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Deniz Seçilmiş , Thomas Hillerton and Erik L.L. Sonnhammer *

Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box
1031, 17121 Solna, Sweden

Received March 28, 2022; Revised April 20, 2022; Editorial Decision April 29, 2022; Accepted May 19, 2022

ABSTRACT

Accurate inference of gene regulatory networks
(GRN) is an essential component of systems biology,
and there is a constant development of new inference
methods. The most common approach to assess
accuracy for publications is to benchmark the new
method against a selection of existing algorithms.
This often leads to a very limited comparison, poten-
tially biasing the results, which may stem from tun-
ing the benchmark’s properties or incorrect applica-
tion of other methods. These issues can be avoided
by a web server with a broad range of data proper-
ties and inference algorithms, that makes it easy to
perform comprehensive benchmarking of new meth-
ods, and provides a more objective assessment. Here
we present https://GRNbenchmark.org/ - a new web
server for benchmarking GRN inference methods,
which provides the user with a set of benchmarks
with several datasets, each spanning a range of prop-
erties including multiple noise levels. As soon as the
web server has performed the benchmarking, the ac-
curacy results are made privately available to the
user via interactive summary plots and underlying
curves. The user can then download these results
for any purpose, and decide whether or not to make
them public to share with the community.

GRAPHICAL ABSTRACT

INTRODUCTION

Gene regulatory networks (GRNs) are key to understand-
ing physiological and pathological mechanisms in organ-
isms, and therefore their accurate inference can identify
novel mechanisms and treatment targets for genetic diseases
(1–3). For these reasons, a large number of methods have
been developed to infer GRNs from measurements of gene
expression (4–7).

A common approach when proposing a new inference
method is to benchmark it against a number of previously
published methods to be able to assess its accuracy in com-
parison to others for a broader view of the method’s con-
tribution to the field (6,7). However, this comes with a risk
that the selection of benchmarking data may introduce bi-
ases that could favor the new method, for instance by repre-
senting properties that are biologically unrealistic. Further-
more, if the authors of a new method devise a new bench-
mark, they need to rerun previous methods to compare to,
which is often challenging and may lead to erroneous results
if they are not run correctly.

The DREAM challenges (8–10) have attempted to solve
this problem to a degree by providing standardized bench-
marks based on a large amount of benchmarking data,
which has become the most preferred approach in the field
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to evaluate a method’s accuracy in comparison to other
methods. Even though this was a great advance in the field,
it is limited in terms of evaluating accuracy as a function of
a range of data properties, such as noise levels, which has
previously been shown to strongly affect inference accuracy
(11–16).

In addition to these limitations of previous benchmarks,
it can also be difficult and arduous to ensure that they are
used properly. For instance, very few benchmarks present
the ROC or PR curves that underlie the area under receiver-
operating-characteristic and precision-recall curves (AU-
ROC and AUPR values, respectively), and if the curves are
not inspected, errors due to e.g. undetected truncation or
mislabeling may occur. It is also valuable to inspect the un-
derlying curves in order to understand the data produced
by the method, to identify which regions it is most accurate
in.

A solution to all these issues could be achieved with a
standardized online framework where the benchmarking
procedure is automated, eliminating biases and other prob-
lems. An example from another field is the online frame-
work for orthology benchmarking (17), yet no such online
service exists in the GRN inference field. The online orthol-
ogy benchmark is widely used and has stimulated the devel-
opment of many new orthology detection algorithms (18),
and serves many purposes in that community (19,20).

Here we present GRNbenchmark, an online benchmark-
ing framework inspired by the aforementioned orthol-
ogy benchmark service but adapted to the needs of the
GRN inference community. It provides developers with
a large collection of datasets with varied properties for
inferring GRNs with their own method, and performs
automated benchmarking, visualization, and reporting of
the accuracy results together with the publicly available
ones in a publication-appropriate format. This way, GRN-
benchmark solves several big challenges in the field. It
also serves as a guide for users of published GRN in-
ference methods, to help them select the most suitable
method.

