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During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish 
an early, effective, and sustained viral control, preventing severe immune alterations 
and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting 
differences in terms of activation, functional profile, and ability to limit HIV replication. 
Some of the most important CD8+ T cells subsets associated with viral control, pro-
duction of potent antiviral molecules, and strong polyfunctional responses include Th1-
like cytokine pattern and Tc17 cells. In addition, the expression of specific activation 
markers has been also associated with a more effective response of CD8+ T cells, as 
evidenced in HLA-DR+ CD38− cells. CD8+ T  cells in both, peripheral blood and gut 
mucosa, are particularly important in individuals with a resistant phenotype, including 
HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and 
HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the 
context of an established HIV-1 infection, the presence of HIV-specific cells with effector 
abilities and a defined functional profile in HESNs, remain poorly understood. Here, we 
reviewed studies carried out on different subpopulations of CD8+ T cells in relation with 
natural resistance to HIV infection and progression.

Keywords: CD8+ T  cells subpopulations, Hiv infection, natural resistance to Hiv, spontaneous control of Hiv 
replication, antiviral immune response

iNTRODUCTiON

HIV infection is currently one of the most important health problems worldwide; although con-
tinuous exposure to the virus may result in infection, an interesting group of repeatedly exposed 
individuals known as HIV-exposed seronegative individuals (HESNs), who do not exhibit any 
clinical or serological evidence of HIV infection, has been described (1, 2). Furthermore, among 
those who acquire the infection, different patterns of AIDS progression are observed: most infected 
patients progress to AIDS after 8–10  years, but some uncommon patients, known as long-term 
non-progressors (LTNPs), remain asymptomatic for more than 10 years, exhibiting low viral loads 
in the absence of antiretroviral therapy (3). In addition, the HIV-controllers exhibit a sustained and 
spontaneous control of the viral replication for at least 1 year after diagnosis with viral loads below 
2,000 copies/mL (4).

Some genetic and immunological mechanisms have been associated with the resistant phenotype 
as follows: (i) genetic polymorphisms in the required co-receptors for viral entry, such as CCR5 or 
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CCR2 (5, 6); (ii) increased production of the co-receptor ligands 
MIP-1α/β, RANTES or SDF-1; (iii) the presence of antibodies 
blocking viral co-receptors (7); (iv) the expression of different 
microRNAs induced by the viral exposure (8, 9) that may modu-
late the innate immune system or interfere directly with viral 
mRNAs blocking the infection (10); (v) induction of spontaneous 
apoptosis of target cells (6, 11); (vi) production of soluble factors 
with antiviral activity, such as TRIM5α, APOBEC-3G, SAMHD-
1, serpina1, elafin, Human neutrophil peptide, beta-defensins, 
and LL-37 (12–14), other proteins implicated in host defense and 
bacterial binding, such as bPRP2, Histatin-3, Lysozyme C, and 
SLPI (15), and the presence of non-cationic proteins in genital 
secretions with HIV-1 neutralizing activity (16); (vii) high activ-
ity of natural killer cells (17, 18) and dendritic cells (DC) (19); 
(viii) high levels of neutralizing IgA antibodies (18, 20), which are 
even associated with protection in vaccine clinical trials, as they 
could prevent HIV mucosal transcytosis (21); (ix) expression of 
the alleles HLA-B57 and -B27 that present immunodominant 
peptides (6); and (x) effective and polyfunctional profile of HIV-
specific CD4+ and CD8+ T cell responses (22, 23).

Some of these mechanisms that are so far associated with the 
resistant phenotype have been extensively studied to determine 
the immune correlates of protection that may serve as therapeutic 
targets. In particular, the induction of CD8+ T cells seems to con-
stitute a key element for a potential vaccine, as the cells directed 
against more conserved peptides are crucial for viral control (24). 
Indeed, in macaques, the vaccination with immunodominant 
epitopes of the simian immunodeficiency virus (SIV), which is 
closely related to HIV, induced a high frequency of SIV-specific 
CD8+ T cells able to control viral replication (25).

