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Abstract: Adipose-derived stem cells (ASCs) have been routinely used from several years in
regenerative surgery without any definitive statement about their potential pro-oncogenic or
anti-oncogenic role. ASCs has proven to favor tumor progression in several experimental cancer
models, playing a central role in regulating tumor invasiveness and metastatic potential through
several mechanisms, such as the paracrine release of exosomes containing pro-oncogenic molecules
and the induction of epithelial-mesenchymal transition. However, the high secretory activity and
the preferential tumor-targeting make also ASCs a potentially suitable vehicle for delivery of new
anti-cancer molecules in tumor microenvironment. Nanotechnologies, viral vectors, drug-loaded
exosomes, and micro-RNAs (MiR) represent additional new tools that can be applied for cell-mediated
drug delivery in a tumor microenvironment. Recent studies revealed that the MiR play important roles
in paracrine actions on adipose-resident macrophages, and their dysregulation has been implicated
in the pathogenesis of obesity, diabetes, and diabetic complications as wounds. Numerous MiR
are present in adipose tissues, actively participating in the regulation of adipogenesis, adipokine
secretion, inflammation, and inter-cellular communications in the local tissues. These results provide
important insights into Adipocyte-secreted exosomal microRNA (A-SE-MiR) function and they
suggest evaluating the potential role of A-SE-MiR in tumor progression, the mechanisms underlying
ASCs-cancer cell interplay and clinical safety of ASCs-based therapies.

Keywords: cancer inhibition; metastasis; microenvironment; adipose-derived stem cells; ASC-based
drug delivery therapeutic systems; oncological safety; wound repair

1. Introduction

A clinical need exists for the development of cellular therapy to improve the regeneration of
damaged tissues. A great variety of tissues would benefit from tissue engineering-based repair, such as
cutaneous and sub-cutaneous, skin, cartilage, bone, hard and soft tissues. The increase of complexity in
the targeted tissue for repair, necessitate a concomitant increase in the complexity of the related tissue
engineering approach. Because of the complexity of the targeted tissue, tissue-engineering strategies
involve the use of cells and biologically active factors to improve new tissue generation. This strategy
can involve de novo growth by ex vivo and in vitro culture or by in vivo regeneration. In the last
decade, many researchers have shown the clinical implications of Mesenchymal Stem Cells (MSCs)
such as adipose-derived stem cells (ASCs) in damaged tissue. The Mesenchymal and Tissue Stem Cell
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Committee of the International Society for Cellular Therapy (ISCT) has proposed a minimal set of four
criteria to define MSCs [1]:

1. MSCs are plastic-adherent when maintained under standard culture conditions.
2. MSCs have the capability to differentiate in vitro in osteoblasts, adipocytes, chondroblasts

(as demonstrated by staining of in vitro cell culture) [1].
3. MSCs express CD73, CD90, and CD105.
4. MSCs lack expression of the hematopoietic lineage markers c-kit, CD14, CD11b, CD34, CD45,

CD19, CD79, and human leukocyte antigen-DR.
The ASCs meet the majority of the ISCT’s criteria for MSCs [1].
As is commonly known, fat tissue is a multifunctional organ that contains various cellular types,

such as the stromal vascular fraction (SVF) and mature adipocytes.
The SVF provides a rich source of ASCs that can be easily isolated from human fat [2–4].
Therefore, the ASCs are routinely used from several years in regenerative surgery without however

any definitive statement about their potential pro-oncogenic or anti-oncogenic role.
ASCs has proven to favor tumor growth in several experimental cancer models, playing a

central role in regulating tumor invasiveness and metastatic potential through several mechanisms,
such as the paracrine release of exosomes containing pro-oncogenic molecules and the induction of
epithelial-mesenchymal transition [2,4–11].

However, the high secretory activity and the preferential tumor targeting make also ASCs a potentially
suitable vehicle for delivery of new anti-cancer molecules in tumor microenvironment [12–25].

In the recent years, it has become progressively more evident that tumor-cell features are as much
important as their interaction with the microenvironment [2]. The latter is characterized by a complex
interplay between different cellular types coordinated through a composite signaling network [3]. These
interactions are able to influence tumor invasive capacity and its metastatic potential [4]. MSCs are part
of this complex system together with immune cells, adipocytes, myofibroblasts, extracellular matrix
and tumor cells [26]. The most studied MSCs are cord blood mesenchymal stem cells (CB-MSCs),
bone-marrow mesenchymal stem cells (BM-MSCs) peripheral blood stem cells (PB-SCs) and ASCs [27].

