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Abstract: Overactive bladder (OAB) syndrome, including frequency, urgency, nocturia and urgency
incontinence, has a significantly negative impact on the quality-of-life scale (QoL) and can cause
sufferer withdrawal from social activities. The occurrence of OAB can result from an imbalance
between the production of pro-oxidants, such as free radicals and reactive species, and their elim-
ination through protective mechanisms of antioxidant-induced oxidative stress. Several animal
models, such as bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO) and
ovarian hormone deficiency (OHD), have suggested that cyclic I/R during the micturition cycle
induces oxidative stress, leading to bladder denervation, bladder afferent pathway sensitization and
overexpression of bladder-damaging molecules, and finally resulting in bladder hyperactivity. Based
on the results of previous animal experiments, the present review specifically focuses on four issues:
(1) oxidative stress and antioxidant defense system; (2) oxidative stress in OAB and biomarkers of
OAB; (3) OAB animal model; (4) potential nature/plant antioxidant treatment strategies for urinary
dysfunction with OAB. Moreover, we organized the relationships between urinary dysfunction and
oxidative stress biomarkers in urine, blood and bladder tissue. Reviewed information also revealed
the summary of research findings for the effects of various antioxidants for treatment strategies
for OAB.

Keywords: overactive bladder; oxidative stress; bladder dysfunction; antioxidants

1. Overactive Bladder (OAB)

The International Continence Society (ICS) defined overactive bladder (OAB) as
urinary urgency, usually accompanied by frequency and nocturia, urgency with or without
urgency urinary incontinence, in the absence of urinary tract infection or other obvious
pathology [1,2]. However, detrusor overactivity (DO) is another condition. The ICS defined
DO as spontaneous or provoked involuntary detrusor contractions during filling cytometry
of urodynamic study. OAB has been linked to DO, but not every OAB patient has DO. In a
prospective study, only 64% of OAB patients had DO. In addition, in patients who had DO
on filling cystometry, 30% had no OAB symptoms.

Int. J. Mol. Sci. 2021, 22, 6014. https://doi.org/10.3390/ijms22116014 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2366-8268
https://orcid.org/0000-0001-9108-7567
https://orcid.org/0000-0002-0607-9093
https://doi.org/10.3390/ijms22116014
https://doi.org/10.3390/ijms22116014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22116014
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22116014?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6014 2 of 20

A recent study investigated the population of Eastern-European countries. The preva-
lence of lower urinary tract symptoms (LUTS) was 66.2% in men and 72.6% in women.
Moreover, the prevalence of OAB was higher in women (39.5%) than in men (26.8%) and
increased with age. Of interest, women were more likely to be bothered in comparison with
men [1]. In Asian countries, a questionnaire-based epidemiology study from 11 countries
showed that the prevalence of OAB was 53.1% in women and 29.9% in men [3]; in men aged
over 70 years, this increased to 53% [4,5]. In Taiwan, human epidemiology studies revealed
that the prevalence of female OAB was 20.9%, with an age-dependent increase to 34.5% in
those over the age of 65 years [6,7]. Symptoms of OAB have a significant negative impact
on the quality of life (QoL) and can withdraw the sufferer from social activities. Moreover,
increased voiding times at night may cause significant sleep disturbances, resulting in
fatigue and depression. In particular, urgency incontinence is related to an increase in the
number of falls and fractures in the elderly population [8].

2. Pathophysiology of OAB and Its Relation with Oxidative Stress

Bladder storage and voiding depend on the interaction and synergy between efferent
sympathetic, parasympathetic, somatic and afferent sensory nerves. Bladder oversensitiv-
ity and overactivity arise from several different conditions involving the bladder, bladder
outlet and nervous system. In addition to nerve innervation, the detrusor muscle, the
urothelium, the suburothelium and pelvic blood vessels all play an important role in the
pathophysiologies of OAB. Parasympathetic nerves trigger the contraction of the bladder
detrusor muscle through the stimulation of both M2 and M3 muscarinic receptors by acetyl-
choline and the purinergic receptor (P2X) by ATP, which also relax the urethral smooth
muscle through the action of nitric oxide (NO). ATP and purinergic receptors are involved
in modulating urgency symptoms and the micturition pathway in urological diseases. Acti-
vation of the adrenergic receptor (such as AR-α and AR-β) by catecholamines can facilitate
the micturition reflex. AR-β stimulation activates the adenylyl cyclase pathway in bladder
urothelium and initiates an increase in intracellular Ca2+, which triggers NO production
and release. In addition, the somatic pudendal nerve stimulates the striated muscle of
the external urethral sphincter through nicotinic receptor stimulation, and sympathetic
receptors expressed in human detrusor and urothelium are α1-adrenoreceptor (α1-ARs)
and β- adrenoreceptor (β-ARs).

The pathophysiology of OAB is composed of multiple possible causes that are not
fully elucidated. Chu et al. classified OAB into neurogenic OAB (e.g., spinal cord injury),
myogenic OAB (e.g., bladder outflow obstruction), inflammatory OAB (e.g., interstitial
cystitis) or idiopathic OAB [9]. The mechanism for OAB may be related to bladder in-
nervation, muscarinic (such as M2 and M3) and purinergic (such as P2X3) receptors and
an abnormal increase in the production of cyclooxygenase-2 (COX-2), prostaglandin and
leukotriene [10,11]. For example, overexpression of urothelial transient receptor potential
vanilloid 1 (TRPV1) [12] and P2X3 receptors [13] and hypersensitivity of the C-fiber path-
way are associated with urgency and DO in humans [14]. Changes in urothelial receptor
function and neurotransmitter release, as well as changes in the sensitivity and coupling
of the suburothelial interstitial cells, may lead to enhancement of involuntary bladder
contractions [15]. In addition, in streptozocin-induced diabetic rats, OAB is associated with
increased ATP and decreased constitutive NO release from the urothelium [16].

