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Abstract

The error-prone third-generation sequencing (TGS) long reads can be corrected by the high-quality second-generation
sequencing (SGS) short reads, which is referred to as hybrid error correction. We here investigate the influences of the
principal algorithmic factors of two major types of hybrid error correction methods by mathematical modeling and
analysis on both simulated and real data. Our study reveals the distribution of accuracy gain with respect to the
original long read error rate. We also demonstrate that the original error rate of 19% is the limit for perfect correction,
beyond which long reads are too error-prone to be corrected by these methods.

Background

Third-generation sequencing (TGS) technologies [1], in-
cluding Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT), have been demonstrated useful in
many biomedical research since the unprecedented read
lengths (average for PacBio and ONT can be over 10kb
and 20 kb, and maximum over 60 kb and 800 kb) are very
informative for addressing complex problems, such as
genome assembly and haplotyping [1-10]. However, the
high error rates of TGS data (average 10-15% for the raw
data) [11-14] reduce the mappability and the resolution
of downstream analysis. To address this limitation, the
high-quality short reads have been used to correct the
long reads, which is termed as hybrid error correction.
The existing hybrid error correction methods can be
classified into two categories: alignment-based method
[15-21] and de Bruijn graph (DBG)-based method (re-
ferred as “graph-based method”) [22-26]. Regardless of
the lower algorithmic complexity by the graph-based
method than the alignment-based one [27] and the differ-
ence of software implementations, several principal factors
have significant effects on the error correction perform-
ance for both methods: long read error rate, short read
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error rate, short read coverage, alignment criterion, and
solid k-mer size. Although previous studies examined
some of these factors separately in the corresponding soft-
ware development [28-30], here we establish mathemat-
ical frameworks to perform a comprehensive investigation
of all these factors in hybrid error correction. Through
studying their influences on short read alignment rate and
solid k-mer detection in DBG, we finally interrogate how
these factors determinate the accuracy gain in hybrid error
correction. This research does not only study the algorith-
mic frameworks of two major hybrid error correction
methods, more importantly it also offers an informative
guidance for method selection, parameter design, and fu-
ture method development for long read error correction.

Results and discussion

Overall, we first evaluate the accuracy gains by the
alignment-based and graph-based methods at each error
rate level by mathematical modeling, following by valid-
ating the model fitness with simulated and real data.
With these data and results, we study the influences of
key algorithmic factors under different data scenarios,
and compare two methods.

Two major stages of the alignment-based method de-
termine the accuracy gain: short read alignment and
consensus inference (Fig. 1a). Denote C as the number
of short reads generated at a certain base in sequencing
process, which is referred as the real short reads. At the
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Fig. 1 (See legend on next page.)
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Fig. 1 lllustration of alignment-based and graph-based method; results for model fitness and accuracy gain on simulated data. a Schematic of
alignment-based method. b is a certain base on the long read, and b’ is the corresponding base on the reference sequence. The C real short
reads are aligned to the long read (with N of them being successfully aligned), and then the consensus is inferred at each base. b Relationship of
the successful alignment probability for short reads T with the mismatch rate p, lower threshold on perfect match k-mer size k and the upper
threshold of mismatches m. In spite of the changes of k or/and m, T is near to one when p < 5%, and is near to zero when p > 30%. This indicates
that mismatch rate is the most dominant factor on 7. As m increases from 10 to 20, the curves move upper (from blue to red and green),
implying that T increases with m. Moreover, the divergence between the dashed and solid blue, red, and green lines also shows an increasing
tendency, which means the effect of k on 1 also increases with m. ¢ Schematic of graph-based error correction method. DBG is built based on
short reads. Solid k-mers are detected on the long reads. The fragment between two adjacent solid k-mers is then aligned with the correlated
path on the DBG. The path is used to correct the fragment when certain criteria are satisfied. d Accuracy gain at each error rate for simulated
long reads corrected by alignment-based method. The boxplots represent the accuracy gain distribution for long reads. The solid lines represent
the theoretical values. The dashed gray lines (diagonal lines) correspond to perfect correction. e Proportion of simulated long reads with solid k-
mer detected at each error rate level. The solid lines represent the theoretical values. The dashed lines represent the results on simulated long
reads. f Accuracy gain at each error rate for simulated long reads corrected by graph-based method. L: long read length; k: size of perfectly

first stage, the C real short reads are aligned to the long
reads. Let N be the number of successfully aligned real
short reads. Next, per the base of interest, the consensus
of the aligned real short reads is generated as the cor-
rected base. We define accuracy gain as y- (1 - EA),
where y is the original long read error rate and EA is the
expected accuracy after error correction:

