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Identifying personalized driver genes is essential for discovering critical biomarkers
and developing effective personalized therapies of cancers. However, few methods
consider weights for different types of mutations and efficiently distinguish driver genes
over a larger number of passenger genes. We propose MinNetRank (Minimum used
for Network-based Ranking), a new method for prioritizing cancer genes that sets
weights for different types of mutations, considers the incoming and outgoing degree
of interaction network simultaneously, and uses minimum strategy to integrate multi-
omics data. MinNetRank prioritizes cancer genes among multi-omics data for each
sample. The sample-specific rankings of genes are then integrated into a population-
level ranking. When evaluating the accuracy and robustness of prioritizing driver
genes, our method almost always significantly outperforms other methods in terms of
precision, F1 score, and partial area under the curve (AUC) on six cancer datasets.
Importantly, MinNetRank is efficient in discovering novel driver genes. SP1 is selected
as a candidate driver gene only by our method (ranked top three), and SP1 RNA
and protein differential expression between tumor and normal samples are statistically
significant in liver hepatocellular carcinoma. The top seven genes stratify patients into
two subtypes exhibiting statistically significant survival differences in five cancer types.
These top seven genes are associated with overall survival, as illustrated by previous
researchers. MinNetRank can be very useful for identifying cancer driver genes, and
these biologically relevant marker genes are associated with clinical outcome. The R
package of MinNetRank is available at https://github.com/weitinging/MinNetRank.

Keywords: multi-omics, network-based methods, cancer gene prediction, driver genes, tumor stratification

INTRODUCTION

Rapid technological advances in high-throughput sequencing have driven the development of
omics field. Omics data types include genomics, transcriptomics, proteomics, epigenomics, and
metabolomics (Hasin et al., 2017). However, a single type of “omics” only provides limited
insights into the biological mechanisms of diseases. Additionally, the different omics data events
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are somewhat interdependent. An integrative study of multi-
omics data contributes to a holistic understanding of the
molecular function (Sun and Hu, 2016). An essential question
in cancer genomics is distinguishing driver genes, which are
causally implicated in oncogenesis, from biologically neutral
passenger genes that are immaterial to neoplasia (Greenman
et al., 2007). Passenger mutations can become driver mutations
(and vice versa) under changing environmental conditions and
selection pressures, increasing the complexity of intratumor
heterogeneity (Yap et al., 2012). Accumulating evidence suggests
that identifying personalized driver genes is essential for the
development of effective personalized therapies and realizing
the goals of precision medicine (Dagogo-Jack and Shaw, 2018).
A critical but challenging step is to incorporate different omics
data in a meaningful and efficient way to discover cancer driver
genes and elucidate potential causative changes of cancer (Huang
et al., 2017). The main approaches for distinguishing driver
genes from passenger genes can be divided into frequency-based
methods and network-based approaches.

Frequency-based methods estimate the background mutation
rate (BMR) representing the rate of random passenger mutations
and identify driver genes that harbor significantly more somatic
mutations than BMR (Ding et al., 2008; Pon and Marra,
2015). However, accurately estimating BMR is difficult because
of the variability among cancer types, among samples of the
same cancer type, and between genomes (Pon and Marra,
2015). Subsequent frequency-based methods, such as MuSiC and
MutSigCV, have been developed to correct for one or more of
these factors (Dees et al., 2012; Lawrence et al., 2013). Somatic
mutations are characterized by a small number of frequently
mutated genes and many infrequently mutated genes. Moreover,
more than 99.9% of the somatic mutations in tumors are
passengers (Vogelstein et al., 2013). It is challenging to identify
infrequent or rare driver genes by methods based only on
mutation frequency.

Network-based approaches have emerged as promising and
powerful methods to detect low-frequency and high-frequency
mutated driver genes due to their ability to model gene
interactions. For network-based approaches, nodes representing
genes and edges are links between two genes if there is an
interaction between them (Huang et al., 2017). Network-based
methods have been successfully applied to many biomedical
fields, such as the discovery of mutation subnetwork (Vandin
et al., 2011), prediction of drug–target interaction, and cancer
gene prioritization (Bashashati et al., 2012; Chen et al., 2012;
Yu et al., 2013). HotNet2 uses a network diffusion model to
simultaneously assess the frequency of somatic mutation and the
local topology of the interaction network and detects significantly
mutated subnetworks (Leiserson et al., 2015). Mutations for
Functional Impact on Network Neighbors (MUFFIN) is a
method for prioritizing cancer genes accounting for mutation
frequency of genes and their direct neighbors in functional
network (Cho et al., 2016). Both HotNet2 and MUFFIN use
mutation data only without integrating other omics data.
DawnRank is a single patient approach to rank potential
driver genes based on their impact on downstream differential
expression genes in the interaction network (Hou and Ma,

2014). NetICS predicts mediator genes affected by proximal
upstream-located aberrant genes and proximal downstream-
located differentially expressed genes (Dimitrakopoulos et al.,
2018). Both DawnRank and NetICS consider only incoming
degree or outgoing degree of interaction network for single
omics. For example, DawnRank only considers incoming degree
for expression data. It is desirable to use incoming and outgoing
degree simultaneously. Driver_IRW (Driver genes discovery with
Improved Random Walk method) assigns different transition
probabilities for different genes of the interaction network (Wei
et al., 2020). DeepDriver predicts cancer driver genes based
on mutation-based features and gene similarity networks using
deep convolutional neural networks (Luo et al., 2019). None of
these methods consider the different weights for the different
types of mutations; however, the weighting method is essential
for sample-specific study. Furthermore, none of these methods
investigate the relationship between the top rankings of genes
and overall survival. Therefore, we develop a more meaningful
and efficient method that considers different weight coefficients
for the various types of mutations, simultaneously considers
the incoming and outgoing degree of interaction network for
single omics, and uses minimum strategy to integrate multi-
omics data.