Over the years, ASC-based therapies have been tested and used in many clinical settings both
oncological and non-oncological like inflammatory bowel disease, chronic ischemic cardiomyopathy,
rheumatoid arthritis, soft-tissue sarcoma reconstruction, graft-versus-host disease, outcomes of breast
cancer and breast reconstruction [28–31].

Parallel to the diffusion of ASCs as a possible therapeutic agent in many medical conditions,
a growing concern has been raised about their possible pro-oncogenic risk.

In this review we discussed the role of ASCs, adipokines, chemokines and Adipocyte-secreted
exosomal microRNA (A-SE-miR) in the inhibition of cancer growth, to promote the wound repair.

2. Implications of ASCs and Their Adipokines and Chemokines in Cancer Growth

2.1. Adipokines, Obesity and Breast Cancer Modulation

The role that is played by the fat tissue and their secretions like the adipokines is beginning to
be recognized in cancer growth modulation. Plasma adipokine levels, which are modulated during
obesity, could have effects on breast carcinogenesis [31]. Growing evidence has therefore recognized
obesity as a main oncological risk factor and peri-tumor fat tissue as well as its progenitor cells
as a source of pro-tumor factors [5]. At the same time, the relationship between ASCs and cancer
has been deeply investigated using pre-clinical models [32]. Although in numerous clinical studies
ASCs use did not appear to increase the risk of loco-regional or distant tumor recurrence, it has not
been provided yet a strong definitive evidence on its oncological safety. Breast cancer cells (BCCs)
are surrounded and locally influenced by an adipocyte microenvironment, which is probably more
extensive in obese people [31]. In a study of Strong et al. [33], leptin appears to be strongly involved in
mammary carcinogenesis and it may contribute to the local pro-inflammatory mechanisms, especially
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in obese patients, who have increased metastatic potential and greater risk of mortality. On this field,
Gentile et al. [31] reported the percentage of recurrences in three different group of patients in which the
study group was treated with fat injection enriched with ASCs for breast reconstruction, control group
1 was treated with a fat injection that was not enriched and control group 2 was not treated. In a group
of seven patients (CG2) (all affected by obesity), three recurrences (two systemic and one local) were
recorded, as compared with four recurrences (three systemic and one local) in a study group (SG) that
was included 121 patients and five recurrences (two systemic and three local), while control group 1
(CG1) was composed by 50 patients [31]. Strong et al. [33] reported that ASCs that were derived from
the abdominal subcutaneous adipose tissue of obese subjects (BMI > 30) enhanced BCCs proliferation
in vitro and tumorigenicity in vivo. These findings were correlated with changes in the gene expression
profile of BCCs after co-culturing with ASCs, particularly in the estrogen receptor-alpha (ESR1) and
progesterone receptor (PGR) expression [33]. An analysis of the gene expression profile of the four
groups of ASCs revealed obesity induced alterations in several key genes, including leptin (LEP).
Blocking estrogen signaling with ICI182.780, leptin neutralizing antibody or letrozole diminished the
impact of ASCs that are derived from obese subjects [33]. Women that were diagnosed with estrogen
receptor/progesterone receptor positive (ER+/PR+) breast cancers (BC) that also expressed high levels
of leptin had poorer prognosis than women with low leptin expression [33]. The results from the study
of Strong et al. [33] demonstrate that abdominal obesity induces significant changes in the biological
properties of ASCs and that these alterations enhance ER+/PR+ BC tumorigenesis through estrogen
dependent pathways.

2.2. Chemokines and Growth Factors Role in Breast Cancer Modulation

ASCs can be involved in the promotion of tumor growth, invasiveness and metastatic potential
by several pathways. Their pro-angiogenic capacity though the secretion of growth factors (GFs)
and chemokines such as vascular endothelial growth factors (VEGF), platelet-derived growth factors
(PDGF) c-kit induce proliferation of endothelial cells and development of a tumor-supporting vascular
network [6,7,34]. Moreover, ASCs have immune-modulating proprieties mediated by transforming
growth factor-β1 (TGF-β1), hepatocyte growth factors (HGF) and interferon-γ (INF-γ) impairing
immune-mediated response to tumor [7,12,35–39]. They are also able to induce drug resistance and
cell proliferation in the BCCs line MCF-7/ADR (a multidrug-resistant BCCs model) mediated through
C-terminal Src kinase (Csk)-binding protein (Cbp) expression [8].

