undergo enzymatic de-acylation
catalyzed by acyl protein thioesterase (APTs) and that two of the APTs (APT1 and APT2)
possess depalmitoylating activity [59–62], further progress has been made in the devel-
opment of molecules that inhibit depalmitoylation. Palmostatin B (APT1) was the first
compound shown to inhibit RAS depalmitoylation in cells [63]. This inhibitor disrupts the
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cellular acylation cycle at the level of depalmitoylation, causing a loss of the precise steady-
state localization of palmitoylated RAS. Consequently, it partially reverses the oncogenic
phenotype of RAS-transformed fibroblasts.

5. Targeting KRAS Localization by Perturbing Electrostatic Interaction

Many molecules have been identified that target KRAS membrane localization by
modulating the electrostatic interaction between the polybasic domain of KRAS4B and the
plasma membrane. The amphiphilic drug chlorpromazine (CPZ) reduces the association of
KRAS with the plasma membrane and results in delocalization to the cytoplasmic pools.
These effects appear to be dependent on electrostatic interactions generally arising from
polybasic domains, as the membrane association of another related protein possessing a
membrane-interacting polybasic cluster was also disrupted, but not that of HRAS [64].

Moreover, Staurosporine (STS) has been shown to translocate the oncogenic mutant
KRAS from the plasma membrane and abrogate the proliferation of KRAS-transformed
cells. The mechanism of action of STS involves disrupting the subcellular localization
of phosphatidylserine (PS) by blocking its endosomal recycling. Therefore, it leads to
decreased electrostatic potential of the plasma membrane and a concomitant redistribution
of KRAS to the early and late endosomes, lysosomes, mitochondria, Golgi apparatus, and
endoplasmic reticulum [65].

Fendiline, an L-type calcium channel blocker, was also identified as a specific in-
hibitor of plasma membrane of KRAS with no detectable effects on the localization of the
other RAS isoforms (HRAS and NRAS) [66]. However, the mislocalization of KRAS is
calcium-independent, as other classes of L-type calcium channel blockers did not cause
mislocalization of KRAS. Fendiline reduced KRAS nanoclustering on the plasma membrane
and redistributed KRAS from the plasma membrane to the endoplasmic reticulum, Golgi
apparatus, endosomes, and cytosol. Like CPZ, it did not inhibit KRAS posttranslational
processing. Rather it perturbs the electrostatic interactions of polybasic domains with
the electronegative inner leaflet of the plasma membrane, and consequently impairs the
transport of prenylated polybasic domain-targeted RAS proteins. Fendiline significantly
abrogates signaling transduction downstream of the constitutively active KRAS and subse-
quently blocks proliferation of pancreatic, colon, lung, and endometrial cancer cell lines
expressing an oncogenic mutant KRAS [66].

6. Targeting KRAS Interaction with Proteins Required for Its Membrane Localization

Efforts to develop drugs targeting the post-translational modifications of KRAS that
regulate its membrane association have continued. An important advance was recently
made by targeting the prenyl-binding protein PDEδ, which is required for proper localiza-
tion and signaling of farnesylated RAS, but not that of KRAS4A.

Suppression of PDEδ levels was found to disrupt the association of RAS with the
plasma membrane [67] and to impair the growth of RAS-mutated cancer cells [68]. A high-
throughput screen allowed the identification and characterization of a small-molecule
inhibitor called deltarasin that blocks PDEδ association with the farnesylated tail of
KRAS4B [69]. The ability of deltarasin to block the PDEδ–KRAS4B interaction has been
validated in vitro and in vivo. Inhibition of PDEδ by deltarasin in human KRAS-mutant
pancreatic cancer cell lines blocks the localization of KRAS to the plasma membrane and
impairs their proliferative capacity [69]. Moreover, phosphorylation of the ERK1 and ERK2
proteins was found to be significantly reduced after suppression of PDEδ [69]. In addition,
treatment with deltarasin reduces tumor growth in a mouse model of pancreatic ductal
adenocarcinoma in a dose-dependent manner [69].

Despite the efficacy of deltarasin in regulating the association of KRAS with the
plasma membrane, it could have unanticipated consequences. PDEδ may interact with
other farnesylated proteins, including farnesylated proteins of the RAS family that act
as tumor suppressors. Indeed, supression of such proteins may lead to toxic effects in
normal cells. Moreover, PDEδ is also required for farnesylated and geranylgeranylated
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proteins [70], which may enhance its off-target effects. Moreover, RAS proteins are only
partially dependent on PDEδ, as they can still bind to the cell membranes despite its
absence [68]. Furthermore, deficiency of KRAS is lethal, not PDEδ [71], confirming that
KRAS functions are not completely dependent on PDEδ. Thus, although inhibition of
PDEδ appears to be important and promising for the regulation of RAS membranes, much
remains to be learned about the function of PDEδ and its ability to block membrane
localization of of the RAS mutant.