We present a new method called MinNetRank that uses
minimum strategy among multi-omics data to prioritize cancer
genes (Figure 1). The main steps of MinNetRank include (1)
single-omics data analysis: calculating mutation relevance scores
and expression relevance scores of genes for each sample using
network diffusion based on incoming and outgoing degree. We
further consider different weight coefficients for the different
types of mutations and propose Weighted_MinNetRank. (2) The
integration of multi-omics data: calculating the minimum value
of mutation relevance score and expression relevance score as
an integrated score for each gene in each sample. A higher
minimum value reflects a higher mutation relevance score
and expression relevance score simultaneously; (3) prioritizing
driver genes: aggregating the sample-specific and integrated-
score-based rankings of genes into a robust population-
level gene ranking.

We apply Weighted_MinNetRank and MinNetRank to
analyze five The Cancer Genome Atlas (TCGA) datasets
(hepatocellular carcinoma, stomach adenocarcinoma, bladder
urothelial carcinoma, lung adenocarcinoma, and skin cutaneous
melanoma) and one International Cancer Genome Consortium
(ICGC) dataset (hepatocellular carcinoma). We select the
top 50 genes of population-level ranking as candidate
driver genes. We systematically examine the performance
of Weighted_MinNetRank and MinNetRank from three
aspects. Firstly, Weighted_MinNetRank and MinNetRank
outperform other methods [Mean, Maximum, DawnRank,
NetICS, and a commonly used frequency-based method (Freq)]
in terms of precision, F1 score, and partial area under the
curve (AUC) value of selecting cancer driver genes. Secondly,
Weighted_MinNetRank and MinNetRank detect rare and novel
candidate driver genes (e.g., SP1 in hepatocellular carcinoma).
Finally, the top seven genes can be used as prognostic biomarkers
for risk stratification. The survival difference between two
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FIGURE 1 | Overview of MinNetRank workflow. MinNetRank integrates mutation data and expression data into the interaction network; MinNetRank utilizes
minimum strategy to select the candidate driver genes with both high mutation relevance score and high expression relevance score; the sample-specific and
integrated-score-based rankings of genes are integrated into the overall rankings. We access the performance in predicting known cancer genes, discovering
personalized driver genes, and survival risk stratification of tumor samples.

subtypes (low-risk and high-risk groups) is statistically significant
in all six datasets.

RESULTS

We propose a new method (MinNetRank) that uses minimum
strategy among multi-omics data to prioritize cancer genes.
For comparison, we also add the performance of mean (Mean)
and maximum (Maximum) to integrate the mutation data
and expression data. All mutations have the same weight for
MinNetRank. We further consider different weight coefficients
for the different types of mutations (Weighted_MinNetRank).
In this study, Weighted_MinNetRank and MinNetRank are
compared with other five methods [Mean, Maximum, DawnRank
(Hou and Ma, 2014), NetICS (Dimitrakopoulos et al., 2018),
and Freq] on five types of cancer (liver hepatocellular
carcinoma, stomach adenocarcinoma, lung adenocarcinoma,
bladder urothelial carcinoma, and skin cutaneous melanoma).
Freq is a simple and common method based only on mutation
frequency, which compares the mutation frequency of genes in
tumor patient (Dimitrakopoulos et al., 2018; Guo et al., 2018).
Weighted_MinNetRank and MinNetRank are an efficient and
easy-to-use network-based method for cancer genes discovery by
integrating multi-omics data, as shown in the subsequent results.

Overview of MinNetRank
The schematic in Figure 1 illustrates the three-step procedure of
our new method MinNetRank. MinNetRank requires three input

files: gene mutations, gene expression for tumor and normal
samples, and the interaction network.

Step 1: calculating mutation relevance score and expression
relevance score using RWR (Random Walker with Restart)
algorithm. The n×m matrix SM is the gene mutation status for
each sample, where n is the number of genes, and m is the number
of samples. SMik = 1 if gene i is mutated in sample k and SMik = 0
otherwise. We further consider different weight coefficients for
the different types of mutations and supplement a new method
(Weighted_MinNetRank). We normalize each column of SM by
SM/colSum( SM). We define the n×m mutation relevance score
matrix WM as multiplication between diffused matrix D and SM :

WM
= DSM. (1)

The Dij reflects the connectivity between gene i and
gene j, and SMik reflects the mutation status of gene i in
sample k. The product WM

ik is gene i’s mutation relevance
score in sample k, defined as the proximity of gene i to
mutation genes.

Similarly, the n×m matrix SE is RNA differential expression
score (Absolute value of Log2 Fold-Change, ALFC) for each
sample. We define the expression relevance score matrix WE as,

WE
= DSE. (2)

Step 2: minimum value of mutation relevance score and
expression relevance score. To integrate multi-omics data (gene
mutation and expression data), the mutation relevance score and
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expression relevance score are combined to produce a gene min-
score for each sample. The min-score is the minimum value of
WM

ik and WE
ik:

W = pmin
(
WM,WE) . (3)

pmin is R function and returns the minimum of the
corresponding elements of the two input vectors. Wik is the
minimum value of WM

ik and WE
ik(i ∈ 1 · · · n, k ∈ 1 · · ·m), where

n is the number of genes, and m is the number of samples. The
high score of Wik means that gene i is proximal to many mutation
genes and differentially expressed genes for each k. The minimum
value is a meaningful and efficient way to integrate multi-omics
data for the following two reasons:

Firstly, the minimum strategy reduces extreme values that
may be potential outliers in highly skewed distributions. The
probability distribution of WM

∗k (the mutation relevance scores
for genes in sample k) and WE

∗k (the expression relevance scores
for genes in sample k) is a positively skewed distribution. This
means that some genes have extremely high scores. These high
scores may be due to the technical noise of high-throughput
sequencing and the incomplete interaction network. For example,
as shown in Figure 2, sample TCGA-BC-A10X has three mutated
genes in TCGA-LIHC, and only one gene (OR2C3) of these is in
the interaction network. The OR2C3 mutation relevance score
in TCGA-BC-A10X is evidently high (WM

ik = 0.48, i =OR2C3
and k =TCGA-BC-A10X) and is ranked 1st. Meanwhile, the
OR2C3 expression relevance score in TCGA-BC-A10X is 3.24-06
and is ranked 8, 221st. Henceforth, the high mutation relevance
score needs to be cautiously processed. Lastly, the min-score
of OR2C3 mutation relevance score and expression relevance
score is ranked 1, 943rd. OR2C3 is an olfactory receptor protein
and probably is not a potential driver gene (Malnic et al., 2004;
Riessland et al., 2017).

