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Increasing scientific interest has been directed to sex as a biological and decisive factor on
several diseases. Several different mechanisms orchestrate vascular function, as well as
vascular dysfunction in cardiovascular and metabolic diseases in males and females.
Certain vascular sex differences are present throughout life, while others are more evident
before the menopause, suggesting two important and correlated drivers: genetic and
hormonal factors. With the increasing life expectancy and aging population, studies on
aging-related diseases and aging-related physiological changes have steeply grown and,
with them, the use of aging animal models. Mouse and rat models of aging, the most
studied laboratory animals in aging research, exhibit sex differences in many systems and
physiological functions, as well as sex differences in the aging process and aging-
associated cardiovascular changes. In the present review, we introduce the most
common aging and senescence-accelerated animal models and emphasize that sex is
a biological variable that should be considered in aging studies. Sex differences in the
cardiovascular system, with a focus on sex differences in aging-associated vascular
alterations (endothelial dysfunction, remodeling and oxidative and inflammatory
processes) in these animal models are reviewed and discussed.
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INTRODUCTION

Studies involving sex differences in cardiovascular biology have increased in recent years. Many
mechanisms, that differ in males and females, orchestrate vascular function and vascular
abnormalities in cardiovascular and metabolic diseases. Women are hemodynamically younger
than men of the same age, and cardiovascular disease is more prevalent in men than women (World
Health Organization, 2015). However, after menopause, many (but not all) sex differences in
cardiovascular disease are abrogated, suggesting two significant and correlated drivers: genetic and
hormonal factors (World Health Organization, 2015).

With the increasing life expectancy and aging population, studies on aging-related physiological
changes and aging-related diseases have steeply grown, and, with them, the use of aging animal
models. Mouse and rat models of aging, the most studied laboratory animals in aging research,
exhibit sex differences in many systems and physiological functions, as well as sex differences in the
aging process and aging-associated cardiovascular changes. As expected, aging and senescence-
accelerated animal models used to study sex differences present limitations.
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Therefore, the main characteristics of aging animal models,
considering sex as a biological variable are considered in the
present review. Sex differences in the cardiovascular system, with
a focus on sex differences in aging-associated vascular alterations
(endothelial dysfunction, remodeling and oxidative and
inflammatory processes) that occur in these animal models are
described and discussed. Figure 1, elaborated with the
Leximancer algorithm Concept, depicts a map with three
primary themes (vascular dysfunction, aging and sex
differences). The map reinforces the complexity and
interrelationships between these variables, as indicated by the
interactions between the interconnected subthemes.

The Aging Process
Aging is an irreversible process yet little understood in human
biology. Biological aging is an intrinsic, progressive, and
generalized deterioration of biological homeostasis that occurs
over time (Kovacic et al., 2011). It’s a complex process that
involves several biological changes, in addition to the cellular
senescence described by Hayflick andMoorhead (1961), as will be
discussed.

López-Otín et al. (2013) identified and categorized the cellular
and molecular characteristics of aging, proposing a total of nine
markers that, together, can determine the aging phenotype: 1)
genomic instability, 2) shortening of telomeres, 3) epigenetic
changes, 4) loss of proteostasis, 5) unregulated detection of
nutrients, 6) mitochondrial dysfunction, 7) cell senescence, 8)
stem cell exhaustion, and 9) altered intercellular communication.
These processes are interrelated, suggesting that aging is not the

result of the malfunction of a single parameter, but rather a
combination of different molecular changes. With the
progression of aging, the changes in these many processes
coincide with the emergence of age-related diseases that alter
the body homeostasis and reduce the quality of life (Da Costa
et al., 2016; Lees et al., 2016).

In 2050, 1 in 6 people in the world will be over the age of 65, up
from 1 in 11 in 2019 (United Nations, 2019). Older people
account for more than one fifth of the population in 17
countries and in 2,100 this will be the case for 155 countries,
covering 61% of the world’s population (United Nations, 2019).
These numbers represent a public health problem, since aging
remains the strongest risk factor for cardiovascular disease
(CVD) (World Health Organization, 2015), even after
correction for classic cardiovascular risk factors, such as
smoking, physical inactivity, arterial hypertension, diabetes,
and obesity (Lakatta and Levy, 2003; Erusalimsky, 2009;
Erusalimsky and Skene, 2009).

Sex Differences in Aging
Physiological mechanisms that control vascular function are
different in men and women. Mechanisms involved in
diseases-associated vascular dysfunction also seem to follow a
different pattern of development in males and females. In aging,
these sex differences are already seen in life expectancy, where
women currently outlive men by 4.8 years (United Nations,
2019).

Sex hormones are responsible for the most marked endocrine
changes with aging (Horstman et al., 2012). In men, aging-related
changes, including sexual dysfunction, decreased muscle
strength, muscle and joint pain, insomnia, and physical
exhaustion (Heinemann, 2005), usually appear as early as in
middle age, 40- to 59-year-old men, with reduced testosterone
levels since the age of 35–40 (Feldman et al., 2002). In women,
aging is associated with the postmenopausal period, linked to a
decrease in the natural sex hormones, estrogen and progesterone,
and increased follicle-stimulating hormone (FSH) levels (El
Khoudary et al., 2020). Although the risk for CVD increases
with the aging process in both sexes, it is more severe in
postmenopausal women (El Khoudary et al., 2020). The
mechanisms that determine the aging condition in men and
women are targeted by a growing number of studies (Nakamura
and Miyao, 2008; Austad, 2019).

The aging of the population will cause an increasing burden to
the health systems, implying profound changes in public health
policies. Therefore, it is very important to improve our knowledge
on the changes that occur in biological systems during men and
women aging, since this might reveal potential therapeutic targets
to reduce aging-related cardiovascular dysfunction, and prevent
lethal or debilitating cardiovascular events.

Cellular Senescence
Hayflick and Moorhead (1961) introduced the term “senescence”
to describe the phenomenon of irreversible growth blockade of
human diploid cells in culture after extensive series passages, later
known as “replicative senescence”. At some point, cells arrive at a
steady state, called the Hayflick limit, and they become senescent

FIGURE 1 | Connections within the vascular system, aging and sex
themes. The Concept map was elaborated using the Leximancer algorithm,
the original manuscripts and the keywords: aging, senescence, female, male,
endothelium and vascular dysfunction. The lines between the concepts
(grey circles) show typical pathways linking the concept terms. The size of the
grey circles indicates the overall relative frequency of concepts.
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(Hayflick and Moorhead, 1961). Long after the Hayflick and
Moorhead discovery, and considering Olovnikov’s end-
replication telomere loss problem (Olovnikov, 1971; Olovnikov,
1973), the molecular mechanism underlying the Hayflick limit was
explained: the shortening of telomeres. Telomeres are repeated
sequences, rich in T-G bases (Xu et al., 2013) sequenced as
5′TTAGGG3′ in vertebrates (Hemann and Greider, 1999)
found at chromosome ends, which shorten with each cell
duplication. The telomeres shortening or the loss of telomere
t-loop structure (Olovnikov, 1973; Levy et al., 1992; Greider,
2000) is sensed by the cell as a DNA damage, and cell signaling
is activated within to stop the cell cycle and to increase a pro-
inflammatory secretory phenotype (Van Deursen, 2014),
supporting the original hypothesis of Hayflick and Moorhead,
in which senescence protects against the unrestricted growth of
damaged cells. Subsequently, it was found that not only the cells of
an elderly individual become senescent, but that all differentiated
cells, such as fibroblasts, have a limited division potential before
undergoing the so-called “replicative senescence”.

Cellular senescence can be seen as an important physiologic
mechanism of protection. Unlike a static endpoint, senescence

represents a very dynamic cellular process that can happen in
different states of the cell to protect against different cell stressors,
as seen in autophagy and cancer (Slobodnyuk et al., 2019),
embryonic development (Rajagopalan and Long, 2012; Muñoz-
Espín et al., 2013; Storer et al., 2013), tissue repair (Krizhanovsky
et al., 2008; Jun and Lau, 2010), aging and age-related disorders
(Baker et al., 2008). This leads to a couple of questions: how can
senescent cells be present in such antagonic situations as
embryonic development and aging? Do they have different
roles? Are there different types of senescence in cells? A recent
review Van Deursen (2014) discussed that senescent cells can be
divided into two types: acute and chronic senescent cells, based on
the kinetics of senescence induction and functionality.

