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Abstract

How heterogeneous are proteome folding timescales and what physical principles, if any, dictate its limits? We answer this
by predicting copy number weighted folding speed distribution – using the native topology – for E.coli and Yeast
proteome. E.coli and Yeast proteomes yield very similar distributions with average folding times of 100 milliseconds and 170
milliseconds, respectively. The topology-based folding time distribution is well described by a diffusion-drift mutation
model on a flat-fitness landscape in free energy barrier between two boundaries: i) the lowest barrier height determined by
the upper limit of folding speed and ii) the highest barrier height governed by the lower speed limit of folding. While the
fastest time scale of the distribution is near the experimentally measured speed limit of 1 microsecond (typical of barrier-less
folders), we find the slowest folding time to be around seconds (&8 seconds for Yeast distribution), approximately an order
of magnitude less than the fastest halflife (approximately 2 minutes) in the Yeast proteome. This separation of timescale
implies even the fastest degrading protein will have moderately high (96%) probability of folding before degradation. The
overall agreement with the flat-fitness landscape model further hints that proteome folding times did not undergo
additional major selection pressures – to make proteins fold faster – other than the primary requirement to ‘‘sufficiently beat
the clock’’ against its lifetime. Direct comparison between the predicted folding time and experimentally measured halflife
further shows 99% of the proteome have a folding time less than their corresponding lifetime. These two findings together
suggest that proteome folding kinetics may be bounded by protein halflife.
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Introduction

Diverse pool of protein sequences give rise to an astonishing

degree of heterogeneity in the biophysical properties across the

proteome. This raises a fundamental question: how heterogeneous

is the proteome? Recent work showed biophysical properties have

broad distributions across the proteome and their consequences at

the phenotypic level [1–5]. While sequence variation alone would

lead to such diverse biophysical properties, there are other features

of the cellular environment – for example protein abundance, role

of chaperones, co-translational folding – that can further influence

these distributions. Protein copy number – although neglected in

the earlier calculations of distributions – in particular can play a

crucial role due to a possible correlation with biophysical

properties such as folding stability [6]. It has been well established

that highly abundant proteins are slowly mutating [7,8]. The

reason behind this negative correlation is believed to be the

selection pressure against cytotoxicity of misfolded proteins arising

due to lower stability. Rules of protein biophysics has been used to

quantitatively establish the relation between abundance and

stability [6,8]. On the other hand, it is believed that there may

be a possible correlation between stability and folding speed [9–

11]. Thus, it is tempting to hypothesize that protein abundance

and folding speed may be related as well. A natural question arises

– how does protein abundance alter, if at all, the folding time

distribution? Without a priori knowledge of the effect of protein

abundance on the folding time distribution, it is imperative that

any attempt to predict the folding time distribution of a proteome

should consider the effect of abundance as well.

Learning about the extent of heterogeneity in biophysical

properties across the proteome in itself is a fundamental question –

leading further inquires on the details of the distribution. For

example in case of folding time distribution, what are the lower

and upper speed limits? What physical principle dictates these

limits? What is the peak value, if any, of the distribution? Is there a

limiting behavior due to competition with other time scales such as

diffusion, protein synthesis, degradation? If kinetic stability [12] –

introducing higher barrier height while keeping the same value for

the free energy difference between the folded and the unfolded

state – is a strategy cells use to minimize exposure to unfolded

states to avoid lethal effects of aggregation or degradation [13], do

we expect proteomes to be biased towards higher folding times?

And if so, how do these timescales compare with protein halflife, in

other words is the proteome folding timescale still able to beat the

degradation clock with an increased barrier height? While

outpacing degradation appears to be important, are there any
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other selection pressures that may have influenced proteome

folding kinetics? Furthermore, how do these distributions vary

across different kingdoms of life – for example between

Escherichia coli (E.coli) and Yeast – or is there an universality in

the shape of the distribution? In this article, we attempt to

determine proteome folding kinetics distribution and address some

of these fundamental questions.

Materials and Methods

Determining the folding speed of a protein
Plaxco, Simons, Baker [14] made the observation that relative

contact order (CO), a metric based on the native topology of the

protein, correlates well with the folding speed measured in vitro.