C

EA = Z Pr(N = n)g(n, ).

n=0

Pr(N =n) represents the probability that n real short
read can be successfully aligned, corresponding to the
stage of short read alignment, and g(n, ) is the probabil-
ity that the consensus equals to the true base, corre-
sponding to the stage of consensus inference. 5 is the
short read error rate. At first we calculate Pr(N = n) via
obtaining the probability of successfully aligning a single
short read to long read, which highly depends on the
tolerance of mismatches and the length of perfectly
matched seed required by an aligner. For two sequences
X and Y with equal length /, denote M as the number of
mismatched bases, and K as the length of the largest
perfectly matched seed. Let k be a lower threshold of K,
and m be an upper threshold of M and thus the couple
of conditions K>k and M<m sets up a criterion of
alignment. The following theorem measures the prob-
ability 7 that a single short read can be successfully
aligned under the criterion.

Theorem 1. Let X and Y be two sequences with equal
length I. Denote X; and Y; (1<i<l) as the i bases of X
and Y, respectively. Suppose all the events {X;=Y;} are
independent, and all the bases have a common mismatch
rate p. Let t(k,m,p,[) 2 Pr(K >k, M <m), 0<m <1, where
T is namely the probability that a short read can be suc-
cessfully aligned to a target place on the long read by an
aligner requiring a perfectly matched seed not shorter

than k and the number of mismatched bases not more
than m. We have:

rtemp) =3 {% o (M) (",ft)]p"u—p)’-",

n=0 [ t=1

where Q(n) =max{s|[-ks=n} A (n+1). T increases with
m and I, and decreases with k and p.

The proof is provided in Additional file 1: Note 1. Based
on 7, we are able to calculate the alignment rate of N short
reads Pr(N = n). Given a set of errors in a long read, align-
ments of short reads are not completely independent, so
we consider short reads in several batches (Additional file 1:
Note 2, Figure S1). The mismatch rate p can roughly be
estimated by 8 + y (Additional file 1: Note 3). The analyt-
ical results indicate that the mismatch rate (i.e., approxi-
mately the long read error rate, because S« y), is the
most dominant factor on 7; as m increases, both 7 and the
effect of k on 7 increase (Fig. 1b, Additional file 1: Note 4).
The accuracy of consensus inference g(n,[5) can be
deducted based on binomial distribution (Methods,
Additional file 1: Note 5). The theoretical calculation
shows that shallow aligned short read coverage is enough
to generate high-accuracy consensus (e.g., only 9x aligned
short reads can achieve consensus with accuracy
>99.99%), so short read alignment is the dominant stage
that impacts accuracy gain (Additional file 1: Figure S2).

Two stages in the graph-based method, including de-
tection of solid k-mer and path search in DBG, influence
the accuracy gain (Fig. 1c). At the first stage, all k-mers
on the long read are scanned to find the “solid k-mers”
that exist in the DBG generated by short reads. At the
second stage, all paths that link two adjacent solid k-
mers or link a solid k-mer with the end of long read on
the DBG are searched to find the optimal one to correct
the long read. Let ¢(k,y,L) be the probability that the
long read (with length L) contains at least one solid
k-mer. According to Theorem 1, we have:
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(see Methods, Additional file 1: Note 6, Figure S3 for de-
tails). To investigate the second stage, we examine the
distance between adjacent solid regions, since it repre-
sents the overall difficulty of path search in DBG. We
model the solid region distance by a truncated geometric
distribution compounded with a geometric distribution,
and its expectation increases with k-mer size k and long
read error rate y (see Methods for details).