The immune response of CD8+ T cells is triggered since early 
stages of HIV infection, and a polyfunctional response has been 
associated with viral control. In fact, this response is related to 
the establishment of a low viral set point, which is considered 
a predictor of slower rate of disease progression in LTNP and 
HIV-controllers (26–28). However, much less is known regard-
ing their importance during viral exposure in HESNs. In those 
individuals, the HIV-specific CD8+ T cells appear to be increased, 
exhibiting lower activation, higher effector abilities, and a specific 
functional profile, with IFN-γ secretion after HIV stimulation 
in vitro (29, 30).

Thus, the intriguing question is how to explain the presence 
of the HIV-specific CD8+ T cells in the absence of an established 
infection, as occurs in HESNs. During sexual transmission, this 
could be the result of an abortive primary infection after the virus 
enters the mucosal barrier, considering that at least early events 
of the viral replication cycle are required to present viral peptides 
in the context of class I MHC molecules to elicit a CD8+ T cell 
response. The systemic activation of a specific response could 
then be responsible for avoiding the establishment of the infec-
tion (31). Nonetheless, it could also be related to the presence of 
a heterologous T cell response to similar antigens (32).

Although several studies have reported the presence of such 
specific cells, the functional phenotype of the CD8+ T cells that 
are more efficient in avoiding the establishment of HIV infection 
and/or controlling viral replication remains to be clarified. To 
approach this question, we reviewed recently published studies 

carried out on different subpopulations of CD8+ T cells in relation 
to natural resistance to HIV infection and progression.

ROLe AND iMPORTANCe OF CD8+  
T CeLLS DURiNG THe ANTiviRAL 
ReSPONSe

CD8+ T cells are a subpopulation of T cells that have a relevant role 
in host defense mainly against viruses and tumor cells. Effector 
cell differentiation occurs when naïve CD8+ T cells are activated 
by antigen-presenting cells (APCs), specifically DCs, that present 
endogenous peptides in the context of class I MHC molecules. 
In addition, they require the interaction with co-stimulatory 
molecules, such as CD80/86, and signaling through cytokines, 
usually provided by DCs and activated CD4+ T  cells (33, 34); 
however, some studies have indicated little or no requirement for 
additional signaling coming from the CD4 compartment, at least 
under certain circumstances (35, 36).

Once naïve-specific CD8+ T cells are activated, the effective 
response requires clonal expansion and formation of primary 
effector cells capable of recognizing peptides from virally infected 
or tumor cells, leading to direct killing of antigen-bearing 
cells through perforins, granzymes, and Fas/FasL interaction  
(33, 37–39). In addition, release of cytokines with antimicrobial 
action, such as TNF-α and IFN-γ (40), and chemokines, such as 
MIP-1α/β and RANTES (41); all these mechanisms contribute to 
clearance of altered cells.

The concentration and antigen persistence play an impor-
tant role in the differentiation into different subsets of T  cells. 
Although a brief exposure to an antigen presented by APCs can 
trigger activation, expansion, and differentiation of naïve CD8+ 
T  cells into effector T  cells, prolonged exposure to the antigen 
is usually required to generate an efficient effector response and 
memory CD8+ T cells (33, 42). After resolution of an infection 
or a tumor process, a phase of T cell contraction is induced as 
a mechanism of immune regulation, during which most of the 
effector specific-CD8+ T cells die by apoptosis and some survivor 
cells (5–10%) are preserved as long-lived memory cells (33, 37).

Despite an effector response of CD8+ T cells, the successful 
eradication of the pathogen is not always guaranteed. In this 
sense, chronic infections such as HIV are characterized by antigen 
persistence that induces terminally differentiated effector CD8+ 
T  cells over the memory phenotypes, and ultimately immune 
exhaustion and activation-induced cell death (43). In fact, late 
phases of HIV infection are associated with progressive reduction 
of CD8+ T cells, lower effector functions, and inability to respond 
to HIV and other pathogens or tumor cells (44–46).