CO is defined as the average residue separation – normalized by

the chain length – of atomic contacts present in the native

structure of the protein [14]. Since the pioneering work of Plaxco,

Simons, Baker there have been numerous efforts to understand its

implication [15] and establish the role of other native-centric

metric [16–21] and their relative performances to predict the

folding speed of proteins using native structure [18,20,21]. One

such effort has shown absolute contact order (ACO) – defined as

the product of CO and the chain length – predicts folding speeds

more accurately than CO for bigger set of proteins [16]. In a

nutshell, all these different metrics provide a prescription to predict

the folding speed of a protein with the knowledge of the native

structure alone. We utilize this powerful idea to predict the folding

time distribution for proteins in the proteome for which the exact

(or highly homologous) native structures are known. Recent work

by Rustad and Ghosh [21] has provided a first principle

explanation – employing polymer physics arguments – for the

observed correlation between absolute contact order (ACO) [16]

and folding speed. Furthermore, within a perturbative scheme, the

work has proposed an extension of the metric (ACO) that captures

the effect of different loop topologies [21]. This new metric, minor

variation of ACO, provides slight improvement over ACO when

benchmarked against the largest set (116 proteins) of in vitro
folding speed data. We use this new modified metric, instead of

ACO, to predict the folding speed from the native structure of the

protein. For a given protein, we predict folding speeds for different

domains, assuming each domain folds independently. Since the

domain with the slowest folding speed is rate limiting, we use the

folding speed of the slowest folding domain to be the folding speed

of the protein.

Curating the fraction of proteome that have both the
structure and abundance data available

In order to predict folding speed, as described above, we need

the information about the native structures of proteins in the

proteome. We collect proteins from the Yeast and E.coli proteome

for which the structures of proteins are available. For the Yeast

proteome we use domain assignment from Yeast resource center

(YRC) database [22]. Next we perform a BLAST search of the

corresponding sequences to identify the best possible match for

their structures. We list only those proteins that simultaneously

satisfy a minimum of 80% sequence coverage and 50% identity

match. In order to predict copy number weighted folding time

distribution, we gather proteins for which both the structure and

abundance information are available. We cross reference the

curated list of proteins with available structure, described above,

against the integrated list from PaxDB database [23]. The

integrated list is the most comprehensive list of protein abundance

values. We choose this list to ensure maximum coverage of

proteins from the proteome. This method yields a total of 755

Yeast proteins. For E.coli proteome, we follow a similar approach

but use the dataset collected by O9Brien et al. [24]. The original

dataset reported in O9Brien et al. categorizes proteins (and their

domains) based on a single abundance scale. We cross reference

the combined list against the integrated list of abundance from

PaxDb [23] yielding a total of 848 E.coli proteins. In summary,

our datasets (Table S1 and S2) provide the largest fraction of

proteomes (in E.coli and Yeast) for which both the abundance and

structural informations are now available.

Results and Discussion

Folding time distribution is heterogeneous
Copy number weighted folding speed (lnkf ,kf being the folding

speed) distributions in E.coli and Yeast show a broad range of

folding speeds, from several microseconds21 to minutes21

(Figure 1). The fastest folding time is in the neighborhood of

microseconds. This is consistent with studies on ultrafast folding

proteins defining the speed limit of protein folding [21,25,26]. It is

interesting to note the lower speed limit is of the order of seconds

to minutes, in proximity to the scale of halflives of short-lived

proteins [27]. The implication of this observation will be discussed

in detail in the section below. The average folding time (tf ) for

copy number weighted distribution is calculated as

ln tf &{S ln kf T~{

P
i ln kfiNiP

i Ni

ð1Þ

where, kfi and Ni are the folding speed and the copy number,

respectively, of the i th protein. Average folding time without

accounting for differential protein abundance levels can be

obtained by simply setting Ni~1. For E.coli, we find the average

is approximately 100 milliseconds for copy number weighted

distribution. The average remains almost unaltered when the

distribution is not weighted by the protein expression level (i.e.

setting Ni~1, distribution not shown here). The average folding

time for Yeast proteome is 170 milliseconds and 60 milliseconds

for copy number weighted and unweighted distributions, respec-

tively.