Another molecule, a specific peptide inhibitor called Memrasin, also blocked the asso-
ciation of KRAS4B to the plasma membrane [72]. Memrasin consists of a membrane -bound
sequence derived from the C-terminal region of KRAS4B and an endosome escape motif.
It abrogates the binding of KRAS4B to the plasma membrane and impairs RAS signaling
activity. Moreover, it has been shown to efficiently reduce the viability of several human
lung cancer cells in a dose-dependent and KRAS-dependent manner. Memrasin is a useful
tool for exploring the biological function of KRAS4B at or outside the plasma membrane
and a potential starting point for further development of anti-RAS therapeutics [72].

In addition to identifying molecules that can inhibit KRAS4B signaling, screening
of bioactive lipid libraries using a RAS-specific cell viability assay enables the discovery
of a new class of inhibitors of RAS transformation. The identified compound, the endo-
cannabinoid N-arachidonoyl dopamine (NADA), can induce cell oncosis; independently
of cannabinoid receptors. It inhibits oncogenic transformation induced by NRAS and
KRAS4A by suppressing their plasma membrane translocation. Interestingly, it cannot
abrogate that of KRAS4B. NADA appears to act in a palmitoylation-dependent manner [73].

As far as we know, despite these promising properties, no molecule targeting the
membrane localization of KRAS in cancer is currently in clinical trial.

7. Targeting Downstream Mediators of KRAS Signaling

Since attempts to inhibit KRAS have been unsuccessful in the clinic, targeting key
effector cascades of KRAS oncoprotein, particularly the mitogenic RAF-MEK-ERK pathway,
represents another interesting strategy. KRAS activation induces RAF protein phospho-
rylation and dimerization with subsequent activation of their downstream kinases. The
RAF family consists of three isoforms: ARAF, BRAF and CRAF [74,75]. Inhibitors targeting
BRAF, MEK, or ERK have been developed to block KRAS signaling in cancer. For example,
BRAF inhibitors have been shown to be significantly effective in improving overall survival
(OS) in patients with BRAF-mutated melanoma [76] and have recently been approved for
the treatment of BRAF-mutated non-small cell lung cancer (NSCLC) [77]. However, their
therapeutic effect has been limited in KRAS-driven tumors due to the development of
drug resistance. BRAF inhibitors bind to BRAF and paradoxically induce transactivation of
CRAF with subsequent activation of MEK/ERK signaling [78]. To overcome this resistance,
several panRAF inhibitors have been developed [79–81]. However, despite the promising
effect observed in preclinical studies [82,83], monotherapy with panRAF inhibitors has not
shown efficacy in early clinical trials [84]. Nevertheless, experiments are currently under-
way to evaluate the effects of new panRAF inhibitors, such as LXH254 and belvarafenib,
administrated alone or in combination with other drugs, on KRAS-driven cancers. LXH254
is being therapeutically evaluated in patients with melanoma; both as monotherapy and
in combination with anti-PD-1 (NCT02607813). The role of belvarafenib has been tested
in patients with advanced solid tumors with RAS or BRAF mutations and has shown a
good safety profile and antitumor activity [85,86]. Belvarafenib continues to be studied in
combination with the MEK inhibitor cobimetinib (Clinical trial information: NCT02405065,
NCT03118817).

Several MEK inhibitors have been tested in KRAS-mutated cancers and have not
shown any clinical benefits. For example, selumetinib given alone or in combination with
chemotherapy failed to improve progression-free survival (PFS) in patients with advanced
KRAS-mutant NSCLC [87]. The same results were observed with other MEK inhibitors in
pancreatic cancer. A phase II trial evaluated the overall survival of pancreatic cancer patients
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treated with trametinib (MEK inhibitor) and gemcitabine [88]. Safety end-points such as
PFS, overall response rate (ORR) and duration of response (DOR) were also evaluated. The
results showed that the addition of trametinib to gemcitabine did not improve OS, PFS,
ORR or DOR in patients with previously untreated metastatic pancreatic cancer [88].

The selective MEK1/2 inhibitor pimasertib has shown antitumor activity in a pancre-
atic tumor model. A two-part phase I/II, trial was conducted in patients with metastatic
pancreatic adenocarcinoma (mPaCa) (NCT01016483). Patients were treated with pimasertib
and gemcitabine and, PFS OS, and safety were assessed. No clinical benefit of first-line treat-
ment with pimasertib plus gemcitabine compared with gemcitabine alone was observed
in patients with mPaCa. This lack of efficacy is mainly due to alternative compensatory
mechanisms involving reactivation of ERK signaling [89,90]. In addition, many studies
have shown that treatment with MEK inhibitor leads to an enhancement of the PI3K/AKT
pathway, which is due to hyperactivation of ERBB3 [91,92].