MATERIALS AND METHODS

The workflow of GRNbenchmark is illustrated in Figure
1. Given a benchmark consisting of true GRNs, gene ex-
pression data generated from the true GRNs, and a set
of GRNs inferred by a user, GRNbenchmark will apply
the benchmarking procedure described below and visual-
ize the results in both overview plots and in great detail.
The web server was written in the R programming lan-
guage 4.2.1 (https://www.R-project.org/) and is based on
Dash 0.9.3 (https://dash.plotly.com/r) and a GraphQL en-
gine (hasura/graphql-engine:v2.1.1) on top of postgres:14
as database backend. The entire web server is deployed in a
Docker 20.10.12 container.

Data generation, true GRNs and data

The current version of GRNbenchmark provides bench-
marking datasets generated using two different simulation
tools: GeneNetWeaver (21) and GeneSPIDER (11). Each

tool was used to generate 5 true GRNs, from which gene
expression datasets of three noise levels were generated.

Generation via GeneNetWeaver. Five subnetworks of 100
genes with directed and signed edges were extracted from
the E. coli network available at GeneNetWeaver. The num-
ber of regulators in these networks varies between 85–86.
The vertices were drawn by the option ‘random’, and the
edges were assigned by the ‘greedy’ option. The sparsity
of the five GRNs is 1.93 interactions per gene on aver-
age. Autoregulation is permitted in the true GRNs since
they are important for the system’s stability but such links
are not considered in calculating the sparsity and accuracy
because the main purpose of GRN inference is to iden-
tify regulatory interactions between genes and the infer-
ence accuracy should represent this. For each of the five
GRNs, a noise-free gene expression dataset was generated
from steady-state knockdown perturbations from ordinary
differential equations (ODEs). No normalization was per-
formed, and noise-free fold changes were calculated by the
base 2 logarithm ratio between the gene expression and wild
type. The fold change matrix was transposed to have genes
on rows and experiments on columns, and replicated three
times, representing replicated perturbation experiments in
size 100 × 300 (genes x experiments).

Generation via GeneSPIDER. Five scale-free networks
with directed and signed (activation or inhibition) edges
were generated, allowing autoregulation (for the same rea-
sons as for GeneNetWeaver GRNs), each being a network
of only regulator genes. Three interactions per gene on av-
erage were assigned to each GRN, and the sparsity of these
five GRNs, without selfloops, range between 2.22 and 2.39
interactions per gene on average. For each true GRN, a
noise-free fold change gene expression dataset with three
replicates of steady-state knockdown experiments was gen-
erated. GeneSPIDER also applies an ODE model for gene
expression data generation. The resulting noise-free fold
change gene expression matrix is in size 100 × 300 (genes
x experiments).

Noise generation. For datasets from both GeneNetWeaver
and GeneSPIDER, Gaussian noise matrices from three dif-
ferent levels, high, medium, and low, were generated from
the required standard deviation estimated following Eq. 1
for signal-to-noise ratios (SNRs) 0.01, 0.1, and 1, respec-
tively.

σ = min (svd (X))

SNR
√

χ−2 (α, NM)
(1)

In Eq. 1, svd(X) represents the vector of singular values
from the singular value decomposition of the noise-free fold
change gene expression matrix X; α is the type-I error, 0.05;
N and M are the number of genes and experiments, respec-
tively. σ refers to the standard deviation.

Publicly available methods

Eight well-known GRN inference methods: Least squares,
LASSO (5), Ridge regression, ElasticNet (22), Z-score (23),
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Figure 1. The workflow of GRNbenchmark. The diagram shows the entire process, starting from generation of benchmark data to GRN inference by a
user to benchmarking and visualization. The rightmost panel represents the web server which accepts submissions and calculates prediction accuracies
and visualizes them.

GENIE3 (4), PLSNET (7), and TIGRESS (6), were run and
made public on GRNbenchmark. The algorithm parame-
ters used to infer GRNs using these inference methods are
provided in the ‘Public Methods’ page on GRNbenchmark.