Previous studies also revealed that hypoxia, excessive oxidative stress and loss of
blood supply play a pivotal role in OAB [17,18]. The bladder needs blood supply for
oxygen and nutrition for normal storage and voiding function. Decrease in blood satura-
tion induces hypoxia, accompanied by an abundance of oxidative free radicals and the
subsequent impairment of bladder contractility and compliance. During the filling phase,
the bladder wall maintains a high level of oxygen saturation. However, blood vessels are
compressed, and bladder wall blood flow is reduced during bladder emptying. There-
fore, cumulative oxidative stress caused by bladder cyclic I/R leads to LUTS, including
OAB [18,19].
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3. Medical Management of OAB

Medical treatment targeting of OAB might relieve overactive bladder symptoms in
a portion of patients. Currently, the medical treatment of OAB consists of antimuscarinic
agents or/and β3 agonist medication. Given the involvement of the parasympathetic
system in the lower urinary tract, the standard therapy for OAB is represented by antimus-
carinics, which are not selective for bladder receptors, with some systemic side effects,
such as constipation, dry mouth and blurred vision. A previous study showed that half of
patients stopped antimuscarinic treatment within 150 days of treatment due to intolerable
adverse effects, and only 8.3–24% of patients could maintain long-term usage [20]. In 2012,
the FDA approved the first β3 agonist, mirabegron, to treat patients with OAB symptoms.
The β3 agonist works via the sympathetic nerve pathway and stimulates beta-3 receptors
to relax the bladder smooth muscle. Side effects of the β3 agonist include somnolence
and unstable blood pressure, which make people with OAB unwilling to continue medi-
cation [21]. Severe adverse effects, such as retention of urine and urinary tract infection
(UTI), significantly increase with age [22].

Whenever medical treatment failed, invasive intervention with botulinum toxin A
(BoNT-A) bladder injection and tibial nerve stimulation was considered [23,24]. BoNT-
A treatment of OAB has anti-inflammatory and antinociceptive effects to relieve OAB
symptoms and increase functional bladder capacity. In patients with DO treated with
detrusor BoNT-A injections, the expressions of TRPV1 and P2X3 receptors were reduced
on the suburothelial sensory afferents [25]. Therefore, BoNT-A therapy for OAB has
shown significant improvement in urinary urgency, bladder pain and bladder capacity.
However, this invasive procedure may result in side effects, including hematuria, increased
residual urine, catheter drainage risk, nerve pain and urinary tract infections. Recently,
OAB was shown to be relieved with low-intensity extracorporeal shockwave therapy
(LiESWT). LiESWT could improve the voided volume and ameliorate OAB symptoms,
including frequency, urgency, nocturia and urinary incontinence. Significant improvement
in social activity and QoL suggests that LiESWT might be a future alternative treatment for
OAB [26].

4. Oxidative Stress and the Antioxidant Defense System

Oxidative stress is related to increased intracellular levels of reactive oxygen species
(ROS), reactive nitrogen species (RNS) and free radicals, such as superoxide anion radical
(O2
•−) and hydroxyl radicals (•OH), as well as nonradicals, such as H2O2, nitric oxide

(NO), peroxynitrite, and hypochlorous acid. ROS are derived from oxidant enzymes, such
as nicotinamide adenine dinucleotide phosphate (NADPH), xanthine oxidase, cyclooxyge-
nases (COX) and the mitochondrial respiratory chain. Mitochondria produces chemical
energy that is stored in adenosine triphosphate (ATP) through the oxidative phosphoryla-
tion process. However, damaged mitochondria produce excess ROS and result in rapid
depolarization of mitochondrial inner membrane potential and impairment of oxidative
phosphorylation. For example, H2O2 is generated from superoxide produced by NADPH
oxidases, the mitochondrial respiratory chain and diverse oxidases [27–29]. Low and mod-
erate concentrations of ROS/RNS are useful for ordered cellular signaling and mitogenic
responses. Therefore, the balance between ROS generation and ROS scavenging was highly
controlled under physiological conditions. Unregulated oxidative and reductive stresses
could result in cell damage, cell death and consequently organ failure.

5. Redox Signaling and the Nrf2/ARE Pathway

Adaptive physiological redox signaling is essential for the maintenance of homeostasis
between oxidants (ROS generation) and antioxidants (ROS elimination); however, exces-
sive ROS/RNS production leads to DNA damage, protein adducts, lipid peroxidation
and mitochondrial dysfunction and results in various pathological conditions, including
cancers, diabetes and cardiovascular diseases. Nocchi et al. found that oxidative stress is
related to increased bladder nerve activity and intravesical pressure with H2O2 [30].
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Cellular defense against oxidative stress was activated by the Nrf2-antioxidant re-
sponse element (ARE) signaling pathway to control the translated expression of genes
involved in the detoxication and elimination of reactive oxidants by promoting antioxi-
dant capacity [31]. The Keap1/Nrf2 stress response pathway is the inducible protective
response against oxidative stress through the regulation of cytoprotective gene expression.
Under homeostatic conditions, KEAP1 forms part of an E3 ubiquitin ligase to regulate the
expression of Nrf2 by ubiquitination and proteasome degradation. However, during the
stimulation of excessive oxidative stress, KEAP1 facilitated by cysteine oxidation assisted
Nrf2 to get away from cellular ubiquitination, translocated into the nucleus and integrated
with AREs to promote the expression of downstream genes, including phase II detoxifying
enzymes (heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL)), NADPH and antiox-
idant enzymes (SOD, CAT and GSH-Px) to inhibit oxidative stress production [32,33]. The
Keap1/Nrf2 pathway promoted antioxidant transcription response and played a critical
regulatory role in various pathological conditions induced by oxidative stress, including
cancers, chronic inflammation, neurodegenerative and cardiovascular diseases [34]. The
protective role of Nrf2 was attributed to antioxidant and phase II detoxifying reactions to
facilitate antioxidant capacity [35]. Transcriptional control of the phase II enzymes was
mediated through ARE found in the regulatory region of phase II genes encoding phase II
enzymes ARE [36]. Taken together, Nrf2 is maintained at a low level via KEAP1-mediated
proteasome degradation. In response to phase II inducers, the constitutive degradation of
Nrf2 was inhibited, increased cellular Nrf2 accumulation, then translocated to the nucleus
to regulate cytoprotective gene expression.

