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Sleep apnea–hypopnea syndrome is a common breathing disorder that can lead to
organic brain injury, prevent memory consolidation, and cause other adverse mental-
related complications. Brain activity while sleeping during respiratory events is related
to these dysfunctions. In this study, we analyzed variations in electroencephalography
(EEG) signals before, during, and after such events. Absolute and relative powers, as
well as symbolic transfer entropy (STE) of scalp EEG signals, were calculated to unveil
the activity of brain regions and information interactions between them, respectively.
During the respiratory events, only low-frequency power increased during rapid eye
movement (REM) stage (δ-band absolute and relative power) and N1 (δ- and θ-band
absolute power, δ-band relative power) sleep. But absolute power increased in low-
and medium-frequency bands (δ, θ, α, and σ bands), and relative power increased
mainly in the medium-frequency band (α and σ bands) during stage N2 sleep. After the
respiratory events, absolute power increased in all frequency bands and sleep stages,
but relative power increased in medium and high frequencies. Regarding information
interactions, the β-band STE decreased during and after events. In the γ band, the
intrahemispheric STE increased during events and decreased afterward. Moreover,
the interhemisphere STE increased after events during REM and stage N1 sleep. The
EEG changes throughout respiratory events are supporting evidence for previous EEG
knowledge of the impact of sleep apnea on the brain. These findings may provide
insights into the influence of the sleep apnea–hypopnea syndrome on cognitive function
and neuropsychiatric defects.

Keywords: sleep apnea–hypopnea syndrome, respiratory events, electroencephalography, symbolic transfer
entropy, effective connectivity

INTRODUCTION

Sleep apnea–hypopnea syndrome (SAHS) is a breathing disorder characterized by partial or
complete closure of the upper airways during sleep (Torabi-Nami et al., 2015; Liu et al., 2018). In
addition to suffering from fatigue, fragmented sleep, and cardiovascular diseases, extensive evidence
shows that major brain changes occur in SAHS patients. For instance, a magnetic resonance
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imaging study revealed that the gray matter volume of
patients with obstructive sleep apnea (OSA) increased in the
insula, primary motor cortices, brainstem, left premotor cortex,
cerebellum, and left hippocampus, whereas it decreased in the
prefrontal cortex, right posterior cingulate cortex, occipital lobe,
amygdala, and left cerebellar cortex (Fatouleh et al., 2014).
Furthermore, OSA can impair the white matter integrity, which
is related to disease severity (Chen et al., 2015). Some similar
changes can be found in patients with depression (Grieve et al.,
2013), for which SAHS may be a risk factor (Kerner and
Roose, 2016). In addition, clear differences in various sleep-
related electroencephalography (EEG) patterns have been found
in SAHS patients (Carvalho et al., 2014; Sun et al., 2018). Sleep
fragmentation, recurrent hypoxia, and cortical arousal induced
by apnea events have been associated with these EEG variations
(Carvalho et al., 2014; Fatouleh et al., 2014; Chen et al., 2015;
Sun et al., 2018) and may interrupt the removal of metabolic
waste products from the brain by cerebrospinal fluid, which
affects cognitive function (Fultz et al., 2019). Therefore, the study
of brain activity during apnea can provide insights on brain
dysfunction due to SAHS and related complications.