Epithelial to mesenchymal transition (EMT) has been highlighted as a fundamental passage
in tumor history and in its shift toward a more invasive and metastatic phenotype [40]. It has
been reported that ASCs can induce EMT in BCCs by acting on multiple pathways, especially
through PI3K/AKT signaling and p38 MAP kinase [41,42] or by overexpressing leptin, as shown
by ASCs from obese patients [33]. ASCs transformation, through the inhibition of Wnt signaling,
into tumor-associated fibroblasts by breast tumor-derived factors has been also reported [43]. The same
myofibroblastic differentiation is reported in ASCs exposed to BC exosomes through the induction
of TGF-β signaling [44]. ASCs themselves are able to secrete exosomes that induce BCCs migration
mediated by Wnt-signaling [45].

2.3. Relationship between ASCs and Cancer Cells

ASCs contribution to a neoplastic microenvironment does not seem to be limited to cells located
in its immediate vicinity. In a mouse cancer model, tumor was able to recruit ASCs from distant fat
tissue sites through the systemic circulation, promoting tumor growth [46]. Cancer cells (CCs) together
with its stroma and inflammatory cells secrete several factors such as MCP-1 and SDF-1 that induce
ASCs homing and migration to tumor microenvironment [47].

An increased number of circulating ASCs have been demonstrated in obese patients with a history
of colorectal cancer, prostate cancer and BC although the fate of these cells and the clinical significance
of this finding have not been clarified yet [9,48,49].
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In a mouse tumor model, a comparison between lean and obese mice revealed a six-fold higher
concentration of ASCs in systemic circulation of the obese one. Those circulating ASCs were localized
in the tumor stroma [50].

On the other hand, tumor-homing properties of ASCs could be also exploited in a therapeutic
way by transforming ASCs in vehicles to deliver anti-neoplastic agents directly inside a cancer
microenvironment. MSCs have been tested as vectors for several innovative cancer therapies such as
drug-loaded nanoparticles, micro-RNAs, viral vectors encoding tumor suppressor genes and many
others [51].

ASCs present numerous advantages compared to other MSCs. Their harvesting is less invasive
with a cell yield more than 1000-fold higher when compared to BM-MSCs and CB-MSCs [10,52].
Furthermore, they have a longer life-span, higher proliferative capacity, shorter doubling time and
later in vitro senescence compared to BM-MSCs [53]. These features have to be considered when
choosing an optimal cellular carrier for therapies on a wide scale. Simultaneous presence of noxious
and beneficial aspects proper of ASC-cancer interplay earned ASCs the definition of “double-edged
sword” [11,13].