6. Antioxidant Defense Systems

Organisms have developed antioxidant defense systems to eliminate ROS. Cellular
ROS levels are regulated by an enzymatic antioxidant system. The defense systems include
enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GSH-Px). SOD can transform superoxide into H2O2, and then, H2O2 is catalyzed by CAT
and GSH-Px [37]. SODs prevent the accumulation of superoxide to damaged tissue and
inactivate proteins containing iron–sulfur clusters [38]. SOD1 is mainly located in the
cytosol and mitochondrial intermembrane space, SOD2 is located in the mitochondrial
matrix and SOD3 is located in the plasma membrane [39,40]. SOD and CAT activities
are associated with the shift from the compensated to decompensated function of the
bladder [39].

7. Oxidative Stress in OAB and Biomarkers of OAB

Generally, OAB is a symptomatological description. Therefore, the diagnosis of
OAB needs the biomarkers to predict treatment success. The clinical value of urinary
biomarkers in the objective and noninvasive assessment of patients with OAB symptoms
and therapeutic outcomes remains unknown. Currently, putative biomarkers include
urinary and serum nerve growth factor (NGF), urinary brain-derived neurotrophic factor
(BDNF), urinary cytokines, urinary prostaglandin E2 (PGE2) and serum C-reactive protein
(CRP) [41]. These biomarkers are related to nerve growth and/or inflammation.

In OAB studies, pathological activities and regulative mechanisms of oxidative stress
are extremely complex, and much of them are unknown. The pathological significance of
oxidative stress in the bladder is important to understand the potential treatment strategies
for patients with urinary dysfunctions. A previous study suggested that activation of
the Nrf2/ARE pathway may ameliorate bladder dysfunction caused by bladder outlet
obstruction (BOO) [42]. Mice with a mutation in the Immp2l gene can lead to high super-
oxide ion production [43], leading to bladder void dysfunction [44]. Mutant mice with
increased detrusor activity that have a higher bladder to body weight ratio could be a
model of oxidative stress to provide a tool to study the role of oxidative stress on bladder
function [45].



Int. J. Mol. Sci. 2021, 22, 6014 5 of 20

Changes in the biomarkers of oxidative stress in OAB animal models support the
association between oxidative stress and urinary dysfunction. Biomarkers of oxidative
damage such as protein carbonyls, lipid peroxidation products or breakdown products of
damaged DNA are often used [46]. The oxidative stress markers involved in OAB include 8-
hydroxy-2′-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and isoprostanes (IsoPs).

Table 1 summarizes the oxidative stress biomarkers in urine, blood and tissue samples,
and their preliminary data in clinical trials of animal models are described below:

Table 1. Changes in oxidative stress biomarkers in bladder detrusor overactivity.

Biomarkers Species Changes Sample Animal Model References

DNA base oxidation

8-OHdG

Rat Increased Urine PBOO [47]
Rabbit Increased Urine PBOO [47–49]

Human Increased Urine OAB [50]

Rabbit Increased Urine
Plasma PBOO [51]

Rabbit Increased Urine
Plasma PBOO [48]

Rat Increased
Urine

Bladder
tissue

BOO [52]

Lipid peroxidation

MDA

Rabbit Increased Plasma PBOO [51]
Rabbit Increased Plasma PBOO [48]

Human
Women Increased Plasma OAB [50]

[53]
Rat Increased Serum BOO [54]
Rat Increased Plasma Bladder tissue PBOO [55]
Rat Increased Bladder tissue I/R [56]

Rabbit Increased Bladder tissue PBOO [57]
Rat Increased Bladder tissue PBOO [47]

Rat No change Serum
Bladder tissue PBOO [58]

Rat Increased Bladder tissue PBOO [52]
Rat Increased Bladder tissue PBOO [59]
Rat Increased Bladder tissue BOO [60]
Rat Increased Bladder tissue PBOO [61]

F2-IsoP
Mouse No change Bladder tissue PBOO [62]
Mouse Increased Bladder tissue PBOO [63]

Note: PBOO, partial bladder outlet obstruction; BOO, bladder outlet obstruction; OAB, overactive bladder; I/R,
ischemia/reperfusion; MDA, malondialdehyde; 8-OHdG, 8-hydroxy-2-deoxyguanosine; F2-IsoP, F2-isoprostane.

7.1. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)

8-OHdG is the predominant form of free-radical-induced oxidative lesions and has
been widely used as a biomarker for oxidative stress, aging, diabetes and carcinogenesis
both in human and animal studies. Increased levels of 8-OHdG may be due to damaged
nuclear and mitochondrial DNA as a result of oxidative attacks caused by free radicals [50].
In PBOO animal models, changes in urinary levels of 8-OHdG support the association
between oxidative stress and urinary dysfunction.

7.2. Malondialdehyde (MDA)

MDA is a physiologic ketoaldehyde produced by the peroxidative decomposition of
unsaturated lipids as a byproduct of arachidonate metabolism. MDA has been used as a
marker to assess oxidative stress and degree of tissue destruction [37], where the MDA
concentration was significantly higher in the OAB [50]. Matsui et al. [64] revealed that
the MDA level was increased in a rat model of atherosclerosis-induced chronic bladder
ischemia and enhanced oxidative stress. In PBOO rabbits, there was a significant increase
in bladder weight and the levels of urine 8-OHdG and plasma MDA, while there was a
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significant decrease in the total antioxidant capacity (TAC) in plasma compared to sham
rabbits [48,51].