Benchmarking

The benchmarking is performed by comparing the users’
inferred GRNs to the true GRNs that were used to gen-
erate the corresponding datasets that users inferred GRNs
from. True positives are defined as predicted links connect-
ing genes in the same direction as in the true GRN for the
unsigned benchmark, and for the signed benchmark they
also have to have the same sign. Selfloops are ignored. All
other predicted links are defined as false positives. True neg-
atives are links missing in both the predicted and true GRN.
The accuracy of the inferred GRNs in reconstructing the
underlying true GRN is measured in terms of three metrics:
area under precision recall (AUPR), area under receiver-
operating characteristic (AUROC), and the maximum F1-
score. The first two measures, AUPR and AUROC, span
the entire range of sparsities, i.e. the number of interactions
per gene on average. Some inference methods such as least
squares and Z-score infer fully connected GRNs, where the
interactions can be sorted from the strongest to weakest.
Some methods like Genie3 may infer fully connected or
sparser GRNs depending on parameter selection. Penalty-
based methods such as LASSO and Ridge regression in-
fer GRNs for given regularization parameters, resulting in
a GRN with a certain sparsity. By taking subsets of top
ranked interactions from fully connected GRNs, complete
precision-recall and ROC curves can be obtained, leading to
AUPR and AUROC values that are comparable within the
range of [0,1]. However, to be able to obtain and compare
AUPR and AUROC values in the [0,1] range for GRNs that
are not fully connected, we applied an extrapolation strat-
egy, where the incomplete curves are made complete based
on the probabilities of inferring a true interaction for the
remaining part of the curve, the same way as was done in
DREAM5 (8).

Plotting methods

All plots are generated in the R programming language by
the ggplot2 package v3.3.5 (24) and made interactive by the
plotly package v4.10.0 (25) only for the overview scatter. For

other functionalities of the plots and guidelines to better
understand the results, we refer the reader to the help page
provided on the web server.

RESULTS

GRNbenchmark is an online benchmarking tool for GRN
inference methods. It currently provides two different
benchmarks from two tools, GeneNetWeaver and GeneSPI-
DER, each containing fifteen 100-gene datasets for five net-
works and three noise levels. The framework supports ad-
dition of more benchmarks from other tools, network sizes,
and data properties such as noise levels, meaning the bench-
marks can be continuously improved by the authors based
on advances in science and user feedback.

GRNbenchmark has four main functionalities: down-
loading data, submitting predictions, performing bench-
marking, and viewing the benchmark results.

Downloading data

Clicking on the ‘Download Data’ button downloads the
benchmark data in a compressed file. Each dataset has
a gene expression data and a perturbation design matrix,
which are provided in separate files, in total 60 files. File
names are intended to be self-explanatory to trace which
tool (GeneNetWeaver or GeneSPIDER), network, data
property (noise level), and data type (gene expression or per-
turbation) they correspond to.

The user infers GRNs. Once the datasets are downloaded,
the user infers GRNs with their own method. For each
benchmark, GRNs for all datasets must be inferred. The
user can submit predictions for one or multiple benchmarks,
but benchmarking will only be performed for complete sets.

Submitting predictions

All files together – the inferred GRNs for all datasets
(currently 15 per data generation tool) and tools
(GeneNetWeaver and/or GeneSPIDER), should be
bundled in a single compressed file for submission to
GRNbenchmark. Each inferred GRN is stored as a sep-
arate CSV file for which detailed format instructions are
provided on the submission page, as well as an example
file. The web server then performs a quality check for the
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Figure 2. The interactive overview scatter plot summarizes the accuracies from all GRN inference methods in the database, i.e. all the public methods,
along with the predictions submitted by a user if this is the case. Here ‘NewMethod’ was submitted, which contained random predictions. Three options
are provided to the submitter: ‘PUBLISH’, ‘PDF’, and ‘DELETE’, to make the results public, to download a PDF of the results together with the public
ones, and to delete the benchmark results immediately, respectively. On the left, one can select the current benchmark (GeneSPIDER or GeneNetWeaver),
and next to this is a checkbox to switch between directed-unsigned and directed-signed results. Each plot shows the accuracy on the y-axis, as measured by
AUPR, AUROC, or max F1-score. The benchmark has three different noise levels which are shown as categories on the x-axes in each plot. The left panel
shows the popup hover window with benchmarking information for the marker under the mouse. Clicking on a marker displays its underlying curves (not
shown). On the right is a column with buttons to control zooming, panning, and downloading.