Acute senescent cells are part of a tightly orchestrated
biological processes (that is, wound healing, tissue repair,
embryonic development) induced through cell-extrinsic stimuli
that target a specific population of cells in the tissue. This process
aims to halt expansion of certain cells or to produce a senescence-
associated secretory phenotype (SASP) with well-defined
paracrine functions. For example, in wound closure or tissue
development, myofibroblasts suddenly undergo senescence

FIGURE 2 |Mechanisms associated with sex differences in vascular aging. Figure illustrates vascular and PVAT age-associated alterations observed in male and
female; from differences in age onset of vascular dysfunction (males show higher senescence rates than females) to different mechanisms of endothelial dysfunction,
vascular remodeling and oxidative and inflammatory processes as men and women age increases. Abbreviations: LH, Luteinizing Hormone; FSH, Follicle-stimulating
hormone; TXA2, Thromboxane; ERα, Estrogen receptor alpha; ERβ, Estrogen receptor; ROS, Reactive Oxygen Species.
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(acute senescence) to limit excessive fibrosis at the site of injury
(Jun and Lau, 2010) such as in liver damage (Krizhanovsky et al.,
2008). Acute senescent cells self-organize by releasing SASPs to
attract immune cells in charge for their resolution/elimination in
the tissue (Van Deursen, 2014).

Chronic senescent cells arise after periods of progressive
cellular stress and chronic senescence does not seem to target
specific cell types. Possibly due to age-related immunodeficiency
or decreased production of pro-inflammatory SASPs, as
exemplified by melanocytic nevi (Benz et al., 1991), immune
cells may inefficiently eliminate chronic senescent cells, allowing
continuation of multi-step senescence. In addition, in aging-
related senescence, the switch from temporal to persistent cell-
cycle arrest appears unscheduled, probably involving the
combined effects of distinct senescence-inducing stressors
acting simultaneously on a cell (Van Deursen, 2014).

But can acute and chronic senescent cells permeate between
those states? Senescence induced during cancer therapy may
initially be acute and later chronic in nature (Roberson et al.,
2005; Gewirtz et al., 2008), but the other way around is still
controversial in the literature. It is possible that senescence may
initially have arisen as a developmental or wound healing
mechanism that has only recently in evolutionary time
adapted as a tumor suppressor mechanism with aging as a
side-effect (Campisi, 1997). Cultured cells usually reach
senescence within several weeks after exposure to senescence-
inducing stressors but remain viable for months thereafter (De
Cecco et al., 2013). Senescent cells continue to evolve even after
extended periods of culture, thereby progressing to a stage that
has been termed “deep” or “late” senescence.

The exact point where senescent cells fail to manifest their
beneficial effects through the SASP and promote a tissue-specific
disease is still unknown. So, at what time would it be desirable to
eliminate the senescent cells? This evidence implies that
senescence and other cellular responses to stress might be related
to life span and health span, not only the lack of them, but also an
overstated response, and might provoke disease. Not all cells
become senescent at the same time, but the senescent phenotype
can be transmitted to neighboring cells (Hoare and Narita, 2013).
So, what if the senescent cells that perform the beneficial effects are
not the first ones that became senescent? It might be necessary the
accumulation of a certain number of senescent cells to carry out
these effects; and what if those cells were eliminated before they
could induce senescence in their neighbor cells? These questions still
need to be answered in aging research.

Sex Differences in Senescence
Males show higher senescence rates than females and this sex
difference is largely attributable to sex-specific downstream
effects of the intensity of intra-sexual competition experienced
during early adulthood (Promislow, 1992; Maklakov and
Lummaa, 2013; Chen and Maklakov, 2014). However, one of
the criticisms is that these studies are carried out in species with
low extrinsic mortality and the mechanisms that generate such
differences remain poorly understood (Beirne et al., 2015).

Since senescence has been related to telomere shortening, the
influence of sex on telomere suggests that a sex bias in telomere

maintenance does exist, since female rats might have greater
telomerase activity (Leri et al., 2000). In fact, estrogen activates a
promoter of telomerase (Kyo et al., 1999) and indirectly also
affects DNA repair through the p53 pathway. An estrogen-
responsive element (ERE) is present in telomerase reverse
transcriptase (hTERT) indicating that estrogen might stimulate
telomerase to add telomere repeats to the ends of chromosomes
(Nordfjäll et al., 2005). Telomeres are particularly sensitive to
oxidative stress (Van Der Harst et al., 2007) and, in physiological
conditions, the levels of reactive oxygen species (ROS) are lower
in the vascular system of premenopausal women than men (Ide
et al., 2002; Kander et al., 2017). A meta-analysis study suggested
that women have longer telomeres than men irrespective of cell
type or age. It’s important to mention that different techniques
are used to measure telomeres length, such as real-time PCR,
Flow-FISH, and Southern blotting. However, only Southern
blotting showed significant differences in mean telomere
length between the sexes (Gardner et al., 2014), while other
studies showed that women does not always have longer
telomeres (Hunt et al., 2008; Shiels et al., 2011).

Endothelial senescence has been more and more explored,
especially because aging per se is a risk factor for endothelial
dysfunction (Erusalimsky, 2009; Erusalimsky and Skene, 2009).
In the vascular system the problem is that in vitro studies of
cellular endothelial senescence have traditionally been
performed using a single senescence-inducing stimulus in
endothelial cells: mitogens (Kurz et al., 2003), inflammatory
molecules (Breitschopf et al., 2001) or ROS (Kurz et al.,
2004). However, in the context of organismal aging,
individual cells experience multiple cellular pressures,
including various kinds of genotoxic, proteotoxic and mitotic
stresses (Hayflick and Moorhead, 1961; Siegel and Amon, 2012).
Thus, to advance our understanding of these processes, one
should examine how combinations of diverse senescence-
promoting stressors impact the actions of the various
downstream effector pathways and whether the characteristics
of the resulting SASP vary in distinct cell types and under
different senescence-inducing stressors (Coppé et al., 2008).
The SASP produced by senescent cells might be a good
parameter to explore the effects of several senescence-
inducing stimuli in endothelial cells from males and females.
There are several SASPs that depend on persistent DNA damage
signaling (Rodier et al., 2009) and that is independent of DNA
damage (Freund et al., 2011), implying the existence of DNA
damage response-independent mechanisms (Kaplon et al., 2013;
Muñoz-Espín et al., 2013; Storer et al., 2013).

EXPERIMENTAL ANIMAL MODELS FOR
AGING STUDIES

Models to Study Aging
According to the National Institutes of Health (National Human
Genome Research Institute), an animal model is a non-human
species used in medical research because it can mimic aspects of a
disease found in humans. Animal models are used to obtain
information about a disease and its prevention, diagnosis, and
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treatment. By using animals, researchers can carry out
experiments that would be impractical or ethically prohibited
with humans (sic) (National Human Genome Research Institute,
2021).

In that context, a few commonmodel organisms are studied in
aging research, such as single-cell yeast, Saccharomyces
cerevisiae; the nematode Caenorhabditis elegans; the fruit fly
Drosophila melanogaster, the laboratory mouse (Mus musculus)
and rat (Rattus norvegicus). These species span a considerable
distance in animal evolution, but shared features of these
evolutionary divergent animals strongly indicate the presence
of some conserved processes in aging (Mitchell et al., 2015).

However, there is still considerable debate concerning the extent
of generality of ageing mechanisms in experimental animal
models.

For several years, the use of invertebrate animal models such as
Caenorhabditis elegans or Drosophila melanogaster, has led aging
research by providing the first insights into those molecular
pathways that are determinant in the aging process and for
lifespan extension. However, for vascular aging studies, mouse
models - in comparison with other mammals - are more complex,
faster, and cheaper tools for lab research. Specifically, inbred aged
mice models, such as the C57BL/6J mice, are commonly used in
ageing vascular studies (Flurkey et al., 2007).

TABLE 1 | Genetically-engineered mouse models regularly used in aging research and the age-distinguishing characteristic (hallmark) in males and females.