Recent work – grounded in the hypothesis of global selection

against toxic effect of misfolding explaining observed correlation

between abundance and evolution rate [8] – predicts highly

abundant proteins are more stable [6]. Given this link between

stability-abundance and possible interdependence between stability

and folding kinetics [9–11], it is natural to expect a possible

relation between abundance and folding speed as well. However,

based on the results stated above, we do not see any noticeable

effect of abundance on folding kinetics in E.coli. A possible

explanation, among many other alternative ones, could be that the

proteome can not afford to under-express slow folding proteins

due to functional reasons. Furthermore, we notice a marginal

slowing down of the proteome folding speed in Yeast upon

weighting by protein abundance. Given the inherent uncertainties

in predicting folding speed from native topology, a three-fold

slowing down of the proteome is probably a very weak effect.

However, if slowing down of the proteome due to copy number

weighting is indeed beyond uncertainty, it may imply slow folding

proteins are over-expressed for strong functional reasons despite

the threat of misfolding. It may also imply the proteome is

equipped with mechanisms such as chaperone-assisted folding,

complex chaperone-substrate network [28] to mitigate possible

deleterious effects of misfolding due to lower folding speed. As will

be seen in later sections, three fold lowering of the speed around

60 millisecond timescale still allows proteins enough time to fold

Proteome Folding Kinetics
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before degradation. It is interesting to note folding speed

distributions in E.coli and Yeast – baring minor variations

mentioned above – are very similar, indicating a universal

behavior in the folding kinetics.

One caveat of our analysis is that the folding speed is predicted

using models that have been benchmarked against in vitro folding

data. However recent work, although limited, does not show

significant differences between folding times measured in vivo and

in vitro [29]. It is also important to note major conclusions remain

the same if other metric such as ACO is used to predict the folding

speed.

Diffusion-drift model of mutations on a flat-fitness
landscape explains the predicted distribution of folding
speed

Apart from minor differences in details, the overall shape and

the range of the distributions for E.coli and Yeast are roughly

similar. The universal distribution (Figure 1) of the folding speed,

irrespective of the details of the species, is well explained by a

diffusion-drift model of mutations altering folding free energy

barrier (DG{). Shakhnovich et al. [1] used a similar model to

describe a universal distribution of stability (DG). Due to close

analogy between the two models, we briefly describe the stability

model first. Further details of the model can be found in the work

of Shakhnovich et al. [1]. Their model uses diffusion - arising from

random mutations - with a drift to explain the stability distribution

P(DG). The model also imposes two boundary conditions

P(DGmin)~P(DGmax)~0 at the maximum (DGmax) and minimum

(DGmin) values of allowed stability. These two constraints can be

explained as follows (Figure 2A): from design perspective, it is

impossible to make proteins indefinitely stable, thus imposing an

upper limit on the stability, hence P(DGmax)~0. The boundary

condition on the lower limit of stability, on the other hand, arises

from the requirement of minimal stability to avoid misfolding that

can be lethal to the phenotype of the organism. The model

assumes a flat-fitness landscape for all values of stability greater

than the minimum, i.e. DGwDGmin. The fitness is severely

compromised if stability drops below the threshold i.e.

DGvDGmin, imposing the constraint P(DGmin)~0. Thus, the

fitness landscape is ‘step-like’ near the threshold (see Figure 2A).

The time evolution of the probability distribution of stability in this

mutational model with the flat ‘step-like’ landscape is given by [1]

LP

Lt
~cP{mh

LP

LDG
z

m

2
(h2zD)

L2P

L(DG)2
;

p(DGmax)~p(DGmin)~0

ð2Þ

where, c is a constant related to the birth rate of the population, m

is the mutation rate per gene (or protein), h and D are the average

and variance, respectively, of the distribution of stability changes

upon mutation. Formally, h~SDDGT and h2zD~S(DDG)2T,

where S:::T denotes the average over all possible mutations and

DDG~DGmutant{DGwt. The second derivative in equation 2

describes diffusion, while drift is captured by the first derivative (in

the right hand side of the equation). Using the long-time limit

solution P(DG,t)~ exp (lt)P(DG) [1], we require the steady state

solution to be the eigenfunction of the differential equation

{mh
LP

LDG
z

m

2
(h2zD)