Secondly, the minimum (“double high”) strategy is necessary
to prioritize cancer genes having a higher biological relevance. If
one gene has a relatively high mutation relevance score but low
expression relevance score (such as OR2C3 in TCGA-BC-A10X),
this gene may not be a potential driver gene since differential
gene expression is the downstream events of DNA mutation
(Sager, 1997). In the other case, the SI expression relevance
score in TCGA-DD-AAE2 is ranked 8th (WE

ik = 0.0012, i =SI,
and k =TCGA-DD-AAE2), and the mutation relevance score is
ranked last. Only MGAM interacts with SI in the interaction
network, and TCGA-DD-AAE2 has no SI or MGAM mutation.
We hope the candidate driver genes have a high mutation
relevance score and high expression relevance score.

MinNetRank used a minimum strategy to integrate multi-
omics data (mutation data and expression data). We further
investigated which data have the greatest effect on the minimum
score. We calculated the proportion of mutation relevance score
and expression relevance score in minimum scores for the
top 50 candidate cancer genes. The proportion of mutation
relevance score was 0.657 in all six datasets, and expression
relevance score was 0.347. Mutation relevance score affected the
minimum score more.

Step 3: integrating sample-specific rankings of genes into
a population-level ranking. We transform the min-scores into

rankings, since min-scores indicate the relative importance of
each sample’s genes. To integrate the sample-specific rankings
of genes into a robust population-level ranking, we calculate
the sum of per-sample ranking. Each step of MinNetRank is
based on single sample analysis, such as using the per-sample
network diffusion, calculating the minimum value of mutation
relevance score and expression relevance score for each gene
in each sample, and transforming min-scores into rankings for
each sample. We calculate the sum of per-sample ranking as the
population-level ranking.

To perform a systematic comparison of seven methods
(Weighted_MinNetRank, MinNetRank, Mean, Maximum,
DawnRank, NetICS, and Freq), the 576 genes annotated in
cancer gene census (CGC) are used as the gold standard cancer
driver gene set, and the genes not in CGC are the negative set.
The evaluation metrics (precision, F1 score, and partial AUC
value) are based on the top 50 genes of six different datasets (five
TCGA datasets and one ICGC dataset). The five TCGA datasets
are regarding hepatocellular carcinoma (TCGA-LIHC), stomach
adenocarcinoma (TCGA-STAD), bladder urothelial carcinoma
(TCGA-BLCA), lung adenocarcinoma (TCGA-LUAD), and
skin cutaneous melanoma (TCGA-SKCM), respectively. The
one ICGC dataset includes hepatocellular carcinoma data from
LIRI-JP (Liver Cancer–RIKEN, JP) project (LIRI-LIHC) (Fa
et al., 2019). Skin cutaneous melanoma, lung adenocarcinoma,
bladder urothelial carcinoma, and stomach adenocarcinoma
have a high mutation burden (Martincorena and Campbell,
2015), and LIHC has two different datasets. Both are common
cancer types and pose increasing public concerns. The detailed
descriptions of six datasets are provided in Table 1. The somatic
mutations include non-synonymous simple nucleotide variation
(SNV) and insertions and deletions (InDels) in coding regions.

MinNetRank Accurately Predicted
Cancer Gene
In general, considering the weights for the different types of
mutations (Weighted_MinNetRank) had a better performance
than other six methods (MinNetRank, Mean, Maximum, NetICS,
DawnRank, and Freq) in all six cancer datasets (TCGA-LIHC,
TCGA-STAD, TCGA-BLCA, TCGA-LUAD, TCGA-SKCM, and
LIRI-LIHC). Weighting for the different types of mutations was
essential for a personalized analysis. As shown in Figure 3
(for datasets TCGA-LIHC and LIRI-LIHC), Supplementary
Figure 1 (for datasets TCGA-STAD and TCGA-BLCA), and
Supplementary Figure 2 (for datasets TCGA-LUAD and TCGA-
SKCM), Weighted_MinNetRank and MinNetRank achieved
a higher precision, F1 score, and AUC in all six datasets,
namely, Weighted_MinNetRank and MinNetRank could rank
the known gold standard cancer driver genes higher. The AUC
of Freq was not calculated as the mutation frequency for some
genes were the same.

MinNetRank Robustly Predicted Cancer
Gene
The Weighted_MinNetRank and MinNetRank also had the
advantage of obtaining robust and stable results using the subset
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FIGURE 2 | The heatmap of rankings of mutation relevance scores, expression relevance scores, and min-scores. Each row represents a gene. Ranking differences
are shown in different colors. Red means high ranking (high score), and blue means low ranking. The rankings of genes are ordered by the rankings of min-scores.
The left is the enlarged drawing of the top 50 genes with both high mutation relevance score and high expression relevance score. OR2C3 has high mutation
relevance score (red) and low expression relevance score (blue). The ranking of OR2C3 for mutation relevance score, expression relevance score, and min-score in
TCGA-BC-A10X is 1, 8,821, and 1,943, respectively.

of samples with different sample sizes. We calculated the mean
and standard deviation (SD) of the precision values P (mean
precision of the top 50 genes), F1 scores, and partial AUC values
after 10 runs. The precision value was proportional to the area
under the precision curve (Figure 3A). All six methods used
the same subset of samples, and the subset of samples was
randomly selected from all samples by R. Using the same subset of
samples, we compared the results of six methods. The mean of the
precision, F1 score, and partial AUC for Weighted_MinNetRank
and MinNetRank was higher than other methods, and the SD
was smaller [Figure 4 (for datasets TCGA-LIHC and LIRI-LIHC),
Supplementary Figure 3 (for datasets TCGA-STAD and TCGA-
BLCA), and Supplementary Figure 4 (for datasets TCGA-LUAD
and TCGA-SKCM)]. The performance in all six datasets and
different sample sizes showed the robustness of our method.