Mouse model Gene targeting Human syndrome Age hallmark References

Ercc1 -/- Ercc1 knockout XFE progeroid syndrome Genomic instability Weeda et al. (1997)
Ercc1-/Δ7 Ercc1 hypomorphic Genomic instability Dollé et al. (2011)
Ercc2R722W/R722W, XpdTTD/TTD Ercc2 knockin Trichothiodystrophy Genomic instability de Boer et al. (2002)
Ercc4m/m, Xpfm/m Ercc4 knockout Xeroderma pigmentosum group F Genomic instability Tian et al. (2004)
Ercc5−/−, Xpg−/− Ercc5 knockout Xeroderma pigmentosum group

G/Cockayne syndrome
Genomic instability Barnhoorn et al. (2014)

Ercc6m/m/Xpa−/−, Csbm/m/Xpa−/− Double Ercc6/Xpa
knockout

Cockayne syndrome Genomic instability van der Pluijm et al. (2007)

Xrcc5−/−, Ku80−/− or Ku86−/− Xrcc5 knockout Genomic instability Li et al. (2007)
Xrcc6−/−, Ku70−/− Xrcc6 knockout Genomic instability Espejel et al. (2004)
Prkdc−/−, Xrcc7−/− or DNA-PKcs−/− Prkdc knockout Genomic instability Li et al. (2007)
Wrn−/−/Terc−/− Double Wrn/Terc

knockout
Werner syndrome Genomic instability Espejel et al. (2004)

Bub1bH/H, BubR1H/H Bub1b hypomorphic Genomic instability Chang et al. (2004)
Bub1b+/GTTA, BubR1+/GTTA Bub1b knockin Mosaic variegated aneuploidy

syndrome
Genomic instability Baker et al. (2004)

Bub3+/−/Rae1+/− Double Bub3/Rae1
haploinsufficient

Genomic instability Wijshake et al. (2012)

SprtnH/H Sprtn hypomorphic Ruijs-Aalfs syndrome Genomic instability Baker et al. (2006)
Arhgap1−/−, Cdc42GAP−/− Arhgap1 knockout Genomic instability Maskey et al. (2014)
AtrS/S Atr hypomorphic Seckel syndrome Genomic instability Wang et al. (2007)
Atrflox/−:Cre-ERT2+ Atr inducible knockout Seckel syndrome Genomic instability Murga et al. (2009)
PolgD257A/D257A, mtDNA mutator mouse Polg knockin Genomic instability Ruzankina et al. (2007)
LmnaG609G/G609G, LAKI mouse,
LmnaL530P/L530P, LmnaHG/+,
LmnaH222P/H222P

Lmna knockin Hutchinson-Gilford progeria
syndrome

Genomic instability Osorio et al. (2011); Trifunovic et al.
(2004); Mounkes et al. (2003)

Zmpste24−/− Zmpste24 knockout Hutchinson-Gilford progeria
syndrome

Genomic instability Bergo et al. (2002); Pendás et al.
(2002)

Terc−/− Terc knockout Dyskeratosis congenita Telomere attrition Rudolph et al. (1999)
TertER Tert knockin Dyskeratosis congenita Telomere attrition Jaskelioff et al. (2011)
Tert−/− Tert knockout Dyskeratosis congenita Telomere attrition Bär et al. (2016)
Sirt6−/− and Sirt1-/- Sirt1-6 knockout Epigenetic alterations Mostoslavsky et al. (2006);

Mercken et al. (2014)
Bmi1−/− Bmi1 knockout Epigenetic alterations van der Lugt et al. (1994)
Sod1-/- and Sod2-/- Sod1-2 knockout Oxidative stress Li et al. (1995); Elchuri et al. (2005)
MsrA-/- MsrA gene knockout Oxidative stress Moskovitz et al. (2001)
Prdx1-/- Prdx1 gene knockout Oxidative stress Neumann et al. (2003)
Klkl/kl, Klothokl/kl Kl knockout Altered intercellular

communication
Kuro-o et al. (1997)

bGH-Tg, GH-transgenic mice Overexpression of
Growth Hormone

Somatotropic (GH/
IGF-1) axis

Casellas and Medrano, (2008)

Nfkb1−/− Nfkb1 knockout Altered intercellular
communication

Bernal et al. (2014)

Il10tm/tm, Frail mouse Il10 knockout Altered intercellular
communication

Kühn et al. (1993); Walston et al.
(2008)

HGPS, Hutchinson-Gilford progeria syndrome; ERCC1, excision repair cross complementing 1; IL-10, interleukin-10; Lmna, Lamin A; PolG, Polymerase c; Terc, Telomerase RNA
component; Wfs, Wolfram syndrome; Wrn, Werner syndrome ATP-dependent helicase; WS, Werner syndrome; XPD, xeroderma pigmentosum, complementation group F; Zmpste24,
zinc metalloproteinase Ste24; CHIP, carboxyl terminus of Hsp70-interacting protein; MsrA, Methionine sulfoxide reductase; Prdx1, peroxiredoxin 1.
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Rodent Models to Study Natural Aging
As shown in a large cohort study with C57BL/6J mice (150 males
and 150 females), the maturational rate of mice does not linearly
correlate with humans. It occurs 150 times faster during the first
month of life and 45 times faster over the next 5 months, during
which mice pass through their mature adult stage. Mature adult
mice, age from 3–6 months, are often used as the reference
group (control) in aging studies, since this group is past
development but not yet affected by aging outcomes.
Although sexual maturity is reached around 35 days, rapid
growth continues until about 3 months, with the life phase
equivalent for humans ranging from 20–30 years (Flurkey
et al., 2007). Middle-aged groups help determine if an age-
related change is progressive or is first expressed only in old
animals. Mice should be at least 10 months-old and up to
15 months-old for inclusion in a middle age group. This
phase correlates to humans that are 38–47 years-old. Mice at
age 18–24 months correlate with humans in their 56–69 years.
This age range meets the definition of “old,” which is the
presence of changes in almost all biomarkers of senescence.
It is important to carefully choose the age cohorts such that
animals used are neither too young nor too old. Animals that are
nearing the end of their lives may already be riddled with age-
associated diseases, whereas those that are too youngmay still be
undergoing the complex process of development and
maturation (Mitchell et al., 2015).

Regardless of age, animal models should be healthy, pathogen-
and disease-free, and have no signs of tumors or lesions (Storer,
1966). The use of necropsy data, the dangers of pooling samples
from different individuals, planning ahead for loss of aged mice to
death and disease, the use of cost-adjusted power calculations,
and the dangers of inferring causal associations from correlated
age effects are important issues to be considered in aging research
(Miller and Nadon, 2000).

Another important issue is that aging studies should be
undertaken in both genders, for differences in genotype may
be evident. For example, old male inbred CBA/J mice have a
stronger likelihood of developing hepatocellular tumors than
females (Nadon, 2006). Similarly, quantitative trait locus
mapping of Drosophila genes has identified gender specific
loci that differentially alter longevity (NuzhdinMackay and
Mackay, 1994).

In terms of female vascular aging, a study in a model that also
presents the menstrual phase of women would be ideal, but few
species experience menstruation and this type of research is
oftentimes ethically difficult and costly to perform. Although
rats do not experience menses, they do experience estrus cycling
and ovarian aging. Reproductive maturity of rodents is reached at
3–5 months, when there is an estrous cycle that lasts four to 5 days.
Similarly, as women age, there is a progressive gradual decline in
estrogen levels caused by changes in the hypothalamic–pituitary
control of gonadotropin secretion and gonadal stimulation of
estrogen (Yuan et al., 2005). Aged female rats and mice exhibit
periods of persistent estrous cycle, consisting of elevated and
constant levels of estradiol, low levels of progesterone, and lack
of luteinizing hormone (LH), in addition to ovulation (Lu et al.,
1979; Simpkins et al., 1979; Yuan et al., 2005). Ovarian function
declines between 3 and 6 months in the senescence-accelerated
mouse prone 8 (SAMP8) model (NuzhdinMackay and Mackay,
1994) and at 10–12 months in Long Evans rats (Lu et al., 1979).
Therefore, reproductive maturity depends on the rodent strain
and is characterized by low levels of estradiol and progesterone,
with little or no developing follicles and increased prolactin
secretion (Advis et al., 1978; Lu et al., 1979; Simpkins et al.,
1979).

Senescence-Accelerated Mouse Models
Genetically-Engineered Mouse Models
The disadvantages of working with vascular aging in animals
include 1) the long waiting time for the animal to grow old, 2) the
long duration of the studies and 3) the different ages at which the
studies are performed (Folkow and Svanborg, 1993; Ku€ng and
Lu€scher, 1995; Zhou and Frohlich, 2003; Zieman et al., 2001). The
main reason is undoubtedly the financial burden: aged mice must
be either purchased (e.g., $106 to grow a mouse for 2 years) or
“matured” from a young age to 18–24 months, also expensive and
time-consuming (Miller and Nadon, 2000).

Mice with accelerated vascular aging provide an alternative
that saves time and energy. Mice with progeroid syndromes [well
described in Liao and Kennedy (2014)] are widely used in aging
research. These mice are termed progeroid, which means
resembling premature aging, which in some cases involve
mutations in the same genes that have been linked to human
progeria syndromes (Burtner and Kennedy, 2010; Cox and

TABLE 2 | Non genetically-modified mouse models regularly used in aging research and their relative ages of study in males and females.