3. An Unexpected Effect from Adipocyte-Secreted Exosomal microRNA

3.1. ASCs-Exosomes Role in Cancer Growth and Wound Repair

Exosomes (intraluminal vesicles < 100 nm) are secreted by cells working as intercellular transmitters
of mRNA, microRNA (miR), and proteins [14]. The importance of ASC-secreted exosomes (A-SE) in
promoting wound repair has been recently reported [54]. It has been hypothesized that exosomes from
ASCs could be internalized by dermal fibroblasts stimulating their migration, proliferation, and collagen
synthesis [54]. A study by Seo et al. reports the ability of miR-503-3pf, released by A-SE, to inhibit tumor
growth regulating cancer stem cell (CSCs) proliferation and self-renewal, reducing the expression
of pluripotency genes. Moreover, xenograft tumor growth is inhibited by the administration of
miR-503-3p, supporting this miR as a stemness-attenuating factor via cell-to-cell communications [15].
In rats with N1S1-induced hepatocellular carcinoma (HCC), the administration of A-SE induces
significantly smaller tumors and volume ratios, more circulating and intra-tumoral natural killer
T (NKT) cells, and low-grade HCC compared to untreated controls, sustaining the hypothesis that
A-SE can promote NKT-cell antitumor response and induce HCC suppression and low-grade tumor
differentiation [55]. Exosomes from ASCs conditioned medium inhibit proliferation, wound-repair
and colony formation ability as reported in A2780 and SKOV-3 ovarian cancer cells [16]. A-SE induced
apoptosis signaling through the up-regulation of different pro-apoptotic genes, such as BAX, CASP9,
and CASP3, while down-regulating the anti-apoptotic BCL2. In fact, by sequencing exosomal RNAs,
a rich population of miRNAs with anti-cancer activities has been identified [16]. On metastatic prostate
cancer (PCa), ASC-derived conditioned medium inhibits tumor proliferation and induce apoptosis
both in vitro and in vivo [56]. MiR array analysis on A-SE shows the up-regulation of different miRs;
among them, miR-145, known as a tumor suppressor, has been identified. The knockdown of miR-145
in ASCs reverts the anti-tumoral effects, while also reducing the expression of caspase 3/7 and increasing
the anti-apoptotic protein BclxL [57]. However, some authors reported the pro-tumoral activity of
A-SE, promoting BC cell migration through Wnt signaling [45].

Contrasting data from literature report that ASCs can affect glioma and glioblastoma
growth [17–19,58]. In particular, the conditioned medium from ASCs seems to promote the epithelial-to-
mesenchymal-like transition in glioma cells in vitro [58]. In addition, ASCs are reported to increase
glioblastoma cell migration that displays a strong tropism on ASCs [17], likely due to their chemokine
secretion that mediates cell migration [18]. Meanwhile, Yang et al. demonstrated an induction of
apoptosis and differentiation in U251 glioma cell line by ASCs conditioned medium [19]. However,
some researchers reported that exosomes from ASCs conditioned medium are ineffective on U87MG
glioblastoma cells, even if their internalization into tumor cells occurs [20].



J. Clin. Med. 2019, 8, 855 5 of 13

3.2. ASCs-microRNA Relationship with Cancer Cells

A possible explanation for these conflicting results arise from a multiplicity of factors influencing
the interaction between ASCs and CCs, such as their origin and pre-treatments, cancer type and
different in vitro and in vivo conditions (e.g., ASCs/CCs ratio, cell injection modality, kinetics of
carcinogenesis) that may affect the experimental standardization [12]. However, as reported above, it’s
a common belief that several secreted factors, produced by cancer and inflammatory cells, induce the
homing and migration of ASCs into the tumor microenvironment [47].

ASCs represent the best candidates for exosome-wrapped miR strategy, as they can release large
amounts of exosomes [21]. Since glioma cells and glioma stem cells (GSCs), a small subpopulation of
cancer stem cells implicated in therapeutic resistance and tumor recurrence, express very low levels
of miR-124 and miR-145, Lee et al. successfully tried to deliver, through A-SE, these miR mimics in
glioma cells and GSC co-cultures. The internalization, via gap junction-dependent and independent
processes, determines a decrease in their respected target genes, SCP-1 and Sox2, reducing glioma cell
migration and GSC self-renewal. Moreover, when administered intracranially, ASCs are able to deliver
miR-124 mimic to glioma xenografts [22].

As reported by Lou et al., ASCs transfected with a miR-122 expression plasmid are able to deliver
miR-122 through their exosomes affecting cell viability, apoptosis, and cell cycle of hepatocellular
carcinoma (HCC) cells. In addition, ASCs transfected with miR-122 also sensitize HCC xenograft to
sorafenib in vivo. It is known that HCC displays a high resistance to conventional chemotherapy and
miR-122 is proven to be essential to promote chemosensitivity, representing a valid tool for a targeted
strategy [23].

It has been also reported the pro-apoptotic activity of NK cell-differentiated ASCs transfected
with miR-150 on pancreatic cancer cells PANC1 [24]. miR-150 is responsible for the development
and activation of NK cells as well as their production of IFNγ, and this strategy shows an effective
immunomodulatory activity [24]. CSCs are a small population with stem cell-like properties found in
tumors that influences tumor progress, metastasis, and drug resistance. In a study by Lee et al. the
authors hypothesize an anti-cancer therapy based on CSC reprogramming into non-tumorigenic cells
using A-SE. Briefly, exosomes from osteogenic differentiated human ASCs, containing specific cargos
with osteoinductive properties, successfully induce CSCs to express osteogenic-related genes, such as
alkaline phosphatase, osteocalcin, and runt-related transcription factor 2. In addition, the differentiation
decreases some drug-resistance genes such as ATP binding cassette transporter, the breast cancer gene
family (BCRA1 and BCRA2), and the ErbB gene family [25].