Furthermore, Weighted_MinNetRank and MinNetRank still
performed well, even with a smaller number of samples.

In order to evaluate the contribution of each part of
Weighted_MinNetRank and MinNetRank (calculating the
relevance score using both incoming and outgoing degree
of the interaction network for single omics, using minimum
strategy to integrate multi-omics data, and the different weighted
methods), we calculated the precision, F1 score, and partial
AUC value of the top 50 candidate cancer genes. We also added
network metrics (degree centrality, betweenness centrality,
and the mean of degree and betweenness centrality). We
needed to calculate the baselines of the network only once,
and the results were the same for all datasets. As shown in
Table 2, Weighted_MinNetRank had a better performance
than all other methods in terms of precision, F1 score,
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FIGURE 3 | Comparison of precision, F1 score, and AUC for different methods in TCGA-LIHC and LIRI-LIHC datasets. (A) The X-axis is the top 50 candidate cancer
genes, and the Y-axis is the precision according to known cancer genes (in CGC). (B) The X-axis is the top 50 candidate cancer genes, and the Y-axis is the F1
score according to known cancer genes. (C) The ROC curve of the top 50 candidate cancer genes.
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FIGURE 4 | Robustness of results using the subset of samples in TCGA-LIHC and LIRI-LIHC datasets. (A) The X-axis is the subset of samples, and the Y-axis is the
mean and SD of the precision values after 10 runs using the subset of samples. (B) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the
F1 score after 10 runs using the subset of samples. (C) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the partial AUC after 10 runs
using the subset of samples.
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TABLE 1 | Six datasets used in MinNetRank.

Datasets Data type Samples Website

TCGA-LIHC Mutation 363 https://portal.gdc.cancer.gov/projects/TCGA-LIHC

RNA expression (tumor) 371

RNA expression (normal) 50

LIRI-LIHC Mutation 258 https://dcc.icgc.org/projects/LIRI-JP

RNA expression (tumor) 230

RNA expression (normal) 197

TCGA-STAD Mutation 437 https://portal.gdc.cancer.gov/projects/TCGA-STAD

RNA expression (tumor) 375

RNA expression (normal) 32

TCGA-BLCA Mutation 412 https://portal.gdc.cancer.gov/projects/TCGA-BLCA

RNA expression (tumor) 408

RNA expression (normal) 19

TCGA-LUAD Mutation 565 https://portal.gdc.cancer.gov/projects/TCGA-LUAD

RNA expression (tumor) 513

RNA expression (normal) 59

TCGA-SKCM Mutation 467 https://portal.gdc.cancer.gov/projects/TCGA-SKCM

RNA expression (tumor) 468

RNA expression (normal) 1

and partial AUC in all six datasets. For weighted methods,
Weighted_MinNetRank_PrCID had better performance than
PrDSM weighted methods (Weighted_MinNetRank_PrDSM
and Weighted_MinNetRank_Filter_PrDSM) in all
datasets. There was no significant difference between
Weighted_MinNetRank_PrCID and Weighted_MinNetRank.
There were some possible reasons for this phenomenon.
Firstly, there were many synonymous mutations in all datasets
(32,381 synonymous mutations on average); however, the
percentage of deleterious synonymous mutations was relatively
small (9.76% in the study of PrDSM) (Cheng et al., 2019).
Many benign synonymous mutations increased noise. We
may need to pre-process the scores of synonymous mutations
(Weighted_MinNetRank_Filter_PrDSM performed better
than Weighted_MinNetRank_PrDSM). Secondly, the number
of missense mutations was the largest, and the number of
frameshift mutations was small, so Weighted_MinNetRank
weighting for missense mutations had almost the same
performance as Weighted_MinNetRank_PrCID weighting
for missense mutations and frameshift mutations. LIRI-LIHC
dataset did not provide the position information of frameshift
mutations in cDNA, so Weighted_MinNetRank_PrCID was not
available for LIRI-LIHC dataset.

MinNetRank Discovered Rare and Novel
Driver Genes
In addition to obtaining the accurate and robust results, one
of the main advantages of MinNetRank was to discover rare
and personalized cancer genes. Personalized driver genes could
contribute to the development of personalized medicine.

A gene was considered as a rare gene if the gene was
mutated in a small number of samples (<5%). For the top 50
candidate driver genes of MinNetRank, the numbers of rare
genes in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA,

TCGA-LUAD, and TCGA-SKCM were 48 (96%), 48 (96%), 42
(84%), 44 (88%), 48 (96%), and 42 (84%), respectively. Among
rare genes, 28 genes (58.33%), 27 genes (56.25%), 27 genes
(64.28%), 27 genes (61.36%), 27 genes (56.25%), and 27 genes
(64.28%) have not been classified as known cancer gene in
TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-
LUAD, and TCGA-SKCM, respectively. We further investigated
the rare genes in CGC (gold standard cancer driver gene set),
and there were 98.00, 97.95, 85.05, 90.79, 91.73, and 82.11% rare
genes in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA,
TCGA-LUAD, and TCGA-SKCM, respectively. The proportion
of rare genes in CGC was high, and the proportion of rare
genes for all CGC known cancer genes was approximately
the same as the proportion of rare genes for the top 50
candidate driver genes.

MinNetRank also identified novel cancer driver genes that
have not been classified as drivers by other methods. Taking an
example for SP1, SP1 was considered as a cancer gene only by
MinNetRank and was ranked 3rd, 3rd, 3rd, 2nd, 3rd, and 1st
in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA,
TCGA-LUAD, and TCGA-SKCM, respectively (Supplementary
Table 1). The mutation frequency of SP1 was 8.26 × 10−3,
1.60 × 10−2, 2.43 × 10−2, 8.85 × 10−3, and 1.07 × 10−2

(ranked 2903rd, 6393rd, 1599th, 7892nd, and 10330th in
terms of the mutation frequency) in TCGA-LIHC, TCGA-STAD,
TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively.
SP1 was a zinc finger transcription factor and was reported to be
associated with cell differentiation, proliferation, and apoptosis
(Beishline and Azizkhan-Clifford, 2015; Safe et al., 2018). Using
pathway enrichment analysis, we found that SP1 was involved in
multiple pathways enriched by known cancer genes, such as the
transforming growth factor (TGF)-beta signaling pathway and
choline metabolism in cancer and breast cancer.