Animal
models

Maturation
(puberty)

Young
(sexual
maturity)

Middle-aged
(fall

of reproductive
functions)

Aged Life-span
(average)

References

C57BL6 ±28 days 3–6 months 10–15 months 18–24 months 2 years Dutta and Sengupta, (2016); Yuan et al.
(2009)

Wistar rat ±28 days 5–6 months ≥18 months ≥24 months 3 years Sengupta, (2013)
Fischer 344
rats

±28 days 4–6 months ≥18 months ≥24 months 1.75 years Chesky and Rockstein, (1976)

SAMP8 ±28 days 2–3 months ≥6 months ≥8 months 12.1 months Takeda et al. (1981); Takeda, (1999)
SAMR1 ±28 days 2–3 months ≥8 months ≥10–15 months 18.9 months Takeda et al. (1981); Takeda, (1999)
CD1 mice ±22 days 3 months ≥8 months ≥12–18 months 2 years Eveleigh et al. (1983); Russell and Green,

(2007)
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Faragher, 2007; Kudlow et al., 2007). Most progeroid syndrome
animal models are developed with a single gene deletion that
leads to a strong phenotypic overlap with normal aging lesions
(Table 1), well discussed by two reviews (Mitchell et al., 2015;
Kõks et al., 2016).

Although transgenic mice have been proposed as an useful
approach to study aging (Musarò and Rosenthal, 1999; Warner
and Sierra, 2003), this multifactorial phenomenon will hardly be
simulated by monogenic approaches. It also remains highly
debatable to what extent the molecular events leading to
progeria overlap with those driving normal aging (Hasty and
Vijg, 2004; Kipling et al., 2004; Miller, 2004). Biogerontologists
are increasingly realizing that “single molecule, single target”
approaches for aging interventions are severely limited due to the
highly dynamic, interactive and networking nature of life. In
addition, this approach limits the number of variables under
study, and usually ignores synergistic interactions, thereby
oversimplifying the process.

Non Genetically-Modified Mouse Models
In the group of nongenetically-modified animals, the inbred
strain with accelerated senescence SAMP is considered a
useful animal model to study aging-related processes (Takeda
et al., 1981). The SAMP model allows a shorter waiting time for
the animal to grow old and shorter duration of the studies,
compared to commonly used old rats and other mouse inbred
strains (Goodrick, 1975; Flurkey et al., 2007) (Table 2).

Currently, there are nine SAMP strains (SAMP- 1, 2, 3, 6, 7, 8,
9, 10, and 11) and three SAMR (senescence-accelerated resistant
mouse prone) inbred strains (SAMR-1,4, and 5) (Takeda, 1999).
The strains were characterized according to certain common
characteristics. The strain SAMP-8, SAMP-6 and SAMP-10 were
widely used as a model of age-related disease, such as cognitive
deficit, due to spontaneous accumulation of amyloid beta plaques
similar to Alzheimer’s disease, cardiac dysfunction and
dysregulation of the immune system (Butterfield and Poon,
2005; Forman et al., 2011). On the other hand, other SAMP
strains were reported to present senile osteoporosis (SAMP6);
contracted kidney (SAMP1, SAMP11); impaired immune
response, hyperinflation of lungs, hearing impairment and
hypertensive vascular disease (SAMP1); degenerative
temporomandibular joint disease (SAMP3); thymic
lymphoblastic lymphoma and abnormal circadian rhythms
(SAMP9, SAMP7); cataracts (SAMP9) and brain atrophy
(SAMP10) (Takeda, 1999).

Although it should be kept in mind that inbred strains are
limited in genetic diversity and, hence, develop phenotypes
specific to those strains, they are easy to genetically
manipulate and extensive baseline data are available
(Goodrick, 1975). On the other hand, outbred mice are more
representative of the genetic diversity of humans, but they present
alterations in the genome (Kõks et al., 2016).

Many mouse models to study mechanisms of aging have
been developed. With an increasing world older population,
those models will be extremely important to test aiming to
improve future interventions on aging-related diseases.
Although mouse models have not always been generally

accepted to study the complexity of aging, much of the
progress in this field can be attributed to them (Hasty et al.,
2003; Burtner and Kennedy, 2010; Kennedy et al., 2014). So far,
there are no gold standard markers that classify aging in
animals, but the more closely the model resembles the
disease situation, the more relevant will be the data
generated from them. Here we will highlight some studies
in vascular aging featuring males and females, with a spotlight
in vascular studies in female and male SAMP mice.

SEX DIFFERENCES IN
AGING-ASSOCIATED CVD
Cardiovascular Aging Characterization:
What is that?
During the past 2 decades, the sustained efforts to characterize the
effects of aging on multiple aspects of cardiovascular structure
and function and the dominant aspects of vascular aging have
been reported in two major clinical studies: The Framingham
cohort study (FraminghamHeart Study - FHS) and the Baltimore
Longitudinal Study on Aging (BLSA) (Lakatta and Levy, 2003;
Alghatrif et al., 2017).

Aging-linked changes are well evident and studied in elastic
arteries, such as the aorta and its main branches. In general, aging
is associated with the thickening of the wall in large elastic
arteries. With the thickness of the intima-media layer of
carotid arteries increasing 2–3 times between the 20th and the
90th year of age (Lakatta, 1993; Lakatta and Levy, 2003). The
evidence of age-associated arterial mechanical alterations is
observed by the third decade of age with sharp declines in
aortic strain. Aortic distensibility is the most sensitive marker
of aortic aging in individuals ≤50 years of age, beyond the
influences of gender, body size, and cardiovascular risk factors
(Redheuil et al., 2010).

Nearly 80% of the total decline of aortic strain occurs before the
fifth decade of age and is associated with an exponential increase in
femoral-carotid pulse wave velocity as reported in a study with 54
men/57 women, average age of 20–84 years (Redheuil et al., 2010).
Preliminary analysis from the BLSA shows that, even though
women have a greater increase in pulse pressure with aging,
pulse wave velocity is higher in men, due to a more accelerated
increase in aortic root diameter in men than women (Lakatta,
2018). However, the observation that pulse wave velocity, which is
a good measure of aortic wall stiffness, remains comparable or
lower in older women as compared to men, suggests that factors
other than aortic wall stiffness may contribute to the higher pulse
pressure in women (Alghatrif et al., 2013). The pulse wave velocity
is also an independent predictor of the future increases in systolic
blood pressure and of incident hypertension (Najjar et al., 2008).
An increased pulse wave velocity reflects 3 potential risk factors:
increased systolic pressure, widened pulse pressure, and altered
vascular wall properties.

The thickness of the vascular wall is related to the composition
of the vascular wall (the amount of smooth muscle, elastin fibers
and collagen) and the blood pressure that the vessel will be
submitted to. Indeed, aging is the strongest predictor of
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arterial stiffness (Vlachopoulos et al., 2010). Post-mortem studies
indicated that the aging-related thickening of the aortic wall
consists mainly of thickening of the intima layer, even in
populations with a low incidence of atherosclerosis (Virmani
et al., 1991), being characterized by increased collagen deposition
and the presence of disorganized smooth muscle cells (Lakatta
et al., 2009).

Past 50 years of age, as central arterial strain becomes reduced,
there is an early increase in diastolic blood pressure and mean
arterial pressure in both sexes (Franklin et al., 1997; Scuteri et al.,
2014). Indeed, diastolic blood pressure is a stronger predictor of
coronary heart disease risk than systolic blood pressure or pulse
pressure in ≤50 years old adults. With advancing age, as central
arteries stiffen, there is a gradual shift from diastolic blood
pressure to systolic blood pressure and eventually to pulse
pressure as predictors of coronary heart disease risk in elderly
(Franklin et al., 2001), with pulse pressure specifically in elderly
women. A sex specific combination of aortic stiffening and aortic
dilatation in women may account for the monotonic rates at
which systolic and diastolic BP change and pulse pressure
increases in women, but not in men (Scuteri et al., 2014).

Male SAMP8 (Reed et al., 2011) and female SAMP8 mice fed a
western-type diet (Gevaert et al., 2017) have isolated early age-
dependent diastolic dysfunction related to heart fibrosis in the
absence of alterations in systolic function and blood pressure
(Reed et al., 2011; Gevaert et al., 2017). SAMP8 male mice exhibit
no alterations in arterial elastance, the ratio of ventricular-
vascular coupling or impaired cardiac myocyte relaxation,
indicating that the diastolic dysfunction cannot be explained
by increased vascular stiffness or abnormalities in the
interaction between the heart and the systemic vasculature. So,
perhaps this might represent a good model to study mechanisms
of aging-related diastolic dysfunction in males.

The aging heart is subjected to an increasing systolic load
imposed by stiffening of the vasculature, a stimulus for left
ventricular hypertrophy (Lakatta, 1994). Data from the FHS
with 142 subjects (63 men/79 women, mean age 57 ± 9 years)
and the BLSA study with 336 subjects (136 men/200 women,
mean age 56 ± 18 years) show different perspectives for left
ventricular mass with age. In the FHS study left ventricular
mass and wall thickness were all greater in men than in
women, regardless of adjustment for height or body surface
area. Also, there were no changes with age in cavity
dimensions in the short-axis plane in either gender (Salton
et al., 2002). In the BLSA study, left ventricular long-axis
length index, another independent morphometric determinant
of left ventricular mass, decreased by 9.2% through adulthood,
but wall thickness increased, resulting in an altered shape, but no
change in overall left ventricular mass in women (Hees et al.,
2002). Even though systolic load increases between the ages of
50–60 years in both sexes, left ventricular wall thickness seems
more important in aging women than men, and cellular necrosis
or apoptosis are considered potent players in age-related left
ventricular remodeling in men (Olivetti et al., 1995; Hees et al.,
2002).