7.3. Isoprostanes (IsoPs)

IsoPs are classified as prostaglandin isomers and major oxidative stress markers be-
cause they are end products of lipid peroxidation stimulated by free radicals [37]. In
addition, F2-isoprostanes (F2-IsoPs) are chemically stable metabolic products produced
by ROS, which are detectable in tissues, but not in urine or blood [63,65]. F2-IsoP levels in
bladder tissues of a PBOO mouse were mildly increased immediately after bladder disten-
tion [62]. Dambros et al. [66] used hypochlorous acid to induce pig bladder overactivity
and found that 8-iso-PGF2α levels were increased in the overactive group, and the level of
overactivity was correlated with oxidative stress.

8. OAB Animal Model

Many disorders have confirmed the association between oxidative stress and bladder
dysfunction, including metabolic syndrome, obesity, diabetes, bladder I/R, BPO, PBOO,
and ovary hormone depletion (OHD) (Figure 1). In these OAB animal models, experts
substituted objective urodynamic observation and nonmicturition contractions to evaluate
the pathophysiology of OAB and to address the clinical challenges of OAB.

8.1. OAB in a PBOO Model

Clinically, more than 80% of men over 50 years old have some degree of PBOO
and experience bladder problems as a result of enlarged prostates, urethral strictures or
detrusor–sphincter dyssynergia [67]. PBOO results in changes in bladder structure and
function that include detrusor hypertrophy, bladder wall thickness, elevated contractile
pressure and detrusor instability leading to OAB [68–70]. Animal models of PBOO, in
which the urethra is partially ligated, have been developed and have shown changes in
morphology and function similar to that in humans [71,72]. According to the results of
a variety of animal experiments on PBOO, there is a general agreement that ischemic
bladder blood supply and repeated cyclic bladder I/R play a crucial role in the pathological
mechanism of PBOO-induced bladder damage. In PBOO animal models, increasing the
production of ROS strengthened MDA production and decreased antioxidant activities
of CAT, GSH and SOD [37,73]. Biomarkers for oxidative stress in PBOO animal models
linking the association between oxidative stress and urinary dysfunction are shown in
Figure 1. Repeated cyclic bladder I/R and an increased level of ROS and free radicals in
PBOO resulted in LUTS. Antioxidants could serve as potential therapeutic agents.

8.2. OAB in Chronic Ischemia and Ischemia/Reperfusion Bladder Model

Epidemiological studies have also shown a close association between LUTS and
vascular risk factors for atherosclerosis. Investigations using transrectal color Doppler
ultrasonography have shown a negative correlation between decreased lower urinary tract
perfusion and International Prostate Symptom Score in elderly patients with LUTS [74,75].
Alexandre et al. [76] reported that chronic ischemia in the bladder enhances oxidative stress,
leading to detrusor overactivity and storage symptoms and increased oxidative stress, and
plays an important role in bladder dysfunction (Figure 1). To detect the influence of I/R
on the bladder, Juan et al. [77] clamped the vesicle artery for 2 h then re-perfused the
bladder. There are diminished contractile responses to electric and ATP stimulation and
significant increases in several calcium-sensitive and smooth muscle tension regulatory
proteins. Moreover, functional changes in bladder ischemia have been reported to be
associated with impairment of mitochondrial respiration, cellular stress and activation of
cell survival signaling via the PI3K/Akt pathway [78].
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antioxidant defense system participates in scavengers of free radicals to decrease excessive ROS and protect against 
oxidative-stress-induced bladder dysfunction. Redox signaling is essential for the maintenance of homeostasis between 
oxidants (ROS generation) and antioxidants (ROS elimination). ROS are derived from nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase (NOX), xanthine oxidase, nitric oxide synthase (NOS) and cyclooxygenases’ mitochondrial 
respiratory chain. Cellular ROS levels are regulated by an enzymatic antioxidant system. The defense systems include 
enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). However, excessive 

Figure 1. Disorders associated with oxidative stress and overactive bladder (OAB), including bladder I/R, PBOO, metabolic
syndrome, and ovary hormone depletion (OHD). OAB syndrome includes frequency, urgency, nocturia and urgency
incontinence. The occurrence of OAB may result from an imbalance between the production of pro-oxidants and their
elimination through antioxidants. Several animal models mimic the physiological condition to induce OAB, such as
bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO), metabolic syndrome and ovarian hormone
deficiency (OHD). Oxidative stress is regulated by the balance between pro-oxidative and antioxidative factors. Oxidative
stress increased the levels of cellular reactive oxygen species (ROS), reactive nitrogen species (RNS) and free radicals.
The antioxidant defense system participates in scavengers of free radicals to decrease excessive ROS and protect against
oxidative-stress-induced bladder dysfunction. Redox signaling is essential for the maintenance of homeostasis between
oxidants (ROS generation) and antioxidants (ROS elimination). ROS are derived from nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX), xanthine oxidase, nitric oxide synthase (NOS) and cyclooxygenases’ mitochondrial
respiratory chain. Cellular ROS levels are regulated by an enzymatic antioxidant system. The defense systems include
enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). However, excessive
production of ROS/RNS can cause oxidative stress, which results in DNA damage, protein adducts, lipid peroxidation,
mitochondrial dysfunction and immune cell infiltration in bladder tissue leading to bladder denervation and increasing
fibrosis and apoptosis, resulting in bladder hyperactivity.
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Evidence from clinical and animal research suggests that atherosclerosis can in-
duce a reduction in bladder blood flow, leading to chronic ischemia of the bladder [79].
Matsui et al. [80] found that levels of both 8-OHdG and MDA were increased in a rat model
of atherosclerosis-induced chronic bladder ischemia. Nomiya et al. also demonstrated that
chronic vesicle atherosclerosis was associated with changes in oxidative stress markers
(8-OHdG and MDA) and proinflammatory cytokines (TNF-α, and interleukin-6) in a rat
model accompanied by bladder dysfunction [81]. The findings suggested that oxidative
stress and inflammation may be essential factors in the development of bladder dysfunction
in atherosclerosis-induced chronic bladder ischemia.