As shown in Figure 5 (for datasets TCGA-LIHC and LIRI-
LIHC), Supplementary Figure 5 (for datasets TCGA-STAD
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TABLE 2 | The performance of each part of MinNetRank according to the precision, F1 score, and partial AUC value.

Metrics Methods TCGA-LIHC LIRI-LIHC TCGA-STAD TCGA-BLCA TCGA-LUAD TCGA-SKCM

Precision Weighted_MinNetRank 0.620 0.645 0.602 0.623 0.583 0.533

Weighted_MinNetRank_PrDSM 0.615 0.633 0.591 0.613 0.573 0.523

Weighted_MinNetRank_Filter_PrDSM 0.621 0.629 0.599 0.621 0.575 0.528

Weighted_MinNetRank_PrCID 0.628 – 0.594 0.630 0.580 0.533

MinNetRank 0.614 0.621 0.585 0.608 0.576 0.515

MinNetRank (mutation) 0.569 0.576 0.514 0.563 0.445 0.390

MinNetRank (expression) 0.574 0.580 0.479 0.517 0.512 0.549

DawnRank 0.420 0.444 0.473 0.586 0.405 0.404

NetICS 0.441 0.426 0.437 0.453 0.393 0.161

Mean 0.532 0.566 0.461 0.520 0.414 0.411

Maximum 0.498 0.546 0.452 0.483 0.405 0.420

Freq 0.255 0.277 0.249 0.511 0.194 0.149

Degree centrality 0.189 0.189 0.189 0.189 0.189 0.189

Betweenness centrality 0.521 0.521 0.521 0.521 0.521 0.521

Mean of degree and betweenness 0.493 0.493 0.493 0.493 0.493 0.493

F1 score Weighted_MinNetRank 0.048 0.049 0.046 0.048 0.044 0.042

Weighted_MinNetRank_PrDSM 0.047 0.049 0.045 0.047 0.044 0.041

Weighted_MinNetRank_Filter_PrDSM 0.048 0.048 0.046 0.047 0.044 0.041

Weighted_MinNetRank_PrCID 0.048 – 0.045 0.047 0.044 0.042

MinNetRank 0.047 0.047 0.045 0.046 0.043 0.041

MinNetRank (mutation) 0.043 0.044 0.042 0.044 0.039 0.036

MinNetRank (expression) 0.045 0.046 0.039 0.040 0.040 0.043

DawnRank 0.032 0.033 0.039 0.043 0.029 0.027

NetICS 0.037 0.037 0.037 0.037 0.035 0.016

Mean 0.042 0.044 0.038 0.041 0.037 0.037

Maximum 0.040 0.042 0.037 0.039 0.037 0.039

Freq 0.018 0.018 0.017 0.038 0.012 0.011

Degree centrality 0.013 0.013 0.013 0.013 0.013 0.013

Betweenness centrality 0.044 0.044 0.044 0.044 0.044 0.044

Mean of degree and betweenness 0.042 0.042 0.042 0.042 0.042 0.042

Partial AUC Weighted_MinNetRank 0.038 0.040 0.035 0.038 0.034 0.033

Weighted_MinNetRank_PrDSM 0.037 0.039 0.034 0.037 0.034 0.032

Weighted_MinNetRank_Filter_PrDSM 0.038 0.039 0.035 0.038 0.034 0.032

Weighted_MinNetRank_PrCID 0.038 – 0.034 0.038 0.034 0.033

MinNetRank 0.037 0.038 0.034 0.037 0.034 0.032

MinNetRank (mutation) 0.033 0.036 0.032 0.035 0.031 0.029

MinNetRank (expression) 0.034 0.035 0.031 0.031 0.031 0.034

DawnRank 0.024 0.025 0.032 0.036 0.022 0.021

NetICS 0.030 0.029 0.030 0.029 0.029 0.011

Mean 0.033 0.035 0.031 0.034 0.029 0.031

Maximum 0.032 0.033 0.029 0.031 0.028 0.030

Freq 0.011 0.011 0.010 0.026 0.007 0.006

Degree centrality 0.007 0.007 0.007 0.007 0.007 0.007

Betweenness centrality 0.035 0.035 0.035 0.035 0.035 0.035

Mean of degree and betweenness 0.033 0.033 0.033 0.033 0.033 0.033

and TCGA-BLCA), and Supplementary Figure 6 (for datasets
TCGA-LUAD and TCGA-SKCM), SP1 RNA expression of
tumor samples was statistically higher than normal samples
in TCGA-LIHC (Wilcoxon Rank-Sum, P = 6.85e-13), LIRI-
LIHC (Wilcoxon Rank-Sum, P = 2.2e-16), and TCGA-STAD
(Wilcoxon Rank-Sum, P = 5.89e-10). The differential expression
was not significant in TCGA-BLCA (Wilcoxon Rank-Sum,

P = 0.17), TCGA-LUAD (Wilcoxon Rank-Sum, P = 0.95), and
TCGA-SKCM (Wilcoxon Rank-Sum, P = 0.21). We further
validated SP1 expression on the protein level, and the differential
protein expression between tumor and normal samples was
significant in LIHC (Wilcoxon Signed Rank test, P = 4.14e-
13). Only LIHC had protein expression data from CPTAC (The
National Cancer Institute’s Clinical Proteomic Tumor Analysis

Frontiers in Genetics | www.frontiersin.org 9 January 2021 | Volume 11 | Article 613033

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-613033 December 26, 2020 Time: 15:33 # 10

Wei et al. Method for Multi-Omics Data Integration

FIGURE 5 | The SP1 differential expression between tumor and normal samples. From left to right: SP1 RNA differential expression in TCGA-LIHC dataset, SP1
RNA differential expression in LIRI-LIHC dataset, and protein differential expression for LIHC from CPTAC dataset.