Next, we examine the model fitness and accuracy gains
of both methods on simulated data. The long reads and
short reads are simulated from the E. coli reference gen-
ome (strain K-12 MG1655) (Additional file 1: Note 7)
[31, 32]. The alignment-based software proovread [19] is
applied to correct the long reads (Additional file 1: Note
8, Figure S4). The tendencies of the theoretical accuracy
gains fit the actual accuracy gains on the simulated data
under different short read coverages (Fig. 1d). When y <
15%, even if very shallow short read coverage is used
(5x%), the accuracy gain increases along the diagonal line,
which implies nearly perfect correction. When y > 18%,
the accuracy gain decreases and the corresponding vari-
ance increases, and thus very few reads can be perfectly
corrected. These results show the upper limit of long
read error rate that the alignment-based method can
perfectly solve, and the similar results are demonstrated
in the graph-based method (as shown below). Moreover,
both theoretical calculation and simulated data reveal
that the accuracy gain can rarely exceed 20%, although
there is slight increment (e.g., <2% and <1%) with re-
spect to short read coverage (e.g., from 5x to 10x and
from 20x to 50x, respectively, Fig. 1d). Therefore, the
hybrid error correction benefit marginally from increase
of short read coverage, especially when it is greater than
10x.

To evaluate the model of graph-based method, we
apply LoRDEC (version 0.5.3) [23] to correct the simu-
lated long reads (Additional file 1: Note 9). The short
read coverage is 10x in this evaluation. The overall ten-
dencies of the theoretical solid k-mer detection rate ¢
with respect to the length of long read L and the re-
quired k-mer size k align well with the values generated
from the simulated data (Fig. le), though ¢ is slightly
higher when L is over 2 kb. Overall, the solid k-mer de-
tection rate is close to 1 when long read error rate y is
below certain threshold (such as 15% for k=21 and L =
1 kb), and it decreases dramatically as y increases be-
yond the threshold. This threshold increase with L (e.g.,
from 15% to 24% for 1 to 10 kb given k = 21) (Fig. le). In
addition, the increase of k-mer size has an overall nega-
tive effect on solid k-mer detection, which is more re-
markable when long reads are shorter (Fig. 1le). Of note,
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high long read error rate results in high probability that
no solid k-mer can be detected so that the long read
cannot be corrected. Following solid k-mer detection, we
investigate the distances between adjacent solid regions:
for all k-mer sizes in the test, the theoretical distances
are consistent with the actual values obtained in the sim-
ulated data at different levels of long read error rates
(Additional file 1: Figure S5). Given a k-mer size, both
the mean and variance of the distances increase remark-
ably when long read error rate is 218% while it rarely ex-
ceeds 500 bp otherwise (Additional file 1: Figure S5). In
addition, the increase of k also leads to a substantial in-
crement on the distance.

In term of accuracy gain, the simulated data show that
long reads can be almost perfectly corrected by the
graph-based method when the long read error rate y<
19%, and the accuracy gain decreases and the corre-
sponding variance increases when y>19%. The corre-
sponding change point of y in the alignment-based
method is ~ 15%. However, instead of a single peak of
accuracy gain with respect to y, there is a bimodal pat-
tern with y>19% in some scenarios of the graph-based
method (e.g., k=19 and L <2 kb): some long reads can
be corrected almost perfectly while some others have
zero or very low accuracy gain (Fig. 1f). The latter subset
of long reads may likely contain no or only one solid -
mer, so no or very difficult correction is performed.
When the length of long read L increases to =5 kb, the
distribution of accuracy gain shrinks at every error rate
level and the bimodal pattern fades. Because longer read
length improves the probability of solid k-mer detection
(see the abovementioned results and Fig. le), a larger
proportion of long reads can be corrected even though
not perfectly.