Polysomnography is considered as the gold standard for
SAHS diagnosis, and the related EEG signals are essential for
studying the dynamic changes of cortical activity. Four main
frequency bands have been defined in EEG, namely, delta δ,
theta θ, alpha α, and beta β (Schumacher et al., 2015; Wang
et al., 2016), whereas sigma σ waves, which are relevant to study
sleep spindles, have been related to memory consolidation and
sensory processing (Holz et al., 2012; Barakat et al., 2013). In
addition, gamma γ waves are related to cognitive functions,
such as attention (Tombor et al., 2018), object recognition
(Basar et al., 2000), semantic processes (He et al., 2018), and
memory match and utilization (Herrmann et al., 2004). Sleep
stages are related to respiratory events reaction, as they affect
respiratory and muscle control (McSharry et al., 2013; Carberry
et al., 2016). In previous studies, we found that the EEG
spectral power during apnea–hypopnea is related to secondary
respiratory events (Huang et al., 2018) and end-apneic cortical
arousal (Yan et al., 2016), and thus sleep stages also influence
cortical responses. Although spectral power variations during
respiratory events have been studied (Dingli et al., 2002; Xavier
et al., 2007; Yang et al., 2012), a thorough analysis during sleep
stages and including high-frequency components is still required
to resolve conflicting findings.

In many cases, brain activity originates from interactions that
are regionally separate but functionally integrated. Two types of
measures can be applied to evaluate interactions among regions.
Functional connectivity is the temporal correlation among brain
regions, while effective connectivity describes the dynamic causal
influence of one neural system on another (Greenblatt et al.,
2012). A previous study revealed that effective connectivity
reflects the functional interactions of neurons in different areas
(Brovelli et al., 2004). Symbolic transfer entropy (STE), a concept
from information theory, is a common measure of effective
connectivity given its robustness and fast computation (Staniek
and Lehnertz, 2008). STE has been widely applied in EEG studies,
including the effects of anesthesia on information processing in

the brain (Jordan et al., 2013), interhemispheric information flow
in sleep after stroke (Zubler et al., 2018), and analysis of epileptic
networks (Lehnertz and Dickten, 2015). However, neither STE
nor other effective connectivities have been thoroughly evaluated
during respiratory events.

In this study, we investigated the impacts of apnea–hypopnea
on the EEG power spectrum and STE at various frequency bands
across sleep stages. We expect to provide insights and establish
EEG biomarkers for brain dysfunction in patients with SAHS.

METHODS

Participants
Only patients with moderate SAHS were included in this study,
because patients with mild SAHS did not provide enough
event samples for statistical analysis, and the short interval
between events in severe SAHS patients hindered the evaluation
of independent events. Fifty-seven patients diagnosed with
moderate SAHS (apnea–hypopnea index between 15 and 30)
and without neurological or psychological complications were
enrolled in this study. The patients’ clinical characteristics are
listed in Table 1. All the participants visited the recording
room and laboratory surroundings and provided written
informed consent 2 h before formal overnight polysomnography
recordings at the Sleep-Disordered Breathing Center from
the Sixth Affiliated Hospital of Sun Yat-sen University. No
participant was taking medication that would interfere with
respiratory control or psychophysiological conditions. This
study was approved by the Ethics Committee of the Sixth
Affiliated Hospital.

Selection of Respiratory Events
Scalp EEG signals (F3, F4, C3, C4, O1, and O2) following
the 10–20 system and sampled at 500 Hz were acquired from
overnight polysomnography. Reference electrodes were placed
on contralateral auricle, and a ground electrode was on Fpz
according to the recommendation of the American Academy of

TABLE 1 | Patients’ demographics and general health indices.

Characteristic Mean ± SD

Age (years) 49.53 ± 12.38

Gender (male/female) 46/11

BMI (kg/m2) 26.52 ± 3.71

AHI (events/h) 21.46 ± 4.57

ESS 7.86 ± 4.80

TST (min) 378.10 ± 83.60

N1 sleep (% NREM) 32.24 ± 16.79

N2 sleep (% NREM) 55.08 ± 15.50

N3 sleep (% NREM) 12.68 ± 8.68

REM sleep (% TST) 15.66 ± 7.21

ODI (times/h) 23.87 ± 7.22

SD, standard deviation; BMI, body mass index; AHI, apnea–hypopnea index;
ESS, Epworth Sleepiness Scale; TST, total sleep time; ODI, oxygen desaturation
index ≥ 3%.
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Sleep Medicine Scoring Manual (AASM). Electrode impedances
were kept below 5 k�, and a 50-Hz notch filter was applied.
Sleep stages and respiratory events were strictly verified by an
experienced sleep physiologist, who was not aware of the study
goal, following the AASM (Berry et al., 2017).