FUNCTiONAL SUBSeTS OF CD8+ T CeLLS

Once activated, the CD8+ T cells may differentiate into several 
functional phenotypes. Initially, they acquire an effector pheno-
type that will result in high numbers of terminally differentiated 
effector cells (85–90% of activated CD8+ T  cells). This effector 
phenotype is characterized by high cytotoxic ability and pro-
duction of cytokines; nonetheless, as the pattern of produced 
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TABLe 1 | Subpopulations of CD8+ T cells according to effector and memory 
phenotype markers.

Phenotype Surface-expressed markers

Naïve CD8+ T cells CD45RA+ CD45RO− CCR7+ CD62L+

Effector CD8+ T cells CD45RA+ CD45RO− CCR7− CD62L−

Effector memory CD8+ T cells CD45RA− CD45RO+ CCR7− CD62L−

Central memory CD8+ T cells CD45RA− CD45RO+ CCR7+ CD62L+
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cytokines is variable among CD8+ T cells, they can be classified 
into different subsets of effector cells: (i) CD8+ T cells with a Th1-
like cytokine pattern (Tc1), which produce IFN-γ and TNF-α and 
exhibit a high cytotoxic function and (ii) CD8+ T cells with a Th2-
like cytokine pattern (Tc2), which produce IL-4, IL-5, IL-6, and 
IL-10 and have lower cytotoxic ability than Tc1 cells. In addition, 
some cells produce both Th1 and Th2 cytokines; interestingly, 
naïve CD8+ T cells exhibit a strong preference to differentiate into 
Tc1 cells (47). An additional pattern recently described and less 
studied is Tc17 that produces IL-17 but no granzyme B, and has 
a low capacity to perform lysis in vitro; these cells exhibit some 
functional plasticity, since they can produce IFN-γ while losing 
the expression of IL-17 (48).

Once the pathogen is eradicated, some cells acquire a memory 
phenotype that persists even in the absence of the antigen (49, 50).  
These memory CD8+ T cells are characterized by their capacity 
of self-renewal, reside in lymphoid and non-lymphoid tissues 
awaiting a second encounter with the specific antigen, and recall 
effector functions after this encounter (51). They are distinguished 
from naïve and effector CD8+ T  cells that express the marker 
CD45RA, by the loss of this marker and the gain of CD45RO 
after differentiation (52). These memory CD8+ T cells have been 
classified into the subsets as follows, considering differences in 
the degrees of effector functions, proliferative capacity, and tissue 
homing properties: (i) central memory cells restricted mainly 
to lymphoid tissues because their expression of the lymphoid 
homing molecules CD62L and CCR7, which are also considered 
as the source for self-renewal of the pool of memory cells, gen-
erating a second wave of effector T  cells; (ii) effector memory 
cells that provide a first line of defense against infections through 
immediate effector functions and are present in circulation and 
non-lymphoid tissues due to the low expression of the lymphoid 
homing molecules CD62L and CCR7 (37, 51); and (iii) a recently 
described subset of tissue-resident memory cells that are located 
at sites of pathogen entry. The protective CD8+ T cell response 
is achieved through the collective function of all these effector 
and memory subsets (51). A summary of effector and memory 
phenotype markers of CD8+ T cells is shown in Table 1.

In addition to the effector and memory subsets, these CD8+ 
T cells can also be classified according to the level of activation; 
based on the expression of the activation markers HLA-DR and 
CD38, four phenotypes of cells have been identified: (i) HLA-
DR+CD38+; (ii) HLA-DR+CD38−; (iii) HLA-DR−CD38+; and (iv) 
HLA-DR−CD38−.