Improvement of lower urinary tract perfusion and control of oxidative stress can be
considered a new therapeutic strategy for the treatment of bladder dysfunction induced by
chronic ischemia [82]. The α1-adrenoceptor antagonist, phosphodiesterase type 5 inhibitor,
free radical scavengers and the β3-adrenoceptor agonist have been studied in animal
models of chronic bladder ischemia. Drugs that increased blood flow and decreased
oxidative stress showed protective effects not only on urodynamic parameters but also on
muscle contractility and on bladder wall changes.

8.3. OAB in Metabolic Syndrome (MetS) Model

MetS includes a cluster of cardiovascular disease risk factors, including obesity, dyslipi-
demia, hypertension, insulin resistance with compensatory hyperinsulinemia and glucose
intolerance. MetS is not a single condition but a cluster of two or more of these five specific
factors. Though the definitions of MetS are different among different guidelines, diagnosis
of MetS mainly requires impaired glucose or fat regulation, raised blood pressure and
central obesity [83]. Increasing clinical studies have revealed a strong association between
MetS and OAB [84–86]. An elevated level of C-reactive protein (CRP) and some proin-
flammatory cytokines were detected in serum or urine of MetS patients, suggesting a role
for systemic inflammation and oxidative stress in the pathophysiology of OAB [87,88].
However, the pathogenesis mechanism of MetS remains unknown.

Both oxidative stress and chronic inflammation play a pivotal role in the pathogenesis
of MetS. Excessive production of superoxide anion (O2•−) and ROS/RNS in adipose tissues
might cause the metabolic dysfunction of adipose tissue and result in bladder overactiv-
ity [89] (Figure 1). In obese mice, treatment with resveratrol or guanylyl cyclase activator
BAY 60-2770 improved OAB via antioxidant activity. Obese mice exhibited bladder dys-
functions, such as increases in the frequency of voiding and nonvoiding contractions [76,90].
However, the correlation between obesity-associated OAB and oxidative stress is still not
well studied.

Chronic hyperglycemia and insulin resistance could trigger superoxide (O2•−) over-
generation from the inner membrane of mitochondria [91]. Increased ROS production
impaired mitochondria subsequently induced apoptosis by altering cellular redox poten-
tial [92]. In the fructose-fed rat model [93], MetS with hyperlipidemia and hyperglycemia
resulted in ROS overproduction and impaired mitochondrial ATP production. Moreover,
bladder purinergic and muscarinic signaling was altered after long-term fructose-induced
MetS. Our previous study revealed that rats fed a high-fat high-sugar (HFHS) diet for
12 months could develop both MetS and OAB. In particular, MetS combined with surgi-
cal ovariectomy (OVX) worsens bladder storage dysfunction more intensely than MetS
alone [94].

In the bladder, metabolic stress and inflammatory conditions can lead to increased
production of nitro-fatty acids and NGF, which can activate transient receptor potential
channels (TRP channels), thereby increasing bladder reflex activity. Similarly, high-fat diet-
fed obese male mice showed increases in non-voiding contractions, post-voiding pressure
and voiding frequency. The expression of oxidative stress markers (gp91phox and SOD1),
ROS/RNS levels and serum lipid peroxidation in bladder tissues was meaningfully higher
in obese mice compared with lean mice [95].
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8.4. OAB in Menopause and Ovarian Hormone Deficiency (OHD) Model

Clinically, postmenopausal women, as a result of OHD, are subject to urological
dysfunctions, including OAB symptoms, stress incontinence and recurrent urinary tract
infections [96]. Up to 40% of postmenopausal women were estimated to have symptomatic
urogenital atrophy [97]. The symptoms of postmenopausal women may have vulvovaginal
atrophy, burning, dryness, discomfort, irritation, pelvic organ prolapse or pain [98]. Estro-
gen receptors have been shown in biopsy specimens from the bladder trigone, proximal
urethra, distal urethra, vagina and vesicovaginal connective tissue contiguous with the
bladder neck [99,100]. Estrogen deprivation in young patients with breast cancer increased
the risk of OAB [101]. Without estrogen replacement, one-third of women experience
symptoms of atrophic vaginitis, including dryness, irritation, itching and dyspareunia.
Therefore, the efficacy of estrogen application for OAB, urinary urgency and stress inconti-
nence during and after menopause has been demonstrated [102].

Experimentally, an OVX rat model mimicking the physiological condition of menopause
was applied to induce OAB and investigate the role of estrogen in LUTS [103–105]. Our
previous OVX rats investigation showed OHD resulted in diminishing bladder compliance,
increasing oxidative damage, interstitial fibrosis and bladder mucosa cell apotosis [94]
(Figure 1). OVX rats resulted in significant vascular degeneration and decreased vascular
density, whereas estradiol administration mediated significant angiogenic remodeling
characterized by increased vascular density and angiogenesis within the detrusor smooth
muscle bundles. Both female genitals and lower urinary tract originating from the uro-
genital sinus are sensitive to sexual hormones. Alteration of sexual hormones results in
bladder dysfunction in menopause, such as frequency, urgency, incontinence or underac-
tive bladder [96,106]. On the other hand, estrogen supplement attenuates oxidative damage
and improves bladder function [107,108]. Estrogen is essential for mediating physiologic
functions in the female bladder.