Consortium) dataset. These results suggested that SP1 can be the
biomarker of hepatocellular carcinoma.

Top Genes of MinNetRank Were
Associated With Clinical Outcome
For each dataset, we selected seven genes with top ranking and
high SD as biomarkers for tumor stratification (mentioned in the
section “Materials and Methods”). We performed unsupervised
K-means clustering using obtained biomarkers to assign each
patient into either high-risk or low-risk groups. The Kaplan–
Meier survival curves of the two groups are well separated, and
the log-rank P-values of the survival difference between two
groups are 9.21e-04, 1.23e-05, 2.42e-03, 3.75e-03, 9.21e-04, and
4.19e-02 for TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-
BLCA, TCGA-LUAD, and TCGA-SKCM, respectively [Figure 6
(for datasets TCGA-LIHC and LIRI-LIHC), Supplementary
Figure 7 (for datasets TCGA-STAD and TCGA-BLCA), and
Supplementary Figure 8 (for datasets TCGA-LUAD and
TCGA-SKCM)].

In the two liver cancer datasets (TCGA-LIHC and LIRI-
LIHC), there were six shared genes (CTNNB1, JUN, PIK3R1,
RAC1, SRC, and TP53). All these genes used for tumor
stratification are biologically relevant. CTNNB1 regulated cell
growth and adhesion and was predictive for recurrence in
aggressive fibromatosis (van Broekhoven et al., 2015). JUN (AP-1
Transcription Factor Subunit) participated in regulating a diverse
array of cellular processes, including proliferation, apoptosis,
differentiation, and survival (Trop-Steinberg and Azar, 2017).
PIK3R1 was a prognostic biomarker for breast cancer (Cizkova
et al., 2013). RAC1 regulated a wide range of cellular events,
including the control of cell growth and the activation of protein
kinases (Lou et al., 2018). SRC was prognostic relevant to
colon cancer and rectal cancer (Martínez-Pérez et al., 2017).
TP53 was one of the most frequent alterations and potential
prognostic markers in human cancers (Olivier et al., 2010). GRB2
was the special biomarker for TCGA-LIHC, and MAPK14 was
for LIRI-LIHC. GRB2 was evaluated as a prognostic marker
for lung adenocarcinoma (Toki et al., 2016). MAPK14 was a

member of the MAP kinase family. MAPK pathway regulated
cell proliferation, differentiation, and development (Fang and
Richardson, 2005). The seven biomarkers are the same in TCGA-
STAD and TCGA-BLCA (CTNNB1, GRB2, JUN, RAC1, SP1, SRC,
and TP53). These seven genes were reported to be related to
prognosis (Hang et al., 2016). For TCGA-LUAD and TCGA-
SKCM, there were six shared genes (CTNNB1, JUN, RAC1,
SRC, TP53, and GRB2). GNB1 was the special biomarker for
TCGA-LUAD, and FYN was for TCGA-SKCM. FYN was tyrosine
kinases and was an essential molecule in cancer pathogenesis
and drug resistance (Elias and Ditzel, 2015). In summary, the
top seven genes were associated with clinical outcome and
were biologically relevant in all six datasets. These results
suggested that MinNetRank could also be a promising method
for tumor stratification.

NetICS and DawnRank did not investigate the prognostic
value of top genes in cancer. To evaluate the performance of
predicting the clinical outcome for different methods, we used
the same criterion to choose the top seven genes for each method
in six datasets. Compared with NetICS and DawnRank, only
Weighted_MinNetRank and MinNetRank obtained a statistically
significant survival risk difference between the high-risk and
low-risk groups in all six datasets (Supplementary Table 2).

DISCUSSION

Extensive genetic heterogeneity exists between tumors of
different tissues and between individuals with the same tumor
type (Burrell et al., 2013). The personalized mutation profile is
the key to advance personalized disease diagnosis and therapy
in the clinic (Sheng et al., 2015; Olivier et al., 2019). However,
few methods could efficiently prioritize driver genes over many
passenger genes in a single patient. The critical challenge facing
today is to predict rare and even personalized driver genes with
higher accuracy. We develop MinNetRank, an efficient and easy-
to-use method that integrates the mutation data, expression data
and interaction network to prioritize each sample’s driver genes.
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FIGURE 6 | The survival difference between the high-risk group and the low-risk group.

Weighted_MinNetRank further considers the different weights
for the different types of mutations.

Weighted_MinNetRank and MinNetRank achieve a higher
precision, F1 score, and partial AUC value of prioritizing
cancer genes in five TCGA datasets (TCGA-LIHC, TCGA-
STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM). We also
utilize an additional liver cancer cohort (LIRI-LIHC) to validate
the result of TCGA-LIHC. Better performance in all datasets
demonstrates the proposed approach’s robustness (Figure 3
and Table 2). We use top candidate driver genes for pathway
enrichment analysis and find some signaling pathways previously
studied in cancer, such as the Ras signaling pathway and
ErbB signaling pathway. Furthermore, we first investigate the
relationship between the top seven genes and clinical outcome
and find the statistically significant survival difference between
the low-risk and high-risk groups in all six datasets only for
Weighted_MinNetRank and MinNetRank. The top seven genes
are biologically relevant and could be used as biomarkers
for survival risk stratification. Accurate outcome prediction is
important for personalized cancer therapies in clinical practice,
for instance, a low-risk patient can be advised to select a less
radical therapy.

We demonstrate that MinNetRank can discover rare and
novel cancer genes. Personalized driver genes could contribute to
developing personalized diagnosis and therapy. SP1 is considered
a candidate driver gene only by MinNetRank and is ranked
top three in all six datasets. The RNA expression of SP1 is
significantly higher in LIHC tumor samples (TCGA-LIHC and
LIRI-LIHC datasets) and STAD tumor samples (TCGA-STAD
dataset). The differential expression is further validated on
the protein level in LIHC. SP1 is the biomarker for tumor
stratification in TCGA-STAD and TCGA-BLCA, and SP1 RNA
expression is associated with survival outcome in TCGA-STAD

dataset (Cox proportional hazards model, P = 0.02). These results
are in accordance with the reports in literatures (Shi and Zhang,
2019). Targeting SP1 is highly promising strategy in cancer
chemotherapy (Vizcaíno et al., 2015).