4. Promotion of Wound Healing

4.1. Wound Healing Process

As is known, the wound healing process consists of three major overlapping stages: (1) an inflammatory
stage; (2) a proliferative stage and (3) a resolution stage.

The inflammatory stage is triggered by an initiating pathogen or toxin that results in the release
of pathogen- or damage-associated molecular patterns (PAMPs or DAMPs, respectively) that ligate
and activate pattern recognition receptors such as toll-like receptors (TLRs), NOD-like receptors
(NLRs), C-type lectin receptors (CLRs) or other receptors on resident cells, including endothelial cells,
mast cells, tissue macrophages and interstitial fibroblasts [59,60]. Receptor activation triggers the
production and secretion of cytokines, chemokines and growth factors that induce inflammation and the
recruitment of inflammatory cells, primarily neutrophils and monocytes [61]. The recruited monocytes
are pro-inflammatory and will subsequently differentiate into inflammatory (M1) macrophages.
The activated resident cells and the recruited inflammatory (M1) macrophages release toxic ROS that
destroy invading pathogens [62,63] and induce the expression of genes encoding various cytokines,
inflammatory molecules and multiple proteases including MMPs, serine and cysteine proteases,
and elastases.
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Several mechanisms are involved in these effects, including alterations of the balance between
pro-inflammatory and anti-inflammatory cytokine secretion [64–69], down-regulation of pro-inflammatory
transcription factors important for neutrophil survival such as NF-κB and IRF1 [70,71], and concomitant
up-regulation of the anti- inflammatory transcription factor IRF-4 [72,73]. These effects collectively
promote inflammatory (M1) to wound healing/pro-fibrotic (M2) macrophage phenotype transition and
initiate the resolution of inflammation [64–69].

The transition from an inflammatory phenotype (M1) to a wound healing/profibrotic (M2)
phenotype induces the progression from the inflammation phase to the tissue repair phase.

Monocytes/macrophages (MM) at the transition between the inflammatory and tissue
repair/wound healing stages produce copious amounts of cytokines and growth factors that promote
the proliferation of multiple cell types involved in damaged tissue repair [74–78].

Wound healing/profibrotic (M2) macrophages seem at this stage, either via differentiation of fresh
recruited infiltrating monocytes or by in place transition of antecedently differentiated infiltrating
inflammatory (M1) macrophages to a wound healing/profibrotic (M2) phenotype. STAT6 is activated
during this transition and promotes IL-4/IL-13-mediated differentiation of wound healing/profibrotic
(M2) macrophages by up-regulating their expression of arginase (Arg1) and multiple other wound
healing/profibrotic phenotype genes [79]. Wound healing/profibrotic macrophages possess associate
degree medicinal drug makeup and stimulate and activate fibroblasts towards their overstated ECM
production and secretion [74–79].

The macrophage phenotype is also influenced by changes in the mechanical, cellular and metabolic
characteristics of the target tissue [80–82].

In the final phase, the wound scar tissue is remodeled by replacement of the provisional ECM
with a stronger, durable ECM, characterized by extensive collagen cross-linking and the gradual
replacement of type III collagen with type I collagen [83–85].

These changes are followed by senescence or apoptosis of activated myofibroblasts [86,87] and
regression of the neo-vascularization [88–90].

4.2. ASCs Relationship with Regeneration Process

The bio-molecular mechanisms of ASCs and their products involved in tumor growth have
been analyzed so far. In light of the information previously reported, it remains to be clarified
which is, indeed, the bio-molecular mechanism involving ASCs and their products in the tissue
regeneration process. To better understand these pathways, it may be useful to report in this section
the pathophysiological similarities between the processes of regeneration and growth of the tumor and
the participation in them of the ASCs.