The incidence CVD is lower in premenopausal women
compared with age-matched men, yet menopause women

surpassed that of men (Virani et al., 2020). Premenopausal
women have lower autonomic tone and baroreceptor response
as well as better overall vascular function than men of similar age
(Barnett et al., 1999; Christou et al., 2005). Postmenopausal
women have stiffer arteries than their male counterparts
(Mitchell et al., 2008) even after correcting for body size and
aortic diameter (Mitchell et al., 2004). Potentially related to
declines in ovarian function and estrogen levels, these vascular
differences are clinically reflected in patterns of hypertension
prevalence over the life course. Indeed, prior to the age of
45 years, more men than women have hypertension; between
45 and 64, hypertension rates are similar between the sexes, and at
ages >65 years, more women than men are hypertensive
(National Center for Health Statistics, 2015). This emphasizes
the need for age/gender specific reference values, and use of
gender-different threshold values for cardiovascular medical
exams. According to Novella and collaborators (Novella et al.,
2012a), the onset of menopause overlaps with aging-associated
changes, making it particularly difficult to distinguish between
the contributions of aging and the lack of estrogen to vascular
damage. Additional studies using animal models of ovariectomy
(OVX) and data collected from ovariectomized women in clinical
trials will help to clarify this point.

Among the potential mechanisms involved in cardiovascular
aging, endothelial dysfunction is central, since arterial remodeling
in healthy humans occurs in the context of age-associated
endothelial dysfunction (Celermajer et al., 1994), which is also
one of the main processes by which aging increases the risk of
CVD in both sexes (Celermajer et al., 1994; Gerhard et al., 1996;
Taddei et al., 1997; Rodríguez-Mañas et al., 2009) as summed up
in Figure 2. Endothelial dysfunction is clearly multifactorial and
aging-induced endothelial dysfunction results from an imbalance
characterized by increased production of ROS, increased
cyclooxygenase (COX)-derived vasoconstrictor factors, and
reduced bioavailability of endothelium-derived nitric oxide
(NO) (El Assar et al., 2012). But what are exactly the
contributions of these mechanisms for endothelial dysfunction
in both sexes?

POSSIBLE MECHANISMS WHEREBY SEX
DIFFERENCES IMPACT THE VASCULAR
AGING PROCESS
The Endothelium
Age-related endothelial dysfunction is common to most arteries
independently of either vascular bed and species studied (Ku€ng
and Lu€scher, 1995; Novella et al., 2010; Novella et al., 2013a;
Hongo et al., 1988; Haidet et al., 1995; Taddei et al., 1995;
Egashira et al., 1993). Decreased endothelium-dependent
vasodilation (EDV) is one of the most studied effects of aging
in the vascular system. In clinical studies the rate of decline of
EDV is different between aged men and women. Men
demonstrate a gradual decline after the fourth decade, while
women’s decline is delayed approximately one decade, but
accelerated after menopause (Celermajer et al., 1994; Taddei
et al., 1996). Aging is associated with a progressive decline in
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EDV in large conduit arteries (Lieberman et al., 1994; Lieberman
et al., 1996) and peripheral resistance vessels (Delp et al., 1995;
Higashi et al., 2006; Lloréns et al., 2007; Novella et al., 2013b;
Jiménez-Altayó et al., 2013; Costa et al., 2019) in healthy adults.
Estrogen treatment (1 mg dose for 9 weeks) in postmenopausal
women at a relatively young age (average age 55 ± 7 years)
improved flow-mediated endothelium-dependent dilation
(Lieberman et al., 1994; Lieberman et al., 1996). In men, the
reduced EDVwas improved after infusion of the NO synthase co-
factor, tetrahydrobiopterin (BH4) (Higashi et al., 2006).

To understand the mechanisms behind the reduction of EDV
in female vascular senescence in mice, researchers have used the
SAMP-8 mouse model. SAMP8 mice were used to characterize
female vascular aging with and without the deleterious effects of
estrogen withdrawal. Aortas of 6- to 7-month-old female SAMP-
8 mice develop increased contractility and endothelial
dysfunction, which is mediated by decreased NO production
(Novella et al., 2010; Novella et al., 2013a). However, mesenteric
arteries from the same 6- to 7-month-old female SAMP-8 mice
show no decrease in endothelium-dependent vasodilation
(Jiménez-Altayó et al., 2013), indicating that the functional
vascular alterations in female SAMP-8 occur earlier in
conductance arteries than in resistance arteries.

The increased vasoconstrictor responses, endothelial
dysfunction, and reduced NO production in aorta of female
SAMP-8 mice are potentiated by the lack of estrogen, i.e., by
OVX performed at 5 months of age. Accordingly, a 4-weeks
treatment with estrogen, started immediately after OVX,
improved vascular function (Novella et al., 2013a). Of
importance and aligned with clinical data, Costa et al. (2019)
demonstrated that estrogen treatment loses its beneficial vascular
actions in 6-month-old ovariectomized female SAMP-8 mice,
either when administered shortly after OVX or 45 days after
OVX, suggesting an important interaction between aging and the
onset of estrogen treatment for the vascular function.

Furthermore, vasodilation to acetylcholine is completely
inhibited by L-NG-Nitroarginine Methyl Ester (L-NAME) in
female SAMP8 mice at the age of 3, 6 and 8 months (Novella
et al., 2013b), reinforcing that changes in NO-mediated responses
greatly contribute to aging and senescence-associated vascular
dysfunction in females. These early aging-related functional
alterations in the vascular tree in females seem to appear
earlier in conductance arteries than in resistance blood vessels,
since they are observed in conductance, but not in resistance
arteries (Jiménez-Altayó et al., 2013).

Aortic rings of male (6- to 7-month-old) SAMP8 mice also
demonstrated reduced EDV (Lloréns et al., 2007), in agreement
with other models (Delp et al., 1995). However, reduced
vasodilation to acetylcholine in male SAMP-8 mice is not
mediated by vasoconstrictor prostanoids or reduced eNOS
expression, but is due to oxidative stress (Lloréns et al., 2007).
In aortas of 12 month-old CD-1 male mice, treatment with
indomethacin restored the impaired EDV, suggesting an
involvement of increased COX-derived vasoconstrictors (Costa
et al., 2016). In 12 month-old female CD1 mice, endothelial
function is preserved by normal eNOS expression and an
increased release of prostacyclin (Costa et al., 2016).

Endothelium-independent vasodilation is determined by
measuring vascular responses to NO donors, as sodium
nitroprusside, in mouse models and humans. In clinical
studies, endothelium-independent vasodilation is preserved in
both older men and premenopausal women in the micro
(Gerhard et al., 1996; Desouza et al., 2000; Desouza et al.,
2002) and macrocirculation (Taddei et al., 1996; Taddei et al.,
2001). However, studies using doppler ultrasound showed that
increases in blood flow induced by sodium nitroprusside in
brachial and common femoral arteries are reduced in older
men (Newcomer et al., 2004). Explanations for these
discrepancies are the different blood flow measurement
techniques and the wide age range among the older subjects
included in the studies.

In animal models, such as 24-month-oldmale Fischer 344 rats,
abdominal aorta, but not iliac and femoral arteries, exhibit
decreased sodium nitroprusside-mediated relaxation (Luttrell
et al., 2020). In 26–29 month-old male Wistar rats, sodium
nitroprusside-induced relaxation was impaired in
endothelium-intact, but not in endothelium-denuded aortic
rings, suggesting an inhibitory influence of the endothelium
on the response to this NO donor (Kim et al., 2011). In
contrast, age had no effect on sodium nitroprusside-induced
relaxation in thoracic aorta and femoral arteries of 33 month-
old female Wistar rats (Barton et al., 1997) or in aortic rings of
30 month-old male Fischer 344 rats (Delp et al., 1995).

Therefore, there is still controversial information about a
decreased sensitivity of vascular smooth muscle cells to NO or
smooth muscle capacity of vasodilation in aging. Additional
studies eliminating the interference of endothelium-derived
factors on NO donor-mediated vasodilation in males and
females are necessary. Although reduced NO bioavailability is
well described in aged men and women, potential sex-dependent
effects of antioxidants, or other agents aimed to rescue NO levels,
may lead to new insights in this field.