Using both the incoming and outgoing degree of interaction
network, the minimum strategy and weighting for the different
types of mutations all contribute to the accuracy and robustness
of prioritizing driver genes. Known cancer genes have a higher
incoming and outgoing degree, and simultaneously considering
incoming and outgoing degree is rational. MinNetRank adopts
a minimum strategy to prioritize cancer genes with a high
mutation relevance score and high expression relevance score.
These enable our method to select more relevant genes and
avoid the potential outliers, which are common in high-
throughput sequencing technologies due to the positively skewed
distributions of mutation and expression relevance scores.
Weighting for different types of mutations is essential for sample-
specific study and finding personalized driver genes.

There are some limitations to MinNetRank and similar
methods. Firstly, MinNetRank largely depends on the interaction
network. Although many interaction sources exist, such as
experiment, co-expression, and text mining, the interaction
network is still incomplete. If the mutation gene or differentially
expressed gene is not in the interaction network, this gene would
not be used for network diffusion and not be as a candidate cancer
gene. Secondly, MinNetRank uses paired tumor and normal
samples to calculate ALFC; however, TCGA datasets have a
limited number of normal samples with expression data. Thirdly,
MinNetRank only integrates mutation data and expression data
into the interaction network. Besides mutation data, other events,
such as miRNA differential expression, epigenetic changes, copy
number variation, and structure variation, could also contribute
to cancer progression. Differential expression data, including
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RNA expression data and protein expression data, could be
combined. We may need to improve MinNetRank from two
aspects in the future. On one hand, we could integrate the
gene co-expression network with the interaction networks (Hou
et al., 2019; Wei et al., 2020). We also need to incorporate
additional types of omics data (genomics, transcriptomics,
proteomics, epigenomics, and images). On the other hand,
Weighted_MinNetRank only considers mutations in coding
region. We may need to incorporate non-coding mutations. We
also need to give weight coefficients for all mutations through
multiple techniques.

Integrating different types of omics data is often used to better
elucidate the molecular function. However, sound study designs
and solid analytical strategies are needed to advance human
disease research further. For example, the mean precision of the
top 50 cancer genes is 0.61 (MinNetRank) and 0.56 (NetICS)
in TCGA-LIHC and 0.61 (MinNetRank) and 0.54 (NetICS) in
TCGA-BLCA. The top 50 candidate cancer genes of NetICS
used here are from the published paper (Dimitrakopoulos et al.,
2018). In this article, NetICS integrates different types of data that
include somatic mutation, copy number variation, methylation,
miRNA expression, gene expression, and protein expression.
Although MinNetRank only focuses on integrating the mutation
data and expression data, the mean precision of MinNetRank is
still higher than that of NetICS.

CONCLUSION

This article developed a new method (denoted as MinNetRank)
by setting weights for different types of mutations and using
the minimum strategy to integrate multi-omics for cancer genes
discovery. Minimum strategy reduced the influence of extreme
scores in highly skewed distributions and was the “double
high” strategy to prioritize cancer genes, having a relatively
high mutation score and expression score. Different weight
coefficients for the different types of mutations contributed
to the better performance. We demonstrated our method’s
accuracy and robustness in prioritizing driver genes on five
TCGA datasets and one ICGC dataset. Besides, MinNetRank
has the advantage of discovering rare and personalized cancer
genes. The top seven candidate driver genes stratified patients
into two subtypes (high-risk and low-risk groups) exhibiting
significant survival differences and could be used as prognostic
biomarkers for survival. Of course, our method has room for
improvement. Gene co-expression network and more types
of omics data should be incorporated, and different weight
coefficients should be considered.

MATERIALS AND METHODS

Dataset
The genes annotated in the CGC can be used to benchmark
known cancer genes (Tate et al., 2019). This gold standard known
cancer gene set includes 576 genes (July 2019)1. Many cancer

1https://cancer.sanger.ac.uk/census

studies use CGC genes as the benchmark for the evaluation
(Bashashati et al., 2012; Hou and Ma, 2014; Bertrand et al., 2015;
Wei et al., 2017; Guo et al., 2018).

Interaction Network
We used the interaction network that has been widely used in
the related paper (Hou and Ma, 2014; Guo et al., 2018). The
interaction network integrated a variety of resources, including
the network used in MEMo as well as the up-to-date information
from Reactome (Croft et al., 2011; Ciriello et al., 2012), the NCI-
Nature Pathway Interaction Database (Schaefer et al., 2009), and
KEGG (Kanehisa et al., 2016). The resulting interaction network
consisted of 11,648 genes and 211,794 edges. The average degree
centrality of interaction network was 34.20, and the average
betweenness centrality was 1.58E-04.

MinNetRank
MinNetRank uses an interaction network that could discover
cancer driver genes more efficiently (Leiserson et al., 2015).
One of the main reasons for this is the high connectivity (high
incoming degree and outgoing degree) of known cancer genes in
the interaction network. For example, the mean and median of
incoming degree for known cancer genes (in CGC) are 36.06 and
17, which are much higher than those of the genes that are not
classified as known cancer genes (17.41 and 3, respectively). Also,
the mean and median outgoing degree of known cancer genes are
30.37 and 12, which are much higher than those of the genes that
are not in CGC (17.66 and 4, respectively). To a certain extent,
this is expected since genes with high connectivity could exert a
more significant influence on the biological system (Winter et al.,
2012). RWR algorithm models how closely related the two genes
are and measures both the direct and indirect neighbors of each
gene in the interaction network, making it more sensitive for
prioritizing cancer driver genes (Dimitrakopoulos et al., 2018).
Unlike NetICS and DawnRank, we consider both incoming and
outgoing degree of interaction network for single omics.