The co-expression of HLA-DR and CD38 define the classical 
activation phenotype of CD8+ T  cells. Several studies indicate 
that this population exhibits high effector functions, such as 

proliferation, cytotoxicity, and cytokine production, as well as 
higher susceptibility to cell death after their function have been 
accomplished (53, 54). Indeed, this subpopulation of activated 
specific CD8+ T  cells performs an important function during 
acute viral infections, contributing to viral control (26); however, 
the maintenance of this activation state observed during chronic 
viral infections is related to the subsequent loss of their functional 
abilities, to increased expression of inhibitory molecules related 
to immune exhaustion, and to activation-induced cell death 
(55). Some studies have focused on the subpopulation HLA-
DR+CD38−CD8+ T  cells, particularly in the context of chronic 
viral infection (56, 57). This phenotype has been related to a 
controlled activated phenotype because of its low expression of 
the proliferation marker Ki-67 and of additional activation mark-
ers, such as CD69, CD25, CD71, and CD40. Indeed, the expres-
sion of these markers is similar to the one observed in resting 
HLA-DR−CD38−CD8+ T cells and lower than the one expressed 
by HLA-DR+CD38+CD8+ T cells. Remarkably, despite this lower 
activation, HLA-DR+CD38−CD8+ T cells exhibit a higher func-
tional response, an increased survival rate and a greater ability 
to suppress viral replication compared to cells expressing both 
activation markers (56, 57). This particular activation phenotype 
seems to be induced by a higher avidity in the recognition of viral 
epitopes in the presence of low peptide concentrations (57).

In addition to these described populations, some CD8+ T cells 
exhibit the ability to suppress T helper activity and induce anergy, 
called regulatory CD8+ T cells (58–60); however, they are not well 
characterized. Some reports indicate that these cells are related 
to a memory phenotype since they are CD45RA negative; in 
addition, they express the CD122 marker but neither the CD25 
nor the FoxP3 markers, and their regulatory function seems to 
be mainly achieved by IL-10 production. Although other mecha-
nisms, such as cytotoxicity could also be involved in regulating 
effector cells, this issue requires further studies (61).

Hiv PATHOGeNeSiS AND THe ROLe OF 
CD8+ T CeLLS DURiNG Hiv iNFeCTiON

HIV infection is characterized by massive depletion of activated 
CD4+ T cells in peripheral blood but mainly in the gut-associated 
lymphoid tissue (GALT); this cell elimination induces structural 
damage, loss of the mucosal integrity, and consequently microbial 
translocation from the intestinal lumen to systemic circulation 
(62). Subsequently, excessive and generalized immune activa-
tion of almost all immune cells is established. The immune 
hyperactivation initiates during early infection and is maintained 
throughout the chronic phase; it is currently accepted as the main 
pathogenic mechanism of HIV infection and is considered the 
best predictor of AIDS progression (63). This phenomenon con-
tributes by increasing the number of viral target cells, augmenting 
the production of viral particles, and leading to quantitative and 
functional alterations of different components of the innate and 
adaptive immune responses (64).

The pathogenesis of the infection and the rate of HIV progres-
sion to AIDS is related to the viral control achieved as of the early 
stage of the infection, which is mainly mediated by CD8+ T cell 
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responses, including both the cytotoxic and the non-cytotoxic 
antiviral response (65–67). In fact, an inverse correlation between 
specific responses of these cells and viral loads has been estab-
lished. While the cytotoxic activity induces death of HIV-infected 
cells through granzymes, perforin and the Fas–FasL pathway, the 
antiviral molecules produced by CD8+ T cells inhibit viral entry 
or virus replication (68).

The magnitude and rapid onset of CD8+ T responses after 
acquiring the infection is crucial to determine viral control, since 
a high frequency and activation of HIV-specific CD8+ T  cells 
appearing during the hyperacute infection are associated with 
a low viral set point, which is considered a predictor of slow 
disease progression (26, 27). In this respect, the establishment 
of a potent but controlled response of CD8+ T cells as of early 
infection is related to better control of the infection and delayed 
AIDS progression (26). In addition, the ability to maintain this 
response during the chronic phase is critical, as the depletion 
of CD8+ T cells in the SIV model showed a loss of viral control 
(69). Supporting the crucial role of CD8+ T cells in HIV, vaccine 
strategies in the SIV model promote the response of this popula-
tion reducing viral replication once the challenge is established 
(70); in this respect, the use of some prospective vaccines tested in 
humans designed to trigger a strong response of this cell popula-
tion showed promising results (71–73).