Reactive Oxygen Species
Oxidative stress, i.e., increased levels of ROS such as superoxide
anion (O2

−

_), hydrogen peroxide and hydroxyl radical, and
reactive nitrogen species (RNS) such as peroxynitrite (Brandes
et al., 2005; Costa et al., 2021), is directly linked to reduced NO
bioavailability. The reaction between NO and O2

−

_produces theperoxynitrite radical, a cytotoxic compound that promotes DNA
damage. The main sources of O2

−

_ in blood vessels of older
animals and humans are mitochondria (Ungvari et al., 2010;
Tang et al., 2014), NADPH oxidase (Hamilton et al., 2001;
Lassègue et al., 2012) and uncoupled eNOS (Delp et al., 2008;
Li and Förstermann, 2013).

Oxidative stress and pro-inflammatory cytokines, such as
tumor necrosis factor-α (TNF-α) contribute to endothelial
dysfunction and large artery stiffening in postmenopausal
women. Decreased NO bioavailability is considered a key
factor contributing to the impaired endothelium dependent
vasodilation in aging. Older adults present higher serum levels
of inflammatory cytokines, such as interleukin-6 (IL-6),
interleukin-1 (IL-1), TNF-α, and interleukin-18 (IL-18) when
compared to younger adults (Wei et al., 1992; Hager et al., 1994).
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In addition, serum TNF-α concentrations are increased only in
older healthy women (Straub et al., 1998).

Older men, 55–78 years, compared to young men
(18–30 years), exhibit higher levels of nitrotyrosine, a marker of
oxidative stress, in endothelial cells from the brachial artery and
antecubital veins. No differences between the groups were detected
for xanthine oxidase, antioxidant cytosolic (Cu/Zn-SOD) and
mitochondrial (Mn-SOD) superoxide dismutase, or catalase
(Van Der Loo et al., 2000). Also, older men exhibit elevated
nicotinamide adenine dinucleotide phosphate (NAD(P)H)
oxidase subunit p47phox in venous-derived endothelial cells
compared with young subjects (Van Der Loo et al., 2000), and
administration of vitamin C restores EDV in older healthy men
(Eskurza et al., 2004; Jablonski et al., 2007). Studies with rodents
also showed enhanced vascular NAD(P)H oxidase-derived O2

−

_production with unchanged xanthine oxidase-derived O2
−

_ in
arteries from old (18–20months) compared with young
(3–4 months) male Sprague-Dawley rats (Csiszar et al., 2002).

Increased ROS and imbalance of the antioxidants enzymes are
a ubiquitous problem in vascular aging in men and women, with
greater oxidative stress in men compared to premenopausal
women (Ide et al., 2002). It is undeniable that the senior
population is more susceptible to oxidative stress conditions,
but further studies are needed to understand whether oxidative
stress is an intrinsic aging process or, as we get older, we become
more susceptible to oxidative injury.

ROS are fundamental to many endothelial cell functions,
acting e.g. as signaling molecules that activate
proinflammatory processes (Ungvari et al., 2007). ROS
activates Nuclear Factor Kappa B (NF-κB) that regulates
endothelial activation and expression of proinflammatory
mediators, leading to endothelial senescence (Keymel et al.,
2008). ROS signal the presence of a defective cell and
stimulate progenitor cells to continue to replenish the
circulatory system with functional differentiated endothelial
and smooth muscle cells. Generally, senescent cells are
removed by apoptosis and immune cells. Endothelial
senescence should abrogate the process, but the immune
system is ineffective in removing these endothelial cells. The
extent of immune-system involvement in regulating age-related
accumulation of senescent cells, and its consequences, are
unknown. However, impaired cell cytotoxicity and defective
function of circulating endothelial pluri-potent cells have been
reported (Rauscher et al., 2003; Keymel et al., 2008). These
defective endothelial cells can further promote senescent-cell
accumulation and shorten lifespan, generating a chronic
proinflammatory environment where cells continue to signal
the immune system (Morgan et al., 2013).

Characterizations of peripheral blood mononuclear cells
using ATAC-seq, RNA-seq, and flow cytometry showed less
naïve T cells and increasing monocyte and cytotoxic cell
functions in older patients (Márquez et al., 2020). These
changes are greater in magnitude in men, and premature
immunosenescence (Fuente et al., 2004) is accompanied by
a male-specific decline in B-cell specific loci. These results are
elegantly discussed by Márquez et al. (2020), and this field
should be explored in mouse models of aging, since

overactivation of the immune system increases the risk for
atherosclerosis in men and pre/post-menopause women.

Vasoconstriction
Increased vascular constrictor responses in aging may vary
depending on the vasoconstrictor agent and vascular bed
studied. In general, contractile responses to adrenergic
vasoconstrictors and angiotensin-II (Ang II) are increased by
chronological aging in female and male mice. Potential
mechanisms include decreased endothelial NO synthase
expression, reduced NO synthesis, increased ROS production,
decreased SOD activity (Bolzán et al., 1997; Inal et al., 2001;
Mariani et al., 2006); and increased vasoconstrictor prostanoids,
especially in women (Li et al., 2008).

Aging reduces vasoconstriction to potassium chloride (KCl) in
24 month-old male Fischer rats, compared to 4 month-old rats.
Removal of the endothelium increases KCl constrictor responses,
but the age-associated decrease in KCl responsiveness remains
(Shipley and Mullerdelp, 2005). Aortic rings of male (6- to 7-
month-old) SAMP8 mice display greater contractility to KCl and
phenylephrine (Lloréns et al., 2007), which is associated with a
decreased modulatory effect of NO, but no alterations in smooth
muscle cells function or structure. Angiotensin II-induced vascular
contraction increases with aging in male and female CD-1 mice,
but is higher in male mice (Costa et al., 2016). Angiotensin II is a
key regulator of cell senescence, and modulates the onset and
progression of vascular aging (Min et al., 2009; Wang et al., 2010).
Increased Ang II responses in aorta of males CD1 mice contribute
to endothelial dysfunction by a mechanism that partially involves
Ang II-mediated upregulation of COX-derived vasoconstrictors
(Costa et al., 2016). Reinforcing these findings, chronic angiotensin
converting enzyme (ACE) inhibition, as well as Ang II type 1 (AT1)
receptor blockade, recover endothelium-derived hyperpolarizing
factor-mediated responses in mesenteric arteries of 12month-old
male Wistar-Kyoto rats (Goto et al., 2004).

It is not clear how prostaglandins are differently produced in
aged males and females (Costa et al., 2016). In carotid arteries of
6-month-old female SAMP8 mice, increased phenylephrine
vasoconstriction is related to increased Thromboxane (TXA2)
production. Costa et al. (Costa et al., 2019) showed a differential
interaction between estrogens and prostanoids production in
menopause. While selective COX-1 or COX-2 inhibitors do
not change phenylephrine responses in ovariectomized
6 month-old female SAMP8 mice that underwent an early-
treatment with estrogen, COX inhibition decreases
vasoconstrictor responses to phenylephrine in mice that
receive a late estrogen-treatment. Further studies showed that
aortas of female SAMP8 mice show lower NO levels, and
consequently, less NO modulatory effects, in response to
TXA2 receptor activation (Novella et al., 2013a). Indeed,
prostanoids have a important participation in enhanced
constriction in carotid arteries, but not in resistance
mesenteric arteries from female SAMP8 mice (Jiménez-Altayó
et al., 2013; Costa et al., 2019).

Functional vascular alterations appear earlier than structural
changes with aging in male SAMP8 mice. Similarly, flow-
mediated dilation is preserved in men aged < or � 40 years
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and declines thereafter at 0.21%/year, but remains preserved in
women until the age of 50 years (Celermajer et al., 1994; Skaug
et al., 2013). This could be an important information for targeting
early signs of CVD in men and women, since coronary artery
calcification (Howard et al., 1993), carotid intima-media
thickening (Mcclelland et al., 2006) and atherosclerotic plaques
are all more common in men than in women (pre-menopause) at
young adulthood and middle-age (Kelley et al., 2011).

Perivascular Adipose Tissue
The perivascular adipose tissue (PVAT) is no longer considered
an inert vessel-supporting connective tissue, but an important
regulator of vascular tone, exhibiting an anti-contractile effect in
response to a variety of vasoconstrictors. This beneficial
vasodilatory response is associated with anti-inflammatory
effects of PVAT in animal models (Löhn et al., 2002;
Dubrovska et al., 2003; Gollasch and Dubrovska, 2004;
Verlohren et al., 2004) and in healthy individuals (Greenstein
et al., 2009). Alterations in PVAT function may contribute to
aging-associated vascular dysfunction and increased
cardiovascular risk. However, few research groups have
addressed aging-associated alterations in the PVAT, and, so
far, the studies performed were carried out only in male animals.