9. Antioxidant Treatment in OAB

To restore the imbalance between oxidants and antioxidants in oxidative stress, organ-
isms have evolved complex enzymatic defenses against the attacks of free radicals with the
antioxidant defense [109]. Antioxidant defense systems involve scavengers of free radicals
to neutralize excessive ROS and protect against bladder dysfunction caused by oxidative
stress. Currently, several natural extract antioxidants, such as epigallocatechin-3-gallate
(EGCG), coenzyme Q10 (CoQ10), melatonin, omega-3 fatty acid, Eviprostat and hydro-
gen water, have been used to improve bladder overactivity via inhibiting oxidative stress
pathways (Table 2).

Table 2. Summary of research findings for effects of various antioxidants.

Antioxidant Model Species Sample Changes in Oxidative
Biomarkers

Changes in
Antioxidants References

EGCG
PBOO Rat Bladder tissue MDA↓ CAT↑ tSOD↑

GSH-Px↑ [61]

Type 2 diabetes Rat leukocytes 8-OHdG↓
MDA↓ – [110]

CoQ10
I/R Rabbit Bladder tissue - CAT↑ SOD↑ [111]
I/R Rat Bladder tissue MDA↓ – [112]

PBOO Rabbit Bladder tissue NT↓
DNP↓ – [113]

Melatonin
I/R Rat Bladder tissue MDA↓

MPO↓ GSH↑ [56]

PBOO Rabbit Bladder tissue MDA↓ CAT↑ SOD↑
GSH↑ [57]

Omega-3 fatty acid PBOO
PBOO

Rat
Rat

Bladder tissue MDA↑
NO↑ SOD↓ [58]

Serum MDA↓
NO↓

SOD↓
GSH↓ [58]
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Table 2. Cont.

Antioxidant Model Species Sample Changes in Oxidative
Biomarkers

Changes in
Antioxidants References

Eviprostat

PBOO Rat
Urine 8-OHdG↓ – [47,49]

Bladder tissue MDA↓ – [47]

I/R Rat
Urine 8-OHdG↓ – [64]

Bladder tissue MDA↓ – [64]
I/R Rat Urine 8-OHdG↓ – [114]

Hydrogen water
PBOO Rat Urine bladder

tissue
8-OHdG↓

MDA↓ – [115]

PBOO Rat
Urine 8-OHdG↓ – [52]

Bladder tissue 8-OHdG↓
MDA↓ – [52]

Sulforaphane PBOO Rat Bladder tissue MDA↓ CAT↑ SOD↑
GSH↑ [55]

Note: PBOO, partial bladder outlet obstruction; BOO, bladder outlet obstruction; BPH, benign prostatic hyperplasia; I/R, ischemia/
reperfusion; MDA, malondialdehyde; 8-OHdG 8-hydroxy-2-deoxyguanosine; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione;
GSH-Px, glutathione peroxidase; tSOD, total superoxide dismutase; MPO, Myeloperoxidase; NO, nitric oxide; DNP, dinitrophenyl;
NT, nitrotyrosine.

9.1. Epigallocatechin-3-Gallate (EGCG)

EGCG is a major component of green tea polyphenol. In addition, EGCG possesses
radical scavenging activity and metal-chelating and anti-inflammatory properties. It has
a therapeutic effect as an antioxidant compound to perform anti-inflammation, antifibro-
sis [116], anticancer, and antioxidative stress [117–120]. The phenol rings trap electrons
and scavenge free radicals, preventing the formation of ROS [121,122]. EGCG can cause
the removal of ROS, decrease oxidative stress and prevent the complications of diabetes by
reducing the expression of proinflammatory cytokines [123]. EGCG was also reported to
enhance the activity of antioxidant enzymes, superoxide dismutase (Mn-SOD and Cu/Zn-
SOD) and CAT [124]. EGCG was considered a powerful hydrogen-donating antioxidant
and a free-radical scavenger of ROS [104].

In OVX rats, EGCG has the ability to alleviate oxidative damage and bladder hy-
peractivity [104]. In BOO rats treated with EGCG, the level of MDA was significantly
reduced. The activities of some redox status markers, such as CAT, GSH-Px and total SOD,
were significantly decreased in the BOO group as compared with the sham group. These
findings showed that EGCG could alleviate oxidative stress by increasing the activities of
antioxidative enzymes in BOO rats. A previous report also revealed that treatment with
EGCG significantly improved PBOO-induced histologic changes and bladder dysfunction
and increased expressions of cyclooxygenase-2, poly (ADP-ribose) polymerase and ER
stress markers such as caspase-12 and CCAAT/-enhancer-binding protein homologous
protein (CHOP) [42].

The beneficial effect of EGCG is attributed to mitochondrial signal transduction
in a concentration-dependent manner. Treatment with a low concentration of EGCG
(1–10 µmoles) could restrain the proapoptotic caspase and raise the degradation of the Bax
gene via the proteasome and protein kinase C pathway [125]. Additionally, treatment with
a higher concentration of EGCG (10–50 µmoles) could cause caspase-dependent apoptosis
and mitochondrial membrane depolarization to exhibit pro-oxidant and proapoptotic activ-
ity [126]. Coyleet et al. demonstrated that urothelial cell death via H2O2-induced oxidative
stress was mediated through superoxide, treatment with EGCG can protect against bladder
oxidative damage and urothelial cell death [127].

In our previous OVX-induced OAB rat animal study, supplementation with 10 µmoles
of EGCG alleviated bladder apoptosis, attenuated oxidative stress and reduced the mito-
chondrial and endoplasmic reticulum apoptotic signals [103,104]. These results showed
EGCG exhibited strong neuroprotective, antioxidant, antiapoptotic and antifibrotic effects
in OVX-induced OAB [103,104]. Moreover, HFHS diet feeding enhanced the generation of
oxidative stress mediated through the mitochondrial pathway. EGCG reduced the genera-
tion of oxidative stress and lessened bladder overactivity, including amelioration of the
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nonvoiding contraction and bladder compliance in OVX rats [94,103,104]. Moreover, EGCG
treatment improved bladder inflammation via changes in apoptosis-related molecules such
as Nrf2, caspase-3 and HO-1 [61]. The effect of EGCG ameliorated bladder dysfunction by
inhibiting oxidative stress via the regulation of the Nrf2-ARE pathway to up-regulate HO-1
gene in a rat model of PBOO [61] The effect of EGCG ameliorates bladder dysfunction by
inhibiting oxidative stress via the regulation of the Nrf2-ARE pathway to upregulate the
HO-1 gene in a rat model of BOO [61].