Other important aspect regarding CD8+ T cells response during 
HIV infection is the memory differentiation pattern; in infected 
patients, the most frequent subset is the pre-terminally differenti-
ated CD45RA−CCR7− cells, followed by CD45RA+CCR7+ cells, 
whereas the terminally differentiated CD45RA−CCR7+ cells 
are found in a lower frequency (74). The proliferative capacity 
of these subsets is variable, observing a more rapid division in 
precursor memory cells (CD45RA+CCR7+) after stimulus (74). 
Interestingly, the frequency of these subpopulations varies 
according to the phase of the infection, finding a higher propor-
tion of central memory (CCR7+CD45RO+) and effector memory 
(CCR7−CD45RO−) CD8+ T cells during the acute stage; while in 
the chronic phase, there is a predominance of effector memory 
only (75). Furthermore, the differentiation and functional 
state of CD8+ T cells is also influenced by the expression of the 
costimulatory receptors CD28 and CD27, involved in regulat-
ing T cell activation. Among the three subsets so far described: 
CD28+CD27+, CD28−CD27+, and CD28−CD27, the intermediate 
subset CD28−CD27+, which exhibits lower proliferation and 
reduced cytotoxic potential (76), is found in higher frequency in 
HIV infected individuals (76).

Certainly, HIV infection is so complex that the potent sup-
pressive response exerted by these cells to control viral infection 
might induce a strong selective pressure on the virus with con-
sequent viral escape, increasing viral diversity, viral replication, 
and progression to AIDS, or conversely it might result in the loss 
of the viral fitness and better viral control (77, 78). Furthermore, 
the persistence of HIV infection and the excessive immune 
activation that is characteristic of the infection imply a constant 
challenge for these cells leading to progressive loss of their ability 
to respond to the antigens presented and the development of 
immune exhaustion (55, 79). In such a situation, HIV-specific 
CD8+ T cells exhibit increased expression of surface inhibitory 

molecules, such as PD-1, CTLA-4, or Tim-3, reduced production 
of cytokines and cytotoxic molecules, and an increased suscepti-
bility to cell death (Figure 1) (80, 81). In addition, the response 
mediated by regulatory CD8+ T  cells has been associated with 
advanced disease, as these cells suppress the cytolytic ability of 
HIV-specific CD8+ T cell, and also limit the production of IL-2 
by direct cell–cell contact mechanisms (82).

ROLe OF CD8+ T CeLLS iN NATURAL 
ReSiSTANCe TO Hiv iNFeCTiON

As just described, the response of CD8+ T cells has been reported 
to be one of the main mechanisms involved in controlling viral 
replication during HIV infection. In fact, a better response of 
these cells is frequently related to the HIV controller phenotype, 
since these individuals exhibit immunodominant HIV-specific 
CD8+ T cell responses in both periphery and GALT tissue, and 
a higher proliferative and cytotoxic capacity (56, 83, 84). In fact, 
HIV-controllers exhibit a higher functional response of specific 
CD8+ T  cells, detecting cells reaching up to five simultaneous 
functions, including CD107a, IFN-γ, MIP-1β, IL-2, and TNF-α 
in response to Gag peptides; as expected, the higher frequency 
of these polyfunctional cells is inversely correlated with the viral 
load (85). Nonetheless, some of the HIV-controller individuals 
do present weak responses of these cells, suggesting that other 
mechanisms are also important in inducing and maintaining this 
controller phenotype (86). Despite this, the CD8+ T cell response 
remains the main mechanism of viral control described in the 
majority of HIV-controllers; in this respect, the phenotype of 
these cells in terms of effector and memory phenotypes and in 
level of activation could also have a different impact on viral 
control. In HIV-controllers, the effector memory and terminal 
effector subpopulations exhibit a high inhibitory potential to 
suppress the infection in vitro, and these subpopulations respond 
more rapidly to the infection (87). Similar results were observed 
in the SIV model, where vaccination inducing high numbers 
of effector memory CD8+ T  cells led to the establishment of a 
controller phenotype (88).