The bimodal pattern of accuracy gain is further inves-
tigated through a concrete scenario, in which k=19, L =
1 kb, y =25%. The corrected reads are classified into two
groups: “high-gain long reads” with accuracy gain
>12.5%, and “low-gain long reads” otherwise. Much
higher fraction of the low-gain long reads contains only
one solid 79-mer than the high-gain long reads (89.04%
vs. 54.58%, Fig. 2a), and overall, the former contain more
solid 79-mers than the latter. Moreover, for long reads
with single 19-mer, the locations of the 19-mers are dif-
ferent for two classes of long reads: at the middle of
high-gain long reads, while near either end of low-gain
long reads (Fig. 2b). When the solid k-mer occurs near
an end of the long read, one fragment is particularly
long so that the correction by path search in DBG be-
comes more difficult, resulting in lower accuracy gain.
In the case that no solid 19-mer is detected, long reads
are uncorrected and contribute to the modal with low
accuracy again as well. As the read length increases,
more reads contain multiple solid 19-mer (Fig. 2c) and
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Fig. 2 Explanation of bimodal accuracy gain for graph-based method; model fitness and accuracy gain on real dataset. a Proportion of long
reads with different solid k-mer number. Without loss of generosity, the simulated long reads with length of 1kb and error rate of 25% are taken
as example. A long read is labeled as "high-gain long read” of the accuracy gain is larger than 12.5% (half of the value of error rate), and “low-
gain long read” otherwise. b Distribution of the single solid k-mer locations on the high-gain and low-gain long reads. Only the long reads with
one solid k-mer are considered. ¢ Distribution of solid k-mer number on the long reads with different lengths. d Accuracy gain distribution at
each error rate level for alignment-based method. e Proportion of long reads with solid k-mer detected. Due to the mixture of different long read
lengths, an upper boundary and lower boundary is provided. f Accuracy gain distribution at each error rate level for graph-based method. g
Length distribution of long reads on which graph-based method (labeled as DBG) has better, equal, or worse performance than the alignment-
based method (labeled as ALN). The p value is calculated by Wilcoxon rank sum test
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the effect of fragments at the ends becomes marginal so
that the bimodal pattern disappears.

We further study the accuracy gains on a real PacBio
dataset [23] corrected by proovread and LoRDEC, re-
spectively (Additional file 1: Note 8-10, Figure S6,
Figure S7). Short reads are randomly sampled with
coverage 10x. The overall tendency of the real accuracy
gain by proovread is in accordance with the theoretical
calculation of the alignment-based method, though there
is slight overestimation by the latter (Fig. 2d). On the
real data, long reads can rarely obtain accuracy gain
>20% (Fig. 2d). However, when the long read error rate
increases from 25 to 30%, the accuracy gain maintains at
a range of 10—15% rather than showing a sharp decrease
as the theoretical modeling. When evaluating the accur-
acy gain by LoRDEC on the real data, it should be no-
ticed that the real data contains long reads with different
lengths, in contrast to the fixed read length in the above-
mentioned mathematical model of the graph-based
method. Despite this difference, the proportion of the
real long reads with solid k-mer detected is within the
theoretical range (Fig. 2e), and the pattern of accuracy

gain is very similar with the simulated results (Fig. 2f
and Fig. 1f): most long reads achieve nearly perfect
correction when the error rate is <20%, and the variance
becomes larger for higher error rates.

Furthermore, two methods are compared based on
the real dataset. The difference of accuracy gains be-
tween two methods becomes remarkable when the
long read error rate >15%. Among 19,485 long reads
with original error rates >15%, LoRDEC outperforms
proovread on 13,146 (67.47%) reads, i.e., the differ-
ence of accuracy gains is >2% (boxplots in Fig. 2d vs.
violin plots in Fig. 2f). Two methods show similar ac-
curacy gains in 5,557 (28.52%) long reads, i.e., the dif-
ference of accuracy gains is <2%. proovread performs
better for the remaining 782 (4.01%) reads. The third
group of long reads is significantly shorter than the
other two groups (p value of Wilcoxon rank sum test
1.78 x 107, Fig. 2g). It is consistent with the above-
mentioned inference: for the graph-based method,
shorter reads are more likely to contain few or no
solid k-mers, and the location of the solid k-mer
highly affects the correction (Fig. 2a—c).
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In summary, the theoretical calculation by mathematical
frameworks together with both analyses of simulated and
real data shows how key algorithmic factors and data pa-
rameters affect the accuracy gains by two main types of hy-
brid error correction algorithms. When the original long
read error rate is below certain thresholds (e.g., 15%), both
methods can correct most errors. For highly error-prone
long reads (especially y=>20%), the graph-based method
can obtain generally higher accuracy gain, while the vari-
ance is also larger. Among such highly error-prone long
reads, the alignment-based method tends to have more ad-
vantage in correcting relatively shorter ones (e.g., median
length 1,195 bp in our test, Fig. 2g). Although it is not pos-
sible to analyze all published software, the results generated
by proovread and LoRDEC are representative for the
alignment-based and graph-based methods, respectively, as
shown by our previous benchmark work on 10 error cor-
rection software [27]. Of note, sequencing errors along real
long reads may not be independent, or short read coverage
may not be evenly distributed (e.g., transcriptome data), so
specific adjustment is necessary in the analysis of real data
(see Additional file 1: Note 10—11 for details). As both Pac-
Bio and ONT improve the technologies, the error rates of
most raw data become <20%. At this range, our results fit
the real data very well and thus will be beneficial for the
analyses of the real data and provide a guidance for method
selection, parameter design (Additional file 1: Note 12-13,
Figure S8) and future method development. In addition, for
modeling the alignment-based method, the mathematical
theorem is established to measure the probability of short
read alignment, which also lays the groundwork of develop-
ment and analyses of the other alignment-based algorithms.