Increased O2
−

_ signaling (Fleenor et al., 2014) and
increased advanced glycation end-products (AGE)
accumulation (Ouyang et al., 2017) were reported in
thoracic aortic PVAT of 27–29 month-old C57BL/6 male
mice. In mesenteric arteries of 12 month-old SAMP8 male
mice, PVAT anti-contractile effect to noradrenaline is absent
in comparison with SAMR1, but mechanisms were not
investigated (Agabiti-rosei et al., 2017). SAMP-8 mice at the
age 12 months are close to the end of their lives and may
already be riddled with aging-associated multiple disease
injuries. These data reinforce the importance of mechanistic
and descriptive studies of age-associated changes in PVAT in
males and females.

Other Potential Mechanisms
Considering that hormones that control reproduction modulate
mitogenesis and differentiation, the Reproductive-Cell Cycle
Theory of Aging states that reproductive hormones negatively
regulate aging by promoting growth and development (Atwood
et al., 2003; Bowen and Atwood, 2004). According to the theory,
the period of maximum reproductive function is linked to the
slowest aging period; and as reproductive function begins to
decrease, typically during the fourth decade of life, the rate of
change in body composition and function, and therefore aging,
increases. Here we explore the mechanisms mediated by growth
hormone (GH), insulin-like growth factor-1 (IGF1) and
reproductive hormones axis on vascular aging.

Growth Hormone and Insulin-Like Growth Factor 1
In aging, secretion of GH, also known as somatotropin, and IGF-
1 declines over time, with lowest levels in individuals aged
≥60 years, a phenomenon known as “somatopause” (Junnila
et al., 2013). Increased IGF-1 signaling is associated with a
decrease in longevity, and inhibition of mTOR by decreased

GH/IGF-1 signaling stimulates autophagy, improving response
to cellular stress, and increasing lifespan (Wullschleger et al.,
2006; Fontana et al., 2010; Fulda et al., 2010).

Mutations in the IGF-1R gene that reduce IGF-1 signaling have
been identified in centenarians (Suh et al., 2008), butmen andwomen
with deficiency of GH, thyroid-stimulating hormone (TSH),
prolactin, follicle-stimulating hormone (FSH) or luteinizing
hormone (LH) have normal longevity (Krzisnik et al., 1999;
Besson et al., 2003; Krzisnik et al., 2010); some even reduced
mean lifespan (Salvatori et al., 1999; Aguiar-Oliveira et al., 2010).

The cardiovascular system is an important target organ for GH
and IGF-1. There is evidence that cardiac myocytes, vascular
endothelial and smooth muscle cells abundantly express IGF1R
and that they are more sensitive to IGF-1 than to insulin
(Chisalita and Arnqvist, 2004). IGF-1 is important to maintain
the functional and structural integrity of the microcirculation.
IGF-1 increases NO bioavailability, decreased ROS generation,
and has anti-inflammatory, antiapoptotic, and proangiogenic
effects (Ungvari and Csiszar, 2012).

Recombinant human GH has been widely used to promote
antiaging effects and cardiovascular protection although its
efficacy has not been established (Rudman et al., 1990; van
den Beld et al., 2003; Denti et al., 2004). Men and women
with GH deficiency, who exhibit a pathological and often
abrupt decline of GH secretion and, consequently, low levels
for their age, show reduced flow-mediated EDV (M Evans et al.,
1999), which is restored by GH replacement therapy (Smith et al.,
2002). In addition, GH treatment of old individuals with no GH
deficiency may increase the risk of other medical conditions
(Blackman et al., 2002; Liu et al., 2007).

IGF-1 has significant proangiogenic effects in the heart and brain,
inducing proliferation of microvascular endothelial cells through
hypoxia-inducible factor 1-alpha (HIF-1α) and vascular
endothelial growth factor (VEGF), i.e., via the canonical
angiogenic pathway (Lopez-Lopez et al., 2004). IGF-1 also
prevents oxidative distress by preserving the mitochondrial
functional integrity (Li et al., 2009). These effects of IGF-1 on age-
dependent impairment of angiogenesis are being explored in
ischemia and aging neurodegeneration models (Rivard et al., 1999).

Studies linking IGF-1 levels to cardiovascular disease in elderly
were inconclusive (Malozowski, 2003; Maggio et al., 2006). In
aging, IGF-1 has been shown to recruit cardiomyoblasts,
compensating for cell death and preventing ventricular
dysfunction (Torella et al., 2004). GH supplementation, which
increases circulating levels of IGF-1, increases cortical vascular
density (Sonntag et al., 1997) and improves cognitive function in
24-month-old male Brown Norway×Fisher 344 rats (Ramsey
et al., 2004; Sonntag et al., 2005). Treatment of 24-month-old
Sprague-Dawley male rats with IGF-1 upregulates eNOS and
improves bioavailability of NO in cavernosal arteries (Pu et al.,
2008). In addition, age-dependent impairment of endothelial
progenitor cells was abrogated by the GH-mediated increase in
circulating IGF-1 in sixteen healthy middle-aged male volunteers
(mean age 57.4 ± 1.4 years) and in aged (6–8 months old) male
mice (Thum et al., 2007). Although acute GH-mediated increase
in circulating IGF-1 seems to exert beneficial effects on the
regenerative capacity of the cardiovascular system in elderly
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men. Data in women volunteers and female models are still
needed.

Divergent data support that chronic modulation of IGF-1
promotes arterial obstructive lesions (Bayes-Genis et al., 2000;
Higashi et al., 2014), since it induces vascular smooth muscle
cell (VSMC) proliferation in vitro (Pfeifle et al., 1987) and
increased IGF-1 and IGF-1 receptor have been shown in
human and rabbit atherosclerotic arteries (Grant et al., 1996;
Grant et al., 1999) compared with normal tissues (Grant et al.,
1999). Future studies should elucidate whether age-related IGF-
1 deficiency is further exacerbated by age-related changes in
vascular expression of IGF-1–binding proteins (BPs), IGF-1
receptors or alterations in signaling pathways activated by
IGF-1 receptors and whether it increases atherosclerosis risk
in men and women.

Sex Hormones in Vascular Aging
The lower incidence of CVD in premenopausal women, relative
to age-matched men, suggests a significant role for female
gonadal hormones in the regulation of the vasculature
(Mendelsohn and Karas, 2005). Aging per se decreases
acetylcholine-induced relaxation, which is further reduced by
the removal of ovaries. Accordingly, aging and hormonal status
are associated with decreased endothelium-dependent and NO-
mediated vasodilation (Taddei et al., 1996; Virdis et al., 2000;
Teede, 2007). Aged female and male SAMP8 mice reproduce all
the morphological (Goyal, 1982), mechanical (Reddy et al., 2003)
and endothelial alterations (Blackwell et al., 2004) of the aged
human aorta. However, aging-related hormonal changes are not
quite similar in mice and humans.

The decline in ovarian function in aging women is usually
mimicked by OVX procedures in mouse and rat research
models. OVX is often performed due to the lack of natural
menopause in rodents in an attempt to reproduce the human
hormonal changes. However, most studies have used
ovariectomized female rats at young ages (6–12 weeks old) to
examine the effects of hormone deprivation in the
cardiovascular system. This can lead to unreliable results
given that the cardiovascular system has not yet “aged”
(Wong et al., 2006).

Testosterone decreases markedly in male SAMP8mice between
4 and 12months of age, but the decrease in SAMR1 mice over the
same period is not significant, suggesting that SAMP8 gonadal
function parallels the decline in cognitive ability (Flood et al., 1995).
On the other hand, 6-month-old female SAMP8 mice exhibit
hormonal status similar to SAMR1 (Novella et al., 2010;
Novella et al., 2013a; Novella et al., 2013b). Thus, SAMP8 mice
might represent a valuable model to study the mechanisms of
vascular aging at a convenient standard time course (Novella et al.,
2010; Novella et al., 2013a) andwithout overlapping the deleterious
effects of estrogen reduction. Of importance, the lack of estrogen
protection in SAMP8 mice is not related to age-associated changes
in the plasma levels of estrogen or activity of estrogen receptors, but
rather to potential age-related changes in estrogen mediated
signaling pathways in the vasculature.

Estrogen levels affect arterial distensibility (Gangar et al.,
1991). However, there are also non-hormonal differences that

affect the behavior of the arterial tree. In men, it is unclear
whether endothelial dysfunction occurs with age-associated
declines in testosterone in the absence of disease. Cross-
sectional association studies aiming at serum testosterone
levels and endothelial function have shown that low serum
testosterone is associated with reduced (average age 52.8 years)
(Akishita et al., 2007; Empen et al., 2012) and increased
(average age 55.9 years) (Mäkinen et al., 2011) macro- and
microvascular endothelial function in men. One reason for
these divergent results could be that testosterone
concentrations exhibit significant diurnal and day-to-day
variations (Bhasin et al., 2018). Another drawback is that
the measurement of total testosterone, commonly
performed via direct assay (radioimmunoassay, enzyme-
linked immunosorbent assay, or chemiluminescent
immunoassay) has limited accuracy, especially in lower
testosterone ranges (<300 ng/dl), with testosterone
concentrations being frequently overestimated (Rosner
et al., 2007). Also, measurements of total testosterone
include the fraction that is tightly bound to sex hormone-
binding globulin (SHBG), which increases with age (Harman
et al., 2001) and might be a bias for men with conditions that
affect SHBG like obesity, or type 2 diabetes mellitus.