As sleep stages are relevant in this study, we only included
respiratory events occurring within a single stage. In addition,
events that did not have sufficient time intervals (<20 s) were
excluded to consider the clear influence of independent events.
Events included central sleep apnea (CSA), hypopnea, and OSA.
Wakefulness and N3 sleep were not investigated in this study
because their individual sample sizes were insufficient to conduct
statistical analyses. Furthermore, EEG segments contaminated by
electrode artifacts or limb movements were excluded. Overall,
a total of 2804 respiratory events (2676 hypopnea/OSA and
128 CSA events) were obtained from all the participants. The
distribution of sleep stages and durations are listed in Table 2.

TABLE 2 | Duration of apnea–hypopnea events.

Sleep stage Number of apnea events Duration (s) median (5%–95%)

N1 968 19 (11.5–36.5)

N2 1080 19.5 (12–35.5)

REM 756 22 (12–48)

Six EEG time segments of 5 s were investigated per event.
A sample segment is shown in Figure 1. B1 and B2 (before event)
indicate segments before apnea–hypopnea onset in chronological
order (1 precedes 2). D1 and D2 (during event) indicate
segments in the middle of the apnea–hypopnea, and A1 and
A2 (after event) indicate segments immediately after apnea–
hypopnea termination.

EEG Preprocessing and Spectral Power
Estimation
Recursive least squares (RLS) was applied to remove
electrocardiograph artifacts and wavelet threshold denoising
was subsequently conducted. The power spectral density of each
segment was determined by Burg autoregressive estimation with
1-s Hamming windows, where the order of the autoregressive
model was obtained using the Akaike information criterion (Liu
et al., 2016). Then, the relative power of each sub-band was
calculated by normalization to the whole frequency band (0.5–
50 Hz). Six sub-bands were analyzed: δ (0.5–4 Hz), θ (4–8 Hz),
α (8–12 Hz), σ (12–15 Hz), β (15–30 Hz), and γ (30–50 Hz). In
addition, an infinite impulse response bandpass filter was used to
estimate the STE in different frequency bands. The calculations
were implemented in MATLAB R2018b (MathWorks, Natick,
MA, United States). A flow diagram of the signal processing and
analysis is depicted in Figure 2.

FIGURE 1 | Electroencephalography data segments used for event analysis. B1 and B2 indicate segments before respiratory apnea–hypopnea events; D1 and D2
indicate segments during apnea–hypopnea events; A1 and A2 indicate segments immediately after apnea–hypopnea termination. The duration of each
segment is 5 s.
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FIGURE 2 | Flow diagram of EEG data processing. RLS, recursive least squares; WTD, wavelet threshold denoising; PSD, power spectral density; STE, symbolic
transfer entropy; PAR, posterior-to-anterior ratio; IF, information flow.
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STE Estimation
To determine the directed information flow between EEG
regions, STE was estimated based on the transfer and
permutation entropies (Staniek and Lehnertz, 2008). Transfer
entropy measures causal influence between two signals.
Assuming a causal relation between source signal Y and target
signal X, signal prediction would be improved by adding both its
own past information and that of the target signal (Numan et al.,
2017):

TEYX =
∑

p (Xt, Xt−δ, Yt−δ) log
(

p (Xt|Xt−δ, Yt−δ)

p (Xt|Xt−δ)

)
Permutation entropy adopts the symbolization introduced by
Bandt and Pompe (2002). For a random one-dimensional time
series x(t), t = 1, 2, . . ., T, an m-dimensional vector Xt =[
x (t) , x

(
t + l

)
, . . . , x

(
t + (m− 1) l

)]
is obtained by taking m

consecutive points spaced by l. The amplitude values are arranged
in ascending order [x(t + (j1 − 1)l) ≤ x(t + (j2 − 1)l) ≤ . . . ≤
x(t(jm − 1)l)], and the symbol is defined as x̂t =

[
j1, j2, . . . , jm

]
.