9.2. Coenzyme Q10 (CoQ10)

Coenzyme Q10 (CoQ10; ubiquinone) is an essential molecule composed of a mitochon-
drial inner membrane [128]. The function of CoQ10 is to maintain the electrical gradient in
mitochondria during ATP production. In addition, it helps the transport of electrons and
protons and works as a cellular antioxidant, protecting cell membrane against oxidative
damage [129]. Addition of exogenous CoQ10 recovered mitochondrial CoQ10 stores and
increased the rate of electron transfer in the respiratory chain, thus improving the efficiency
of oxidative phosphorylation and mitochondrial coupling and protection of creatine kinase.
CoQ10 also appeared to be efficient for the treatment of neurodegenerative disorders and
ischemic heart disease.

In a rabbit I/R model, CoQ10 supplementation upregulated SOD and CAT activities,
provided bladder neuroprotection and decreased detrusor muscle apoptosis [111]. In a rat
model, the efficacy of CoQ10 attenuated protein carbonylation and nitration to improve
bladder function and histological changes in the bladder wall following chronic bladder
ischemia and repeat I/R [112]. By analyzing the mitochondrial marker enzyme, citrate
synthase and mitochondrial function were significantly increased after CoQ10 adminis-
tration during I/R damage. In a PBOO model, CoQ10 supplementation exhibited both
mitochondrial and neuronal effects; it not only ameliorated detrusor muscle hypertrophy
but also reduced protein nitration and carbonylation to restore bladder dysfunction [113].

9.3. Melatonin

Melatonin, N-acetyl-5-methoxytryptamine, mainly secreted from the pineal gland, par-
ticipates in many important physiological functions, including the control of the immune
system, and the circadian rhythm [130]. Melatonin has a protective effect against oxidative
stress and free radical agents and stimulates the activity of the endogenous antioxidant
enzyme, GSH-Px. For example, melatonin is a potent antioxidant that suppresses oxidative
stress caused by PBOO in animal models [56,57]. Bladder tissue levels of MDA decreased
after treatment with melatonin in a PBOO model [57]. Tissue levels of CAT, GSH and
SOD in PBOO rabbits treated with melatonin recovered to the levels in the sham group,
whereas such significant effects were not detected following treatment with terazosin, an
α1-adrenoreceptor antagonist [57]. In a rodent I/R model, lipid peroxidation, myeloperoxi-
dase and MDA were elevated by ligation of the abdominal aorta. These oxidative activities
could be reversed by treatment with melatonin, where the low contractility of the bladder
was also improved [56]. The effect of melatonin as a potent antioxidant on reducing bladder
contractility for OAB through inhibiting calcium/calmodulin-dependent kinase II and
voltage-dependent calcium channel was also reported in a PBOO model [131–133]. On the
contrary, the study suggested that melatonin inhibits smooth muscle contractility and may
be a useful agent for overactive bladder [56].

9.4. Omega-3 Fatty Acid

Omega-3 fatty acid is an essential fatty acid and is recognized as the important
structural component of the cell membrane. The important sources of omega-3 fatty
acid are cereal production, fish, seeds, nuts and marine invertebrates [134]. Omega-3
fatty acid has anti-inflammatory and antioxidative properties [135]. A previous study
supported that omega-3 fatty acid has beneficial effects in various cardiovascular diseases,
neurodegenerative disease, rheumatoid arthritis and cancers [136].
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In a rat PBOO model, orally administered omega-3 fatty acid significantly reduced
bladder weight and fibrosis than PBOO rats. Furthermore, omega-3 fatty acid treatment
meaningfully modulated the levels of the bladder CAT, SOD and MDA, as well as serum
SOD and GSH-Px [58]. In another PBOO rat model, bladder tissue inflammation and
fibrosis were significantly decreased after feeding with omega-3 fatty acid for 4 weeks [58].
Additionally, the expression of oxidative stress biomarkers and antioxidative defense in
bladder tissue and serum were also changed. However, the results were not all consistent
with what was expected [58]. Therefore, the impact of omega-3 fatty acid on lower urinary
tract symptoms required more investigation to clarify [58,135].

9.5. Eviprostat

Eviprostat, a phytotherapeutic agent, is composed of several plant extracts, such as
Chimaphila umbellata, Populus tremula, Pulsatilla pratensis, Equisetum arvense, Tritium aestivum
and wheat germ oil. Eviprostat has been applied for LUTS in Japan and Germany [137].
Eviprostat treatment decreased urinary levels of 8-OHdG, improved oxidative stress
in LUTS and BPH patients and decreased the plasma levels of MDA and 8-OHdG.
Matsui et al. [64] found that Eviprostat decreased MDA and 8-OHdG levels and expressed
a normalized micturition interval in a rat model of atherosclerosis-induced chronic bladder
ischemia. Urinary oxidative stress markers and bladder proinflammatory cytokine levels
were also significantly increased in I/R injury [47,64,138]. A retrospective study proved
the efficacy of Eviprostat in the improvement of average urinary flow rate, peak urinary
flow rate, prostatic volume and symptom score.