L2P

L(DG)2
ð3Þ

subject to the boundary conditions. Thus, the steady state solution

– within a normalization constant A – is given by

Figure 1. Folding speed (lnkf ) distribution – calculated using native topology – of E.coli (in red) and Yeast (in blue) weighted by
protein copy number. The distribution of average lifetime for proteins in Yeast [27] is shown in green. The predicted folding time distribution
using a diffusion-drift model (equation 5) with the boundary condition of the maximum folding time of 8 seconds is shown in black. Maximum
folding time of 8 seconds was determined by best fitting Yeast distribution.
doi:10.1371/journal.pone.0112701.g001
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P(DG)~A exp
hDG

h2zD

� �
sin p

DG{DGmin

DGmax{DGmin

� �
ð4Þ

Noticing one-to-one relation between folding speed (kf ) and

barrier height (DG{), we employ similar idea to model the

distribution of barrier height to ultimately predict the folding

speed distribution. We use the same diffusion-drift model where

mutations alter the free energy barrier of folding instead of folding

stability. Analogous to the stability model, we impose two

boundary conditions, P(DG
{
min)~P(DG{

max)~0, at the two

extremities of the free energy barrier, DG
{
min and DG{

max (see

Figure 2B). On one hand it is simply impossible to make proteins

that fold faster than the speed limit of folding, setting the lower

limit of the barrier DG
{
min. On the other hand, extremely slow

folding proteins – if not folded at birth – even if highly stable will

not be able to fold in time before degradation. Stated differently,

for functional reasons, proteins would require to fold before their

lifetime (inside the cell) expires. Also, slow folding proteins would

be a potential hazard due to unfolded-state induced aggregation

propensity. This sets a selection pressure against slow folding

proteins with extremely high barriers (DG{
max). Similar to the

stability model, we assume a flat-fitness landscape for

DG{
vDG{

max, with a severe drop in fitness for DG{
wDG{

max

(Figure 2B). In reality, fitness can gradually decrease around the

threshold value of DG{
max. However, in order to keep the

calculation simple and analogous to the work of Shakhnovich et
al., we make the simplifying assumption of a ‘step-like’ fitness

function. Thus the model assumes all proteins are subjected to a

single global constraint of lifetime implying a single value of

DG{
max. Noticing the exact analogy between the model for the

stability and the barrier height, the predicted distribution for the

free energy barrier can be easily obtained by replacing the stability

(DG) by the barrier height DG{ in equation 4. Thus,

P(DG{)~A exp
hDG{

h2zD

� �
sin p

DG{{DG
{
min

DG
{
max{DG

{
min

 !
ð5Þ

where, A is a normalization constant, h~SDDG{T,

h2zD~S(DDG{)2T; DDG{~DG
{
mutant{DG

{
wt, and S:::T denotes

the average over all possible mutations of barrier height. Three

parameters of the model h,D, and DG
{
min, can be estimated from

the literature. From the dataset of 858 mutations across

24 different proteins [30], we find h~0:6(kbT) and

h2zD~1:12(kbT)2; kb is the Boltzmann constant and T is the

room temperature.

The lower limit of the barrier is assumed to be zero, (DG
{
min~0),

consistent with barrier-less folding proteins that define the speed

limit of folding [25,26].

Now we focus on the determination of DG{
max. We hypothesize

the lower speed limit i.e. the maximum folding time (tf ,max) –

setting the upper limit of folding barrier (DG{
max) – has to be less

than the protein halflife (t1=2). Experimentally reported halflife

measures the time scale over which the copy number of a given

protein, upon inhibition of synthesis, decreases by half [27]. This

timescale does not distinguish between unfolded or folded state

degradation, instead simply provides an estimate of the lifetime of

a protein inside a cell. Based on this definition of halflife, it is

natural to expect that proteins would be required to fold in a

timescale lower than their halflife. Assuming lifetime distribution

to be Poisson, average lifetime (tl ) and halflife (t1=2) are related

tl~t1=2= ln 2. If the average folding time of a given protein is tf ,

the probability of folding before degradation (Pfbd ) is

Pfbd~
1

1ztf =tl

: ð6Þ

Clearly, if tf wwtl most of the proteins will be degraded before

folding. At the other extreme if tlwwtf , almost all of the proteins

will be folded before degradation. It is also important to note, even

if tl&tf , nearly 50% of the proteins will be degraded before

folding which is not very efficient either. Thus we do not assume

the boundary condition due to the maximum folding time to be

exactly equal to the average lifetime of the fastest degrading

protein. Instead, we fit topology-based folding speed distribution to

determine the maximum allowed folding time for the diffusion-

drift model. We find the best fit value of DG{
max to be 16kbT ,

yielding the maximum folding time tf ,max&8 seconds (for Yeast

distribution). In the above we used the speed-barrier height

relation kf ~k0 exp ({DG{=kbT) and k0&1microsecond{1.