Each Xt is uniquely mapped onto one of the m! possible
permutations. The STE is thus expressed as (Lehnertz and
Dickten, 2015)

STEyx =
∑

p
(
x̂t, x̂t−δ, ŷt−δ

)
log

(
p
(
x̂t|x̂t−δ, ŷt−δ

)
p
(
x̂t|x̂t−δ

) )
Let embedding dimension m = 5 and time delay l = 62, 31, 18, 16,
8, 4, corresponding to bands δ, θ, α, σ, β, and γ, respectively (Li
et al., 2017). Time lag δ = 20 reflects corticocortical information
flow in EEG signals (Untergehrer et al., 2014). Additionally, the
posterior-to-anterior ratio (PAR) was introduced to evaluate the
continuity of direction of information flow (Numan et al., 2017):

dSTExy =
STExy

STExy + STEyx
,

PAR =

{
dSTExy

}
posterior{

dSTExy

}
anterior

.

When the information flow direction is posterior-to-anterior,
PAR > 1, whereas the opposite direction retrieves 0 < PAR < 1,
and a balanced direction retrieves PAR = 1.

Statistical Analysis
The absolute power and STE were normalized from 0 to 1
by min–max normalization for six frequency bands and three
sleep stages per participant. Both measures and relative power
were tested for normality using the Shapiro–Wilk test and for
variance homogeneity using Levene test. The samples did not
satisfy any test. Therefore, data were presented as interquartile
range (first quartile, median, and third quartile) and compared
by the Friedman test with Bonferroni correction for post hoc
analysis. In every segment, 30 directional transmissions were
computed by STE, and absolute power and relative power
were calculated in six regions per sub-band. The six sets of
characteristic changes between segments B1, B2, D1, D2, A1, and

A2 were analyzed during different sleep stages and frequency
bands: (1) absolute power across regions, (2) relative power across
regions, (3) 30 STEs, (4) mean intrahemispheric information
flow, (5) mean interhemispheric information flow, and (6) PAR
changes. For these sets, the significance level was adjusted as
p < 0.05/C2

6 . The mean left- and right-hemispheric information
flows were also compared in every respiratory event. In this
case, the significance level was p < 0.05/C2

12. These analyses
were performed on the IBM SPSS statistics software version 22.0
(New York, NY, United States).

RESULTS

Spectral Power
Absolute power (AP) and relative power (RP) of EEG frequency
components were used in power spectrum analysis. The
variations of spectral power during respiratory events are shown
in Figure 3, in which the values before events (B1) were used
as the baseline.

Figure 3A shows that during the events (D1 and D2) AP in
rapid eye movement (REM) to stage N1 and to stage N2 sleep
increased gradually in relatively high-frequency bands compared
to B1. In REM sleep, the significantly increasing band was δ, and
which were δ and θ in N1 stage. And in N2 stage, the increasing
bands contained δ, θ, α, and σ. Correspondingly, the decreasing
bands were α, σ, β, and γ in REM stage, which were β and γ in
N1 stage, whereas only the γ-band power significantly decreased
in N2 stage. Figure 3B shows that the variations in RP during
the events were similar in REM and N1 stage, increasing in the δ

band and decreasing in α, σ, β, and γ bands. In stage N2 sleep, the
increased band moved to α and σ, and the RP decreased in the β

and γ bands.
The AP after the events (A1 and A2) was significantly higher

than that during B1 at all the researched frequencies and sleep
stages, except in stage N2 sleep during segment A2, the AP
increase in the δ and θ bands nearly recovered. Regarding RP,
the differences in power distribution over frequency bands and
sleep stages were more obvious. First, compared to the power
distribution in B1, the difference was less significant during
REM sleep, followed by N1 sleep, and N2 sleep showed the
most significant difference. Common changes in researched sleep
stages: the RP decreased in the θ band and increased in the α band
during A2 (but not all regions showed significant differences
during stage N1 and REM sleep). While no other significant
differences were obtained during REM sleep after events. In stage
N1 and N2 sleep, segments A1 and A2 exhibited different results
in the δ, β, and γ bands. Furthermore, in these frequency bands,
the period of A1 seems to be a transition between D2 and A2.