submitted files such as whether the files were named as
requested, if the GRNs follow the correct format, and if
only correct gene names are included. GRNbenchmark will
then proceed with complete network sets only. For example
if all files for the GeneSPIDER benchmark were available
but missing files for the GeneNetWeaver benchmark were
detected, GRNbenchmark will perform the benchmarking
only for the GeneSPIDER benchmark.

Benchmarking

GRNbenchmark takes approximately 5 minutes to com-
plete the benchmarking for both tools, but this time dou-
bles if the inferred GRNs contain the sign of the interaction
since a separate signed benchmark is then executed. The ac-
curacy of the inferred GRNs is visualized in a few different
ways to provide a straightforward assessment of the given
method’s accuracy in comparison to the public methods.
The overview scatter plot (Figure 2) is a three-panel interac-
tive scatter plot for AUPR, AUROC and the maximum F1-
score. Each marker in the first two panels corresponds to
the area under the curve for a method, while the third panel

shows the maximum F1-score across all sparsities. The un-
derlying curves can be visualized by clicking on a marker
in the scatter plot. Mouseover without a click on a marker
in the scatter plot shows detailed information about a par-
ticular marker, including the method name, network name,
and the exact values of the accuracies. The scatter plots are
Plotly panels that provide multiple interactive functionali-
ties. Each method can be turned on and off, allowing an easy
investigation of results, and zooming/panning is possible to
resolve crowded areas.

The left side of the results page contains the benchmark
menu, where the available benchmarks are listed, currently
GeneNetWeaver and GeneSPIDER. Clicking on a bench-
mark from this menu visualizes the results for the selected
benchmark. By default, results for the directed unsigned
benchmark are visualized, and an option for switching to
the results from the directed signed benchmark is also avail-
able.

A noise-related trend, as expected, can be observed where
the accuracy levels increase relative to decreasing noise in
most cases, especially from high to medium noise levels.
This increase is considerably less from medium to low, sug-
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Figure 3. By expanding the ‘Show underlying PR curves’ tab, detailed precision-recall curves for each GRN is displayed. These curves were used for
calculating the area under curve measures shown in the overview scatter plot. Likewise, curves for ROC and F1 versus sparsity curves are available for all
GRNs.

gesting that almost all methods reach their maximum accu-
racy at the medium noise level. At medium and low noise
levels, the accuracy of all inference methods are higher than
the random performance, which is 0 for AUPR and 0.5 for
AUROC. While some methods can reach almost perfect ac-
curacy at these noise levels, some remain low. We observe
that the winner of all methods is Z-score at high noise, while
other methods such as least squares and LASSO may out-
perform it at medium and low noise levels. These interpreta-
tions of the accuracy results hold for benchmarks from both
data generation tools, although the overall accuracy for
the GeneNetWeaver benchmark is lower than for GeneSPI-
DER. The signed benchmark is only performed for meth-
ods which can infer a sign for an interaction, and the accu-
racy levels are about equal for both directed/unsigned and
directed/signed, meaning that the true positives have their
sign mostly inferred correctly. For more details of accuracy
results, we refer the interested reader to ‘Public Results’ on
the web server, which can either be inspected interactively
or downloaded as PDF.