The numerical value of k0 is consistent with several estimates of

folding speed limit [21,25,26,31,32].

Figure 1 shows the best fit distribution is in reasonable

agreement with the Yeast distribution. The implication of this is

threefold: i) the diffusion-drift model provides an independent test

of our topology-based model prediction for the distribution of

folding kinetics; ii) tf ~tf ,max~8 seconds and tl~2=:69~3 min

Figure 2. A) Accessible range in stability (DG increasing towards right) is shown between blue and red lines. Black line shows the flat-
fitness landscape for all values of stability greater than the minimum; i.e. DGwDGmin, with the red line showing the drop in fitness when stability is
lower than the minimum due to cytotoxic effects from aggregation/misfolding. Blue line shows the upper limit of stability (DGmax) due to design
challenge. B) Accessible range in the folding free energy barrier height (DG{ increasing to the right) between blue and red lines. Black line shows the
flat-fitness landscape for all values of barrier heights less than the maximum allowed i.e. DG{

vDG{
max, with the red line showing the compromised

fitness when the barrier height is greater than the maximum leading to slow folding proteins, prone to aggregation and degradation. Blue line shows
it is not possible to create proteins faster than the speed limit of folding set by barrier-less folders.
doi:10.1371/journal.pone.0112701.g002
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(for the fastest degrading protein in Yeast) argues even the fastest

degrading protein in Yeast has roughly 96% probability of folding

before the expiration of its lifetime. This supports the hypothesis

that the slowest folding processes may be constrained by protein

lifetime allowing sufficient chance for proteins to fold before

degradation; iii) the assumption of flat-fitness landscape is

reasonable. This implies proteome folding kinetics is not subjected

to any major selection criteria to make it faster other than the

primary requirement of staying sufficiently below the maximum

allowed timescale set by protein halflife. However, it can not be

ruled out that there are other secondary pressures to alter folding

kinetics that can further improve the agreement between the

diffusion-drift and topology-based model of folding kinetics. We

have also fitted E.coli speed distribution with the diffusion-drift

model, yielding tf ,max~2 seconds (data not shown). However we

do not provide details since a corresponding comparison with

lifetime is not possible due to lack of lifetime information for E.coli

proteome.

Diffusion-drift mutation model makes further prediction on the

upper limit of the number of mutations per portion of the genome

encoding essential genes per replication. As mentioned above, long

time limit solution is given by P(DG{,t)~ exp (lt)P(DG{). In

order for the population to survive, we require l§0. This

requirement sets an upper limit on the number of mutations per

portion of the genome encoding essential genes per replication.

This limit can be obtained in terms of h, D, DG{
max{DG

{
min (see

equation 8 from [1] for details). Using the values for the

parameters noted above, our estimate for the upper limit is

&5:5. This is indeed close to 5:7(&6) predicted by Shakhnovich

et al. from the consideration of the stability distribution and

matches well with experiments [1].

Proteome folding time is lower than the lifetime
The analysis above provides indirect support to the hypothesis

that proteome lifetime may limit folding kinetics. We further test

this hypothesis by directly plotting the distribution of average

lifetime (tl converted from experimentally measured halflife) values

[27] for Yeast proteome (Figure 1 in green). It is evident that the

folding time and lifetime distributions are well separated.

However, we also notice slight overlap between the two time

scales at the boundary. This observation, at first, may indicate

existence of some proteins for which the folding time may be

higher than the lifetime, implying a possible contradiction to our

hypothesis that protein folding is faster than degradation. In order

to further test the validity of our hypothesis, we directly compare

these measured lifetime values [27] and predicted folding times for

each individual proteins. We select proteins from our list – used to

predict the folding time in the Yeast proteome – for which lifetimes

are known [27]. We compute the ratio of the lifetime and folding

time for each protein in our dataset (Table S3). Figure 3 shows the

distribution of the ratios of these two time scales. We find less than

1% of the proteome (4 out of 520 proteins in our list) has a folding

time higher than their lifetime. The overwhelming number of

proteins with a lower folding time than their lifetime, further

supports the hypothesis that the lower limit of protein folding

speed is indeed bounded by protein lifetime.