In addition, many ERK inhibitors have been used in clinical trials to treat a variety
of advanced solid tumors with RAS, RAF or MAPK pathway alterations [93] (Clinical-
Trials.gov Identifier: NCT03415126, NCT02711345). For example, ulixertinib/BVD523
and LY3214996 have been tested in phase I clinical trials (NCT02608229, NCT02857270)
and showed promising antitumor activity. Thus, ulixertinib has been shown to effectively
inhibit in vitro growth of several pancreatic ductal adenocarcinoma cell lines and potentiate
the cytotoxic effect of gemcitabine [94]. Recently, a phase II clinical trial tested the efficacy
and safety of BVD-523 in patients with metastatic uveal melanoma [95].

Several studies have shown that cancer cells treated with RAF or MEK inhibitors
employ multiple mechanisms to reactivate ERK signaling. Therefore, combinations of ERK
inhibitors with MEK or RAF inhibitors have been closely studied and evaluated [96,97].
In addition to activating MAPK signaling, KRAS is also known to activate the PI3K-AKT-
mTORC1 pathway, contributing to cancer progression. Therefore, many AKT inhibitors
have been developed to inhibit PI3K signaling but failed in in vitro and in vivo trials.
However, in combination with MEK, ERK or RAF inhibitors, promising results were
observed in early studies, but at the cost of higher toxicity [98,99]. The clinical utility of
inhibitors of the RAS-regulated RAF-MEK1/2-ERK1/2 pathway and the AKT pathway as
single agents has been demonstrated in KRAS-mutant tumors, so novel strategies of dual
or triple inhibitors, may be required.

In addition to its role in activating MAPK and AKT signaling, KRAS is known to
mediate metabolic rewiring in cancer, and many studies have elucidated the mechanisms
by which KRAS reprograms cellular metabolism to support tumorigenesis [100]. For
example, KRAS was found to promote glutamine metabolism and control pancreatic
cancer chemoresistance by upregulating the expression of the antioxidant NRF2 [101].
Furthermore, loss of LKB1 in KRAS-mutant lung adenocarcinomas activates KEAP1 and
leads to metabolic changes that maintain redox homeostasis and promote glutamine
metabolism [102]. KRAS can also induce fatty acid synthase (FASN) to promote lipogenesis,
and inhibition of FASN was shown to block cellular proliferation of KRAS-mutant lung
cancer cells [103]. In addition, KRAS-mutated cancer cells have been shown to rely on
serum lipids to maintain their proliferation and survival [104]. Overall, KRAS-mediated
metabolic reprogramming in cancer offers new therapeutic approaches for the treatment of
KRAS-driven cancers.

8. Modification of KRAS by Ubiquitination

KRAS subcellular localization has also been shown to be controlled by ubiquitination.
The loss of Lztr1 abolishes RAS ubiquitination at lysine-170 leading to inhibition of RAS
signaling by reducing its association with the membrane [105]. This indicate that ubiquiti-
nation may represent a new therapeutic approach for the treatment of KRAS-mutant cancer.



Int. J. Mol. Sci. 2021, 22, 13193 9 of 14

9. Conclusions and Perspectives

Progress has been made in the discovery of compounds that block membrane binding
of KRAS. Many KRAS inhibitory compounds have been identified, a considerable number
of which have been shown to be effective in vitro and in vivo. However, none of them
have successfully passed the clinical trial stage. This is likely due to the fact that these
compounds target not only KRAS, but also a variety of other factors, causing significant
toxicity. This is particularly true for the processing of the C-terminal end of KRAS: the
CAAX sequence required for this processing is present in more than 100 other proteins,
including tumor suppressors. Inhibition of this processing may therefore in accelerating,
rather than slowing, cancer progression, as has been observed in pancreatic cancer [52].

In this context, it is now important to reduce this toxicity. We believe that this requires
both the identification of new more selective compounds and the implication of a treatment
strategy that combined compounds that have been already identified. This strategy must
involve vertical inhibition of multiple steps of the cascade that brings KRAS from the
endoplasmic reticulum to the plasma membrane, and target not only KRAS4B, but also
KRAS4A, as a recent study has shown a role for this previously neglected splice isoform in
lung cancer [106]. This combined vertical inhibition is expected to elicit a strong synergy
that will allow effective treatment at lower doses, as has been demonstrated for other
cascades [107], overcoming the limitations seen with single-compound treatment. In this
context, it will certainly be beneficial to use a cell line that allows simultaneous visualization
of the membrane localization of KRAS4A and KRAS4B expressed from their endogenous
locus. Such a line can now be derived from KRAScitrine-G12D mice that we have recently
generated [108]. Crucial breakthroughs in these directions are now critical to overturn the
notion that KRAS is undruggable and ultimately revealing its druggability.
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