The changes of AP and RP in different regions are basically the
same, and differences across the frontal (F3, F4), central (C3, C4),
and occipital (O1, O2) lobes occurred in some situations.

STE Changes
Information transmission between different brain regions was
determined using the STE, and various response characteristics
were obtained in different frequency bands (Figure 4). But the
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FIGURE 3 | Significant changes in spectral power across respiratory events. (A) Absolute and (B) relative power. Red and blue dots indicate a significant increase
and decrease compared to B1, respectively.

responses in the θ, β, and γ bands show some similarities during
the events across sleep stages.

In the θ band, the STE decreased during the events (D1 and
D2), being more notable during stage N1, followed by REM sleep,
and almost no significant change occurred during stage N2 sleep.
The STE increased after the events (A1 and A2), and this increase
continued to A2 during N2 and REM sleep. The STE from C4 to
F4 increased in D2 during all three sleep stages, while most other
STEs decreased during this period.

In the β band, the STE decreased from D1 to A2 in the three
sleep stages. During the D1, D2, and A1 segments, the decrease
was more significant during non-REM sleep (stages N1 and N2)
than during REM sleep.

The intrahemispheric and interhemispheric patterns of
cerebral information transmission were different in the γ band.
To better describe this phenomenon, the intrahemispheric
and interhemispheric information transmissions in the γ band
were summarized, as shown in Figure 5.The intrahemispheric
information flow during events (D1 and D2) was larger than

that before events (B1), whereas it decreased to an even lower
level after events (A1 and A2). The interhemispheric STE had an
increase during the event process in the three sleep stages, but
there was no significant difference between segments B1 and A2
except during the REM stage. The rise time of REM and N1 sleep
occurred during A1, while that advanced to D2 during stage N2
sleep. In addition, the interhemispheric information flow across
frontal (F3 and F4) and central (C3 and C4) regions increased in
the A2 segment during REM sleep.

In the δ, α, and σ bands, responses after the events (A1 and
A2) were mostly consistent across sleep stages: the δ-band STE
decreased, which was obvious during REM sleep, followed by N2
sleep, and the least significant during stage N1 sleep. The STE
changes in α and σ bands were not obvious after the events.

While in α and σ bands each stage showed its own
characteristics during the events (D1 and D2), in the α band,
increased STE was only observed in N1 stage. And the σ-band
STE decreased during stage N1 and N2 sleep, being more notable
during stage N2 sleep.
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FIGURE 4 | Significant changes in STE across respiratory events. The red and blue arrows indicate STE significantly higher and lower than that during B1,
respectively.

Information Flow Direction and Strength
Across Respiratory Events
The anterior–posterior and left–right information flow was
also estimated. Significant fluctuations in posterior–anterior
information flow were found only in the θ and σ bands across
events, with the θ-band PAR being smaller in A1 than that before
the events during stage N2 and REM sleep (Figure 6). The σ-
band PAR increased during the events in N2 sleep. No significant
difference was obtained between segments B1 and A2, which
meant these fluctuations recovered in A2.

Except for the δ and σ bands in the three sleep stages and the
γ band in REM sleep, the information flow in the left hemisphere
was higher than that in the right hemisphere (Table 3 and
Supplementary Table S1).