Diffused Matrix
Let A be the n×n adjacency matrix of an interaction network where
n represents the number of nodes (the number of genes in the
interaction network). A is a 0–1 matrix and aij = 1 if there is
a directed edge from node j to node i. A′ is the transpose of
matrix A and aji = 1 if there is a directed edge from node i to
node j. We denote degoutj =

∑N
i=1 aij as the outgoing degree of

node j or the number of outgoing edges. While deginj =
∑N

i=1 aji
is the incoming degree of node j. MinNetRank considers both
the incoming degree and outcoming degree, so we define the
normalized adjacency matrix Anorm as,

Anorm
=


a11+a11

degout1 +deg
in
1

. . . a1n+an1
degoutn +deg

in
n

...
. . .

...
an1+a1n

degout1 +deg
in
1
· · ·

ann+ann
degoutn +deg

in
n

 . (4)

We define the diffused matrix D as,

D = β
[
I − (1− β)Anorm]−1 (5)
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The value of Dij lies between 0 and 1 and reflects the connectivity
between nodes j and i. Higher score means that two genes are
more closely related. The restart probability of β(0 ≤ β ≤ 1)
determines the degree of diffusion, namely, how far the random
walker can move in the network. When β=1, there is no diffusion,
namely, we do not use the information of the interaction network.
When β=0, gene mutation score or differential expression
score (see below) diffuses to the whole network. β depends on
the interaction network and is independent of any mutation
data or expression data. We chose β to balance diffusion and
retainment (Leiserson et al., 2015), and β is 0.48 in this study.
The diffused matrix D needs to be computed only once for a given
interaction network.

ALFC
For each patient k, we calculate the Absolute value of Log2 Fold-
Change (ALFC) of gene i for the paired tumor and normal samples
as a differential expression score. The fold change, or relative
difference, is widely used to measure differential gene expression
(Love et al., 2014). The absolute value of fold change is taken in
order to capture both upregulation and downregulation.

ALFCik=


∣∣∣log2

gene i expression of tumor sample in patient k
gene i expression of normal sample in patient k

∣∣∣ paried tumor and normal samples

∣∣∣log2
gene i expression of tumor sample in patient k

the mean of gene i expression of all normal samples

∣∣∣ unpaired
(6)

Weighted_MinNetRank
Weighted_MinNetRank uses SIFT scores (between 0 and 1)
as the weight coefficients for missense mutations and gives the
same weight with 1 to other mutations (stop-gain, stop-loss,
frameshift, and non-frameshift) (Ng and Henikoff, 2001).
Although synonymous mutations do not alter amino acids,
some deleterious synonymous mutations play important
roles in cancer (Wen et al., 2016). We further incorporate
synonymous mutations and use PrDSM scores as the weights for
synonymous mutations (Weighted_MinNetRank_PrDSM).
We also use PrDSM scores greater than 0.38 as the
weights (Weighted_MinNetRank_Filter_PrDSM). If a
PrDSM score is greater than 0.308, the corresponding
synonymous mutation is considered as deleterious (Cheng
et al., 2019). Besides, we use PredCID scores as the weights
for frameshift mutations (Weighted_MinNetRank_PrCID)
(Yue et al., 2020).

Assessing the Performance in Predicting
Known Cancer Genes
In order to assess the performance in predicting known cancer
genes, our method (Weighted_MinNetRank and MinNetRank)
was compared with NetICS (Dimitrakopoulos et al., 2018),
DawnRank (Hou and Ma, 2014), and Freq. The top 50 genes of
the population-level ranking were identified as candidate driver
genes and compared with the positive genes in CGC. We used
the precision, F1 score, and partial AUC value to evaluate the
performance. The precision was defined as expression (7) and
can be viewed as the measure of exactness. The recall was the
percentage of total known cancer genes correctly predicted by
MinNetRank. F1 score combined recall and precision using

the harmonic mean. There were many more negative genes
than positive genes (positives/negatives = 0.052) and even
fewer positive genes when we considered cancer type-specific
known cancer genes (positives/negatives ≈ 0.0029). It was more
informative to use partial AUC, which considered the number
of true positives scored higher than the nth highest scoring
negatives, measured for all values from 1 to n (Dimitrakopoulos
et al., 2018). Precision, F1 score, and partial AUC were based on
the top 50 genes.

precison =
(CGC genes) ∩ (Top N predicted driver genes)

Top N predicted driver genes
.

(7)

recall =
(CGC genes) ∩ (Top N predicted driver genes)

CGC genes
. (8)

F1 Score = 2×
precision × recall
precision + recall

. (9)

AUCn =
1
nT

n∑
i=1

Ti, (10)

where T was the total number of known cancer genes in CGC, and
Ti was the number of positives scored higher than the ithhighest
scoring negatives.

Assessing the Robustness Using the
Subset of Samples
In order to further compare these methods, we calculated the
precision, F1 score, and partial AUC using the subset of samples
with different sample sizes. We experimented with sample sizes of
n = 10, 25, 50∗1, 50∗2, ... , 50∗ dN/50e, and N was the total
sample size of multi-omics data. For each sample size, we
performed 10 random samples. We defined the precision value
P= mean(pi), where pi was the precision of top i candidate
cancer gene, i = 1, 2, ... , 50. The mean and SD of precision
value, F1 score, and partial AUC value for 10 runs were used to
measure the robustness.

Tumor Stratification
Some papers used gene mutation data and expression data to
identify genes that were indicators for survival. Using these
biomarkers, patients can be stratified into subtypes (Haider et al.,
2014). We further investigated the relationship between the top
genes of population-level ranking and patients’ survival time.
Genes whose expression with a low variation between tumors
provided very limited information for tumor stratification
(Winter et al., 2012). According to the genes’ rankings, we
selected the top seven genes with a greater SD of expression
than five as biomarkers for each dataset (Winter et al., 2012).
Using these seven biomarkers, K-means clustering (unsupervised
learning algorithm) assigned each patient to one of the two
clusters (high-risk and low-risk groups). The log-rank test was
then used to compare the survival differences of the two groups
(R survival package).
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