In addition to viewing underlying curves for a single
method and GRN by mouse click on a marker in the scat-
ter, all curves for precision-recall (PR), receiver-operating-
characteristic (ROC), and sparsity versus F1-score are
shown for each dataset, combined for all methods (Figure
3). These curves are hidden under tabs called ‘Show un-
derlying PR curves’, ‘Show underlying ROC curves’, and
‘Show underlying F1 curves’. Results visualized under tabs
are no longer interactive, but can be saved and used sepa-
rately for any purpose. Each of these plots can be separately
downloaded in PNG format. The last tab is dedicated to the
results table, where the exact values of all accuracies can be
seen. A PDF report of all results is also generated and can
be downloaded by the user.

Storing user results

Once the benchmarking is complete, the results page is pri-
vately updated to the user by the addition of their method.
A link is provided to the user, and kept active for 30 days. A

benchmark report is generated in PDF format that can be
downloaded as long as the link to the results page is active.
All plots are downloadable separately in PNG format. For
the overview scatter plots, this means that the visualization
is no longer interactive.

In the results page, a user submitting inferred GRNs has
two options available: ‘Delete’ and ‘Publish’. If the user pro-
ceeds with one of these options, the link to the results page
is deactivated immediately, while no action keeps the link
alive for 30 days. If the user clicks on the ‘Delete’ button,
the results are immediately deleted, and if the user clicks on
the ‘Publish’ button, it becomes one of GRNbenchmark’s
public methods.

DISCUSSION

GRNbenchmark is the first online framework for bench-
marking GRN inference methods. It provides a comprehen-
sive selection of datasets, performs an automated bench-
marking of the users’ predictions, and visualizes the accu-
racy results both interactively and in a format that is suitable
for use in publications.

The data provided by GRNbenchmark are generated us-
ing different tools and at multiple levels of noise, which is
often lacking in benchmarking data used in the field. To-
gether with its automated and standardized benchmarking
procedure this approach prevents biasing the data towards
specific GRN inference methods. The interactive visualiza-
tion of results that are stored in the link provided to the user
enables an in depth assessment of methods’ accuracies and
their underlying curves, with the three accuracy measures
that are most commonly used in the field. The opportunity
to publish the results of an inference method online is in-
tended to help the method reach the entire GRN inference
community and promote its use.

While GRNbenchmark provides a large collection of
datasets with varying properties from two generation tools,
it is currently limited to steady-state bulk data, excluding
time-series and the recently emerging single-cell data. This,
however, is not an inherent limitation since the framework
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allows addition of more benchmarks, e.g. for other exper-
iment types, from other data generation tools, of different
sizes, or with further variations of data properties. A bench-
mark for GRN inference from single-cell data would be in-
teresting when those methods become more reliable, but at
the moment they have very low accuracy (26). Considering
the possible space for improvement, expanding the available
data types is a future goal for GRNbenchmark.

GRNbenchmark performs the benchmarking in a di-
rected manner, meaning that the source and target of the
interaction matter in the resulting accuracy of the method.
If the inference method also infers the sign of the interac-
tion, the method is separately benchmarked against other
methods that also infer the sign. However, GRNbenchmark
is not suitable for methods inferring undirected networks,
where the interaction between two genes is symmetrical. In
such cases, for every true positive, a false positive is added,
in addition to each false positive becoming two false posi-
tives, severely penalizing the method’s accuracy. Therefore,
inference methods that do not infer the direction of inter-
actions, such as ARACNE (27) and CLR (Context Likeli-
hood of Relatedness) (28), are not included in the publicly
available methods, and we discourage users from submitting
undirected (symmetrical) GRNs.

Considering the continuous development of new GRN
inference methods, often with biases and limitations in
the validation, GRNbenchmark provides a great advance
to the field by its user-friendly online interface that pro-
vides a large amount of benchmarking data and an auto-
mated benchmarking procedure in comparison with other
methods, with high quality interactive visualizations. GRN-
benchmark is valuable for both developers of new GRN
inference methods and researchers who want to select a
method for a GRN inference problem based on either over-
all accuracy and robustness, or for a particular property
such as noise level.

DATA AVAILABILITY

The benchmarking data can be downloaded from https://
grnbenchmark.org.
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