This variation in testosterone measurement is reflected in
the clinical setting, and occurrence of low testosterone without
symptoms does not meet the definition of “androgen
deficiency” set by the Endocrine Society (Bhasin et al.,
2018). Although testosterone declines by approximately 1%
per year in men after the third decade (Matsumoto, 2002),
decay of bioavailable testosterone is even greater than decay in
total testosterone. Consequently, male aging studies should
look at modest increases in FSH and LH, impairments in testis
function and hypothalamic regulation of gonadotropin
secretion that accompanies testosterone decline
(Matsumoto, 2002).

Hormonal Receptors Signaling
Estrogen triggers NO release via estrogen receptor (ER)α-mediated
activation of eNOS as well as increased eNOS transcription (Klinge,
2001). Few studies have shown whether aging in female rodents is
associated with significant reduction of estrogen-mediated
cardiovascular effects. Aging influences the activation of receptors
(Novella et al., 2010; Mehta et al., 2019). The discovery of age-
dependent decline of receptor function emerged in several
laboratories during the last decades of the 20th century.

This aspect, the loss of receptors function, is, however, still
ignored by physicians, even by geriatricians, in the prescription of
drugs and hormones to senior people (Robert and Fulop, 2014).
Dr. George Roth research group at the National Institute of Aging
(NIA) first showed the aging-dependent decline in muscarinic
receptor responsiveness (Joseph et al., 1990). Of importance,
aging modulation of receptor signaling seems to occur in both
sexes and affects the vascular system equally in men and women
(Faury et al., 1997; Robert, 1998; Xiao et al., 1998; Novella et al.,
2012b; Moreau et al., 2020).

Detailed analysis suggests that early initiation of estrogen
therapy produces more favorable results than the average
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late-onset, which is used in most clinical trials (Grodstein et al.,
2006). The so-called “timing hypothesis” (Novella et al., 2010;
Novella et al., 2012b) relies on the concept that estrogen has
beneficial effects if taken before, or close to, the onset of
menopause. Although aging-dependent detrimental effects of
estrogen in the vasculature have not yet been demonstrated
(Harman et al., 2011), it is possible that aging can determine
abnormal responses to therapy in older women, which would be
linked to changes in the classical signaling of endogenous
hormones.

A key part in maintaining correct cellular function and
thus healthiness of the organism is proper gene expression
and regulation. Alternative splicing of RNA transcripts,
i.e., the formation of alternative splicing receptors, might
alter or modulate receptor signaling. Functional
experiments in common carotid artery of senescent SAMP8
female mice showed that late-onset of estrogen treatment
increases adrenergic vasoconstriction along augmented
TXA2 production and upregulation of ER36 expression, an
alternative splicing of the classical estrogen receptors (ER)
(Costa et al., 2019). Also, an age-related increase in
methylation-associated inactivation of genes encoding ERs
has been described, and ER methylation in atherosclerotic
plaques is higher than in non-plaque regions in vascular
tissues (Post et al., 1999; Kim et al., 2007).

Pre-mRNA splicing is an intricate post-transcriptional process
that leads to the removal of introns and joining of exons in a pre-
mRNA to form a mature mRNA (House and Lynch, 2008). A
well-studied example is the Hutchinson Gilford progeria
syndrome, where a silent point mutation in the lmna gene
adds a 5’ splicing signal, leading to a shortened transcript and
subsequently a shorter version of its encoded protein Lamina A9
(Liao and Kennedy, 2014). Patients with Hutchinson Gilford
progeria syndrome suffer from extensive atherosclerosis and
cardiac electrophysiological alterations that invariably lead to
premature aging and death (Osorio et al., 2011). Since many
components of the RNA processing machinery are themselves
regulated by alternative splicing, defects in differential splicing of
genes might, therefore, catalyze the aging process via a feed
forward mechanism.

Global genome splicing analysis in young and old patients
reveals an increased number of alternatively spliced genes related
to skin and skeletal muscle (Rodríguez et al., 2016). Since sex
hormones are important in cell signaling transcription, further
studies are necessary to understand their roles in impaired RNA
processing and translation. The role of miRNA and possible
miRNA targets in elderly women are elegantly discussed in a
review by Pérez-Cremades et al. (2018).

New studies suggest that age-dependent modifications of nuclear
hormones may indeed play an important role in the age-dependent
decline of several biological functions of vital importance. Studies in
mouse models can help to understand the importance of age-
dependent modifications of receptor function in the vascular
system as these effects are accelerated in the SAMP8 mouse, an
appropriatemodel to study vascular effects of aging. It’s important to
fulfill the gaps on age-dependent endothelial dysfunction in large
arteries of males and females and to determine whether this precedes

the development of CVD. In the SAMP8 mice, vascular studies
should be performed up to 6–7 in males and 8–10months in
females. After 9–10months SAMP mice begin to develop other
pathologies such as insulin resistance, hyperglycemia,
hyperinsulinemia and high levels of free fatty acids (Cuesta et al.,
2013; Liu et al., 2015).

CLINICAL PERSPECTIVE AND
CONCLUSIONS

Senescence and aging are two distant processes, but they
are conceptually intertwined. Women and men grow old, but in
different ways. The different mechanisms in vascular aging are
associated in part with hormonal changes, inflammation and
oxidative stress. Regardless of sex differences in the aging of the
cardiovascular system, effective treatment of CVD in women is a
challenging issue in medicine, mainly due to the lack of information
on the mechanisms involved in the initial stage of CVD, symptoms,
and menopause process.

The ability to identify individuals having early deterioration of
vascular and cardiac function, as well as progressive subclinical
arterial disease, would allow to define a target population for therapy
that reduces vascular and cardiac remodeling and dysfunction, and
prevents lethal or debilitating events. Considering clinical
applications, organismal senescence at the organ level has already
been classified in the International Classification of Disease code
(ICD) as ‘‘intrinsic aging of the skin” and “photoaging of the skin,”
(Zhavoronkov, 2020), but many diseases within the ICD do not
consider ageing in their categorization. In addition, preventive
treatment for what is now considered normal cardiovascular
aging, may become part of a routine check-up - e.g., a test for
endothelial dysfunction, a marker/predictor of vascular aging. Also,
reference values should be different inmen andwomen? Shouldmen
start vascular checkup at an earlier age than women? Should aging-
related alterations be investigated for preventive treatment?
Certainly, results from further studies will contribute to clarify
these questions.
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GLOSSARY

ACE Angiotensin converting enzyme

Ang II Angiotensin-II

AT1 Ang II type 1 receptor

BH4 Tetrahydrobiopterin

BLSA The Baltimore Longitudinal Study on Aging

COX-1 Cyclooxygenase-1

COX-2 Cyclooxygenase-2

COX Cyclooxygenase

Cu/Zn-SOD Cytosolic superoxide dismutase

CVD Cardiovascular diseases

EDV Endothelium-dependent vasodilation

ER Estrogen receptor

ERE Estrogen-responsive element

FHS The Framingham cohort study

FSH Follicle-stimulating hormone

GH Growth Hormone

HIF-1α Hypoxia-inducible factor 1-alpha

hTERT Telomerase reverse transcriptase

ICD International Classification of Disease Code

IGF-1 Insulin-like Growth Factor 1

IL-1 Interleukin-1

IL-18 Interleukin-18

IL-6 Interleukin-6

KCl Potassium chloride

L-NAME L-NG-Nitroarginine Methyl Ester

LH Luteinizing hormone

Mn-SOD Mitochondrial superoxide dismutase

NAD(P)H Nicotinamide adenine dinucleotide phosphate

NF-κB Nuclear factor kappa B

NIA National Institute of Aging

NO Nitric oxide

O2
−• Superoxide anion

OVX Ovariectomy

PVAT Perivascular adipose tissue

RNS Reactive nitrogen species

ROS Reactive oxygen species

SAMP Senescence-accelerated mouse prone

SAMR Senescence-accelerated resistant mouse prone

SASP Senescence-associated secretory phenotype

SHBG Sex hormone-binding globulin

SOD Superoxide dismutase

TNF-α Tumor necrosis factor-α

VEGF Vascular endothelial growth factor

VSMC Vascular smooth muscle cell
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