For this reason, the tumor could be defined as "the wound that never heals".
In fact, analogies between the molecular mechanisms of ASC homing to the tumor tissue are

detected with the molecular homing mechanisms of ASCs in the damaged area during the different phases
of tissue regeneration process. Furthermore, analogies are found between the molecular mechanisms
of ASCs involvement in angiogenesis and tumor vasculogenesis and in the regeneration zone.

As reported in a study by Akama et al. [91] they found that IL6 mediates the expression of
Mmp13 and Timp1 in visceral fat derived-ASCs and the TCF21-dependent expression of Mmp2 and
Col4a1 is IL6-independent. The basic helix-loop-helix transcriptional regulator, transcription factor 21
(TCF21), is a marker gene for white adipose tissues and is abundantly expressed in visceral-derived
ASCs. These results suggest that TCF21 contributes to the pro-inflammatory environment in visceral
fat depots and to active extracellular matrix (ECM) remodeling of these depots by regulating IL6
expression and MMP-dependent ECM remodeling in a spatiotemporally coordinated manner.

In the resolution stage, the wound scar tissue shows a more durable ECM, characterized by extensive
collagen cross-linking followed by regression of the neo-vascularization [88–90]. As a consequence of
the bio-molecular pathway involved in the wound healing promotion by ASCs, more clinical studies
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reported the clinical efficacy of ASCs in scar treatment [92], in breast reconstruction [3,31,93–97] and in
chronic wounds [97–102].

Now it seems necessary, however, to clarify the bio-molecular mechanisms through which the
ASCs promote tissue healing.

ASCs are recognized to promote wound healing of otherwise chronic wounds, possibly through
the reduction of inflammation, induction of angiogenesis, and promotion of fibroblast and keratinocyte
growth [103]. However, little is known regarding the importance of ASC-produced ECM for wound
healing. Among the resident skin cells that express integrins—and thus may be subjected to modulation
by the ECM—are fibroblasts and keratinocytes [104]. In addition, proteins in the ECM modulate the
activity of growth factors and cytokines such as PDGF and TGF-β, produced by activated platelets and
macrophages, respectively [105,106]. Thus, the ECM functions as a reservoir by protecting the growth
factors from degradation and controlling their release [107].

In the chronic wound environment, in vitro and in vivo studies suggest that the ASCs may be able
to discontinue the prolonged inflammation phase and restore the progression through the phases of
proliferation and remodeling. In terms of effects on the inflammatory processes, it is well known that
ASCs may induce a conversion of the macrophage phenotype from the pro-inflammatory M1 associated
with chronic wounds to the anti-inflammatory and wound healing M2 phenotype [108,109]. During the
proliferation phase, secreted factors from ASCs enhance several fibroblast characteristics, such as cell
proliferation, migration and, importantly, the synthesis of collagen and other ECM proteins [110–112].
Furthermore, ASCs have been demonstrated to inhibit ECM degradation through the increased
binding of matrix metalloproteinases (MMPs) and secretion of tissue inhibitors of metalloproteinases
(TIMPs) [113]. The ability of ASCs to promote new vessel growth is therefore relevant to wound
healing [114]. Finally, in vitro studies suggest that ASCs may promote re-epithelialization through
modulation of keratinocytes in terms of promoting their proliferation and migration, but more studies
are needed to confirm if this also holds true for chronic wounds [115,116].

5. Concluding Remarks

An explanation for the conflicting data reported indicating that ASCs can show pro-oncogenic
and/or anti-oncogenic role arise from a multiplicity of factors influencing the interaction between ASCs
and CCs, such as their origin and pre-treatments, cancer type and different experimental conditions that
may affect standardization. Appropriate models considering not only CCs but also the surrounding
microenvironment should be developed for this purpose.

On the other hand, tumor-homing properties of ASCs could be also exploited in a therapeutic
way. ASCs could be vehicles to deliver anti-neoplastic agents directly inside cancer microenvironment.
For this reason, ASCs have been tested in pre-clinical models as vectors for several innovative cancer
therapies such as drug-loaded exoxomes and nanoparticles, micro-RNAs, viral vectors encoding tumor
suppressor genes and many others.

Clinical data reported allow us to make a clear statement about safety of ASC use in regenerative
surgery. More robust evidence is needed to clarify the pro-oncological and anti-oncological role of
ASCs in order to fully exploit their encouraging potential in a drug-delivery system.
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