DISCUSSION

In this study, we investigated the short-term changes in cerebral
cortex activity during respiratory events in patients with SAHS.
Power spectral analysis was used to estimate activation in
brain regions, and the STE was used for determining effective
connectivity, revealing dynamic information interaction between
brain areas. The STE is a non-linear measure that is robust, fast
to compute, and noise mitigating, thus being suitable for EEG
signal analysis (Thul et al., 2016; Zubler et al., 2018). Moreover,
unlike previous studies, events during different sleep stages were
studied independently. The results showed that the sleep stage
affects the intensity and patterns of cortical responses. Even
during light sleep, corresponding to stage N1 and N2 sleep, the
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FIGURE 5 | Changes in interhemisphere and intrahemisphere average information flow in gamma band across respiratory events. IF, information flow. *p < 0.05/C2
6,

**p < 0.01/C2
6, ***p < 0.001/C2

6, Friedman test with Bonferroni correction.

FIGURE 6 | Changes in posterior-to-anterior information flow across respiratory events. *p < 0.05/C2
6, **p < 0.01/C2

6, ***p < 0.001/C2
6, Friedman test with

Bonferroni correction.
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TABLE 3 | Statistical analysis of STE between left and right hemisphere in different bands and sleep stages.

θ Band α Band β Band γ Band

N1 N2 REM N1 N2 REM N1 N2 REM N1 N2 REM

B1 0.008 <0.001 0.006 0.003 <0.001 0.165 <0.001 <0.001 1 <0.001 0.005 1

B2 0.019 <0.001 0.121 0.003 <0.001 1 0.066 <0.001 1 <0.001 <0.001 1

D1 <0.001 0.003 <0.001 0.001 <0.001 1 <0.001 <0.001 0.002 <0.001 0.006 0.15

D2 0.005 <0.001 0.002 0.006 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 1

A1 0.037 <0.001 <0.001 0.829 <0.001 <0.001 1 <0.001 0.279 <0.001 0.017 0.107

A2 0.013 <0.001 0.001 0.053 <0.001 0.109 0.107 <0.001 1 <0.001 1 0.845

For demonstration, the p values are multiplied by C2
12 (i.e., the significance level was already corrected by Bonferroni correction). Hence, statistical significance occurs for

p < 0.05, which indicates that the information flow in the left hemisphere was higher than that in the right hemisphere.

performance varied. In addition, previous research conclusions
about cognitive function were presented in this investigation,
which may be related to some results of this study. However,
the direct relationship between cognition and SAHS has not
been assessed here; these results cannot be used to support these
cognition conclusions, and further researches are needed.

Although the impact of respiratory events on the EEG power
spectral density in patients with OSA has been reported (Dingli
et al., 2002; Yang et al., 2012), the results are inconsistent, possibly
due to the sample sizes, varying sample characteristics, and
analysis methods. In this study, we found that the δ-band power
increased during respiratory events, which is consistent with
previous studies (Xavier et al., 2007). This may be related to the
increased breathing effort, and higher slow-wave power has been
observed before and during upper airway resistance regardless
of the existence of cortical arousal (Black et al., 2000). The δ-
and θ-band power increased by slight airflow restrictions during
N2 sleep (Nguyen et al., 2016). Furthermore, sleep (D’Rozario
et al., 2017; Appleton et al., 2019) and vigilance (Xiromeritis et al.,
2011) EEG signal slowing was also discovered in patients with
OSA. A reasonable speculation would be that the above EEG
variations may be results of repetitive similar changes during
apnea–hypopnea.