Although 1% is a minor fraction, one can further reason these

possible exceptions. First, chaperones can play an important role

to facilitate folding [5,33–35]. Chaperones can favorably alter the

ratio of lifetime and folding time to help proteins escape the

selection against degradation. Second, it is possible that the

kinetics of the slowest folding domains are altered due to possible

interdependence between multiple domains [36], an aspect not

included in our model. Third, it should also be noted that the

reported halflife in the work of O9Shea et al. [27] has an inherent

uncertainty of a factor of two. In order to determine if any of the

reasons mentioned above may be responsible, we further studied

in detail the four proteins (corresponding open reading frames of

YER070W, YFL041W, YJL200C and YLR304C) for which the

predicted folding time is higher than the lifetime. We find three of

these proteins (YFL041W, YJL200C and YLR304C) have folding

time within twice their average lifetime, within the measurement

uncertainty [27]. The only protein that has significantly higher

folding time (fourfold higher than the lifetime) is YER070W with

80% probability of degradation before folding. However, it is

Figure 3. Distribution of the ratio of protein lifetime and protein folding time.
doi:10.1371/journal.pone.0112701.g003
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interesting to note that this protein is also one of the highly

abundant (top 5%) protein in the Yeast proteome [23]. The high

abundance is likely due to its important biological function of

facilitating synthesis of DNA. Furthermore, high abundance may

offset the effect of slow folding ensuring enough copies (in absolute

numbers) of the protein are present inside the cell despite the low

probability of folding before degradation. Moreover, this protein

has eighteen chaperone interaction partners as reported in

ChaperoneDB database [28]. While the exact role of such

unusually high number of chaperones to folding speed is not

known at this time, it may be possible that some specific

chaperones from this list or the entire chaperone network – in

concert – facilitate folding of this protein in reasonable time scale

to lower the burden of degradation.

Conclusions

In summary, we predict the folding time distributions for E.coli

and Yeast proteome weighted by protein expression levels. We

make four key observations. First, we notice E.coli and Yeast have

broad distributions of folding speed with roughly similar features

and ranges of the distribution. Second, the underlying distribution

is reasonably explained by an independent model of diffusion-drift

of mutations in free energy barrier on a ‘‘flat-fitness landscape’’

with two boundary conditions. While the boundary at the upper

speed limit (minimum folding time) is determined by barrierless

folding proteins, we find the maximum folding time to be

tf ,max&8 seconds (for Yeast proteome). Comparing this with the

average lifetime of the fastest degrading protein (tl~3 min), we

find even the fastest degrading protein in Yeast has roughly 96%

probability of folding before the expiration of its lifetime. This

supports the hypothesis that the slowest folding time may be

bounded by protein lifetime allowing sufficient chance for proteins

to fold before degradation. Third, direct comparison between

measured lifetime and predicted folding time shows 99% of the

proteome has a folding time less than the corresponding lifetime.

Finally, the reasonable agreement between the topology-based

speed distribution and the diffusion-drift model on ‘‘flat-fitness

landscape’’ further justifies the assumption of flat-fitness landscape.

This implies the primary selection pressure for proteome folding

kinetics is perhaps to outrun degradation only.
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Table S1 Dataset of folding time and abundance for
E.coli proteome. First column reports protein name as reported

in O9Brien et al. [24]; second column reports ln kf where kf is the

folding speed (in the units of s{1) for the slowest folding domain;

third column reports abundance value (in ppm) from PaxDB

Integrated list [23].

(PDF)

Table S2 Dataset of folding time and abundance for
Yeast proteome. First column reports Open Reading Frame as

reported in YRC [22]; second column reports ln kf where kf is the

folding speed for the slowest folding domain in the units of s{1;

third column reports abundance value (in ppm) from PaxDB

Integrated list [23].

(PDF)

Table S3 Dataset of folding time and halflife for Yeast
proteome. First column reports Open Reading Frame as

reported in YRC [22]; second column reports halflife (in minutes)

from O9Shea et al. [27]; third column reports ln kf where kf is the

folding speed for the slowest folding domain in the units of s{1.

(PDF)
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