By contrast, other reports indicate that these individuals have 
low or absent response of CD8+ T cells with an effector pheno-
type, maintaining highly functional central memory responses 
(89). In these individuals, a transitional memory phenotype of 
CD8+ T cells with non-cytotoxic antiviral responses, and exhib-
iting high HIV-suppressor activity were also described (90). 
However, other studies reported that this memory phenotype 
does not predict the functional ability of CD8+ T cells and that 
there was no over-representation of cells with a central memory 
phenotype in polyfunctional responses (85). In addition to 
the effector and memory phenotypes, some subpopulations of 
CD8+ T cells, defined according to the expression of activation 
markers, seem to play a role in the viral control exhibited by 
HIV-controllers. In these individuals, a low frequency of CD8+ 
T  cells co-expressing HLA-DR and CD38, a subpopulation 
related to a less efficient control of infection, have been described 
compared to HIV-progressors by other researchers and by us 
(57, 83). In addition, controllers exhibited a higher frequency of 
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FiGURe 1 | Role of CD8+ T cells in the context of the HIV-1 infection. (A) In uninfected individuals, once CD8+ T cells are activated, they acquire an effector 
phenotype characterized by high production of granzyme, perforin, and some pro-inflammatory molecules, such as RANTES and MIP-1α/β. In addition, these cells 
upregulate the expression of FAS-ligand. Some subpopulations of CD8+ T cells have been reported, including (i) Th1-like cytokine pattern (Tc1) cells have strong 
cytotoxic function and produce high levels of IFN-g and TNF-α; (ii) Th2-like cytokine pattern (Tc2) cells produce IL-4, IL-5, IL-6, and IL-10 and have lower cytotoxic 
ability; and (iii) Tc17 cells produce high levels of IL-17 but no granzyme. Once the pathogen is erradicated, the majority of effector cells die, and some become 
memory cells (EMs, effector memory cells; CMs, central memory cells, and TRMs, tissue resident memory cells). (B) During the chronic phase of the HIV-1 infection, 
the continuous viral replication induces the persistence of effector CD8+ T cells expressing high levels of activation markers, which progressively loss their functional 
activity and start expressing exhausting molecules, such as PD-1, CTLA-4, and Tim-3. This phenotype is characterized by low cytotoxicity and cytokines 
production. During this infection, there is a predominance of Tc2 cells and a reduction of Tc1 and Tc17. In addition, memory cells are decreased and there is a 
preferential differentiation into EMs.
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CD8+ T cells expressing the activation marker HLA-DR but not 
CD38, mainly in HIV-specific cells; this activation phenotype 
was associated with better survival capacity, higher frequency 
of polyfunctional cells, and greater proliferative and cytotoxic 
capacity that results in higher ability to suppress the virus  
(56, 57). In fact, we observed a predominance of HLA-DR+CD38− 
CD8+ T  cells over the double-positive cells in HIV-controllers 
and, interestingly, it was related to a regulation profile and lower 
progression in terms of viral load and CD4 count (91). These 
results are consistent with other reports in which expression of 
CD38 on CD8+ T cells was related to high viral load and disease 
progression to AIDS (92, 93). Indeed, the expression of CD38 
was induced in vitro by high concentrations of HIV peptides and 
also by the presence of pro-inflammatory cytokines, especially 
IFN-α, whereas the phenotype HLA-DR+CD38− was induced by 
low concentrations of viral peptides as observed in vivo by HIV-
controllers that maintain low viral loads (57). In HIV-controllers, 
we also observed an increased frequency of resting CD8+ T cells, 
HLA-DR-CD38− compared to HIV-progressors (91). It has been 
suggested that the effective immune response to low viral load 
in HIV-controllers could be partly related to a higher avidity of 
CD8+ T cells to recognize the virus (94).