A histological study also revealed Eviprostat treatment decreased inflammation of
prostatitis [139]. Clinical studies showed that Eviprostat decreases inflammation and
improves the International Prostate Symptom Score (IPSS), QoL score and urinary flow
rates, decreases prostatic volume and reduces inflammation in BPH patients [139]. The
effect of Eviprostat attenuated DO by its anti-inflammatory effect, the downregulation
of bladder muscarinic receptors and decreased reactive oxygen species [137,140,141]. It
can also prevent bladder dysfunction and pathological changes, including submucosal
hemorrhage, accumulation of leukocytes and edema via suppression of oxidative stress in a
PBOO rat model [47,138]. The Eviprostat-mediated decrease in bladder oxidative stress and
inflammation caused by PBOO may contribute to the protection of bladder function [47].
Therefore, antioxidant and anti-inflammatory activities of Eviprostat are responsible for
beneficial effects observed in the treatment of PBOO.

9.6. Sulforaphane

Sulforaphane, a sulfur-rich compound found in cruciferous vegetables, has antiox-
idation; antiapoptosis, inhibiting mitochondrial dysfunction; and anticancer activities.
Sulforaphane treatment prolonged micturition interval, suppressed collagen deposition
and improved bladder compliance in a PBOO rat model [55,142]. Liu et al. found sul-
foraphane ameliorates the increase of MDA and the reduction of SOD, GSH and CAT in
PBOO rats [55]. Furthermore, its antioxidative ability possibly mediated by the expres-
sion of the Nrf2 pathway regulated the cellular antioxidative responses in consistent with
other studies [143,144]. Therefore, the therapeutic effect of sulforaphane inhibits excessive
ROS accumulation, protects the cell organelle from oxidative damage and subsequently
preserves the organ function [55,144,145].

9.7. Hydrogen Water

Molecular hydrogen (H2) has been applied to medical treatments in recent years. It
can be inhaled and absorbed as a gas; it can also be injected or drank as a hydrogen-rich
aqueous solution [146]. H2 showed a protective effect against reperfusion injury in cerebral
and myocardial infarction [147,148]. Other beneficial effects in various diseases on animal
models and humans are such as anti-inflammation, antiapoptosis and stimulation of energy
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metabolism. Though the mechanism was not well understood, the reduction of oxidative
stress was speculated as a primary reason [149].

Several studies showed H2 has an antioxidant effect on I/R injury in neural diseases,
metabolic syndrome and cardiovascular diseases [115,147,150]. In a PBOO rat model
study, treatment with H2 water significantly improved micturition volume and PVR [52].
Oxidative stress markers, such as increased 8-OHdG levels in urinary and bladder tissue
and MDA levels in bladder tissue, were diminished by the administration of H2 water [52].
Another PBOO rat study also revealed that decreased contractile responses of bladder
detrusor muscle strips to electrical field stimulation, carbachol and KCl in obstructed rats
were reversed by H2 water supply. Therefore, H2 water might protect bladder dysfunctions
from PBOO via suppression of increased oxidative stress.

10. Problems to Be Solved in the Future

According to present studies, monotherapy using an antioxidant agent alone may not
be sufficient to reduce symptoms and obtain objective data in patients with OAB. Therefore,
combination therapies of antioxidants and other agents may be useful for those patients.
Because it is difficult to collect bladder tissue in clinical OAB patients, animal experiments
on rats and rabbits are feasible to assess the pathological mechanism of oxidative stress
and the efficacy of antioxidants in OAB.

At present, biomarkers of oxidative stress, including 8-OHdG, MDA and IsoPs ob-
tained from bladder tissue, urine and blood of OAB subjects, are essential to determine the
efficacy and safety of antioxidants agents. However, the detailed pathological mechanism
of biomarkers involved in OAB remains unknown. In addition, various factors involved in
oxidative stress are associated with the etiology and development of bladder dysfunction
caused by OAB. For example, inflammatory cytokines, immune responses, nitric oxide
synthases, p62 and various growth factors also play crucial roles [151,152]. Furthermore,
several transcriptional factors, including Nrf2 and NF-kB, play a pivotal role in urinary
dysfunction via the cellular response to oxidative stress [59,61]. The correlation between
these damaging and protective mechanisms of oxidative stress in OAB development needs
to be solved in the future.

11. Conclusions

Current reports strongly support that oxidative stress plays an important role in the
pathogenesis of storage urinary dysfunction. It has been suggested that oxidative stress
is involved in OAB and LUTS, including PBOO, bladder I/R, MetS and OHD. However,
the clinical relevance of ROS/RNS production and antioxidant therapies in OAB is still
unclear. Most attempts to validate and exploit chronic antioxidant therapies have provided
disappointing results. Identification of the specific ROS/RNS involved in DO and OAB
studies is important for the development of antioxidants. The relationships between
urinary dysfunction and oxidative stress biomarkers in urine, blood and bladder tissue
need to be explored in further work.
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Abbreviations

ARE antioxidant response element
α1-AR α1- adrenoceptor
β -AR β-adrenoceptor
BDNF brain-derived neurotrophic factor
BPH benign prostatic hyperplasia
CAT catalases
COX-2 cyclooxygenase-2
CRP C-reactive protein
DO detrusor overactivity
EGCG epigallocatechin-3-gallate
F2-IsoPs F2-isoprostanes
GSH glutathione
GSH-Px glutathione peroxidase
HFHS high fat high sugar
HO-1 hemeoxygenase-1
IC/PBS interstitial cystitis/painful bladder syndrome
I/R ischemia/reperfusion
Keap1 Kelch-like ECH-associated protein 1
LUTS lower urinary tract symptoms
MDA malondialdehyde
NGF nerve growth factor
Nrf2 nuclear transcription factor E2-related factor 2
NOS nitric oxide synthase
NOX nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
OAB overactive bladder
OVX ovariectomy
OHD ovarian hormone depletion (deficiency)
8-OHdG 8-hydroxy-2′-deoxyguanosine
PBOO partial bladder outlet obstruction
PGE2 prostaglandin E2
ROS reactive oxygen species
SOD superoxide dismutase
UTI urinary tract infection
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