It is worth noting that during stage N2 sleep the power
increased during the events not only at the δ band but also
in the θ band and medium frequencies (α and σ bands).
Additionally, after the events, the high-frequency relative power
increased considerably. These results may be due to the frequency
distribution differences in the normal EEG activity of each sleep
stage. On the other hand, these may suggest that the body tends to
be alert to protect itself under apnea–hypopnea during N2 sleep.
In another study, the stage N2 sleep depth changed dramatically
in the same individual under different conditions, which affected
the overall sleep depth (Qanash et al., 2017). A more fragmented
stage N2 sleep corresponds to weaker sleep-dependent learning
ability in older adults (Pace-Schott and Spencer, 2015). Therefore,
airway obstruction during this stage may play an important
role in cognitive impairment in SAHS patients. The β band is
important for human cognitive processes including attention
(Gao et al., 2017), audiovisual integration (Wang et al., 2017),
and working memory (Calmels et al., 2011). The suppression
of this oscillation observed between different regions (decreased
STE) may indicate disruption of memory consolidation, which

may provide clues to the substantially slower working memory
in patients with OSA (Thomas et al., 2005). In contrast, low-
frequency information interactions resemble stress responses.
The decreased δ-band STEs after the events may suggest that the
signal to meet basic oxygen demand was received by the brain,
and then the reward system was activated (Knyazev, 2007).

We found some special phenomena regulated by respiratory
events related to the γ band. They were mainly reflected by
stronger intrahemispheric processing in both hemispheres
without an interhemispheric processing increase when
patients were exposed to hypoxic stress. When the airways
reopened, especially during REM sleep, greater interhemispheric
interactions appeared with significant intrahemispheric
processing decrease, indicating a specific activation pattern of
brain networks, which were similar to those during execution of
complex tasks (Jiang et al., 2008). Interhemispheric asynchrony
measured by the spectral correlation coefficient has been linked
to nocturnal EEG arousal (Swarnkar et al., 2006, 2007). Although
such arousal does not generally cause awakening, it greatly
contributes to sleep fragmentation (Swarnkar et al., 2006); this
is consistent with our findings. Moreover, this desynchrony
has been found in patients with depression (Guo et al., 2013;
Wang et al., 2013) and OSA (Abeyratne et al., 2010), with the
respiratory disturbance index of the latter being associated
with the asynchrony degree (Abeyratne et al., 2010). The
persistence of apnea–hypopnea with long-time activation and
the pathological severity may explain the interhemispheric
functional connectivity abnormity in neuropsychiatric
disorders (e.g., depression and emotional instability) related
to SAHS.

The δ-band STEs during D1 and D2 in stage REM showed
significant different trends from stage N1 and N2, which may be
affected by electro-oculogram. Although some respiratory events
with artifacts were removed by visual inspection, its impacts
may still exist.

This study has some limitations. Patients in a narrow range of
the apnea–hypopnea index were selected. To unify the definition
of events and the statistical methods, only moderate SAHS
patients were enrolled in this study to ensure that the event
separation is at least 20 s. Moreover, stage N3 sleep was not
considered given the difficulty to obtain enough event samples
per subject. In addition, many CSA events were not enrolled in
this study, because the intervals between events were less than
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20 s. According to the event definition, only in stage N1 sleep, the
sample size of CSA (80 CSA events in N1) met the requirement
of statistical sample size. Therefore, the variations of EEG activity
during events in severe SAHS patients and the CSA events should
be studied separately using a different definition of event process.
Furthermore, the EEG changes during events may be related to
arousals; our pre-experiment showed that the spectral powers
indicated a more drastic variation in the events terminated with
cortical arousal than which without it. But the effects of end-
apneic cortical arousal on STE were not clear. Events with and
without arousal were not investigated separately in this study, but
this may be an interesting topic to explore.

Overall, the EEG spectral power and STE during sleep are
different analyses to unveil variation patterns during respiratory
events. Our results mainly include cortical hyperactivation
during stage N2 sleep, the suppression of β-band information
transmission, abnormal interhemispheric effective connectivity,
and the intrahemispheric “rise-to-down” fluctuations in the
γ band. It was known that SAHS patients suffered cognitive
disorders and mental-related complications. Our findings
provide new clues on the influence of SAHS on cognitive function
and neuropsychiatric defects.
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