The Tc1, Tc2, and Tc17 subpopulations are also involved in 
the HIV response. In this regard, upon antigenic stimulation, Tc1 
cells acquire a functional phenotype characterized by a high cyto-
toxic capacity through Fas–FasL interaction and degranulation 
of perforin and granzymes (95). Under physiological conditions, 
most CD8+ T  cells exhibit a Tc1 profile induced by IL-12 and 
IFN-γ. However, during HIV infection, a poor production of 
IL-12 can induce polarization from Tc1 to Tc2 cells, decreasing 
the cytotoxic capacity against infected cells (96). In addition, Tc2 
cells reduce the production of IL-2 by Tc1 cells, thus decrease 
cytokine production, proliferation, and cytotoxicity (97, 98). 
Interestingly, HIV patients exhibit a higher frequency of CD8+ 
T  cells producing IL-4 than healthy individuals (19). Finally, 
Tc17 cells are particularly important during the HIV infection, 
because of their ability to inhibit microbial translocation into gut 
mucosa, by promoting the proliferation of enterocytes (99–102). 
However, HIV has drastic effects on the frequency and function 
of these cells, which are important in preserving CD4+ T cells in 
long-term non-progressor patients (103).

Although the main role of CD8+ T cells has been outlined once 
HIV infection is established, some studies reported the presence 
of HIV-specific CD8+ T cells in HESNs with high effector capacity, 
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suggesting that these cells could also be implicated in avoiding 
the establishment of the infection and that they could be crucial 
for the development of a successful preventive vaccine (104–106). 
The presence of these cells could result from an abortive local 
infection of cells that are refractory to productive infection or 
have low levels of viral replication; it may occur during the eclipse 
phase when the infection can still be eradicated, eliminating the 
infected cells before viral dissemination (31, 107, 108).

Regarding the functional ability of CD8+ T  cells found in 
HESNs, several cohorts of HESNs have been reported to exhibit 
HIV-specific CD8+ T cells secreting IFN-γ and IL-2 (105, 109, 110).  
These cells also exhibit high activity against the virus, with the 
production of increased levels of perforin and granzyme B, and 
both responses were negatively correlated with the time of the 
last unprotected sexual exposure, suggesting that they could have 
played a crucial role in avoiding the establishment of the infection 
(104). Additional reports indicated a broad and strong response 
of HIV-specific CD8+ T  cells, characterized mainly by a Tc1 
cytokine profile in HESNs when compared with HIV-infected 
individuals (31, 111).

However, contrasting data exist on the presence of HIV-
specific CD8+ T cells in HESNs with some studies reporting lack 
of HIV-specific CD8+ T cell responses in these individuals (112); 
comparisons between HESNs and their HIV seropositive partners 
showed a lower magnitude of HIV-specific CD8+ T cell response 
and a narrower breadth in HESNs. Nonetheless, the resistance 
could be related to the recognition of immundominant and 
conserved viral peptides more than to the recognition of a wider 
breadth of peptides. Indeed, the peptides recognized by CD8+ 
T cells from HESNs are associated with slow disease progression 
in cases of HIV infection, and the cytokine profile produced by 
their HIV-specific CD8+ T cells resembled the response observed 
in HIV-controllers (105, 111). These results suggest that if the 

HESNs ultimately do acquire the infection, they probably become 
controllers; however, this remains to be elucidated.

CONCLUSiON

In summary, the response of CD8+ T cells is critical since early 
stages of HIV infection and its magnitude and effector functions, 
such as proliferation, cytokine production, and cytotoxic capacity, 
may determine the control exerted on viral replication and AIDS 
progression. Furthermore, different subpopulations of these cells 
in terms of memory and effector phenotype as well as activation 
level seem to play different roles in viral control. Although these 
HIV-specific responses have been mainly studied in individuals 
who achieve a spontaneous and sustained control of the infection, 
their presence in HESNs suggests that HIV-specific CD8+ T cell 
responses could also play a role in avoiding the acquisition of 
infection during exposure. Yet, further studies are required to 
validate this hypothesis.
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