Methods

Model for consensus inference in an alignment-based
method

The model for short read alignment, which is the first
stage in alignment-base method, has been shown above
with Theorem 1. Next, at consensus inference stage, the
base with >50% frequency is taken as consensus. Thus,
the main factors that influence consensus accuracy are
short read error rate and the number of aligned short
reads.

Let a be the real base on a certain site of a long read.
Denote V= {Vy,Vy, -, Vn} as the corresponding
bases on the N aligned short reads. Thus, Pr(V;=a) =1
— B, where f3 is the short read error rate. Let F()V) be the
consensus function:

F(V) = argmax ZZII(Vi =3).

se{A,C,G,T -}

I(-) is the indicator function. Considering the half-vote
criterion, we have

Page 6 of 8

Pr(F(V) = a)= Pr (Zﬁ IV, =a)2 E} ) (N, f).

g(N, p) is the accuracy of consensus inference and is de-
fined as:

) N isodd.

Wy, p follows the binomial distribution Binom(N, 1 - ).
It can be proved that g(N, ) increases with N and de-
creases with S (See the two lemmas and detailed results
in Additional file 1: Note 5).

Model for solid k-mer detection in graph-based method
The solid k-mer detection requires that (1) the long
read contains continuous k error-free bases; (2) the k-
mer is also present in the DBG. Because of the high
accuracy of short reads, the condition (2) is very
likely guaranteed even with shallow short read cover-
age (Additional file 1: Note 6). Below we calculate the
probability of (1). Suppose all bases on the long read
are independent with a common error rate y. Denote
the probability that the long read contains at least
one correct k-mer as ¢(k,y,L) 2 Pr(K=k). According
to Theorem 1,

o(k,y,L) = t(k,L-k,y,L)
=SS (T (55 Jaent

o(k, y, L) decreases with k and y, and increases with L. In
contrast to the application of Theorem 1 with fixed read
length of short reads / in alignment-based methods, the
application of Theorem 1 in a graph-based method uses
the length of long reads L, which is variable and substan-
tially larger.

Model for solid region distance in a graph-based method

Denote S as the distance between adjacent solid regions,
and T as the length of the maximal correct segment
which is smaller than k. It has a probability function

(1-y)'y

Pr(T =1t) = oo

)

where

a=3 1)y

a is the probability that at least k continuous bases on
the long read are correct. Suppose {T;i>1} are inde-
pendent observations of 7, then we have
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S:ZZITi+N—1.

where N is the number of maximal correct segments be-
tween the solid regions and it follows a geometric
distribution,

Pr(N=n)=(1-a)"a, n>0.
The expectation of S is

ES = E(E(S|N)) = E(N(ET +1))-1
= (ET +1)EN-1.

The expectation of solid region distance increases with
kand y.

Real data, data simulation, data processing, and software
usage

The simulated long reads and short reads are generated
by SimLoRD [31] and ART [32], respectively (see Add-
itional file 1: Note 7 for details). The typical alignment-
based and graph-based software, proovread [19] and
LoRDEC [23], are used to correct the long reads (Add-
itional file 1: Note 8-9). The details for processing real
data can be found in Additional file 1: Note 10.
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