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Noncoding, endogenous microRNAs (miRNAs) are fairly well known for regulating gene expression rather than protein coding.
Dysregulation of miRNA gene, either upregulated or downregulated, may lead to severe diseases or oncogenesis, especially when
the miRNA disorder involves significant bioreactions or pathways. Thus, how miRNA genes are transcriptionally regulated has
been highlighted as well as target recognition in recent years. In this study, a large-scale investigation of novel cis- and trans-
elements was undertaken to further determine TF-miRNA regulatory relations, which are necessary to unravel the transcriptional
regulation of miRNA genes. Based on miRNA and annotated gene expression profiles, the term “coTFBS” was introduced to detect
common transcription factors and the corresponding binding sites within the promoter regions of eachmiRNA and its coexpressed
annotated genes.The computational pipelinewas successfully established to filter redundancy due to short sequencemotifs for TFBS
pattern search. Eventually, we identified more convinced TF-miRNA regulatory relations for 225 human miRNAs. This valuable
information is helpful in understanding miRNA functions and provides knowledge to evaluate the therapeutic potential in clinical
research. Once most expression profiles of miRNAs in the latest database are completed, TF candidates of more miRNAs can be
explored by this filtering approach in the future.

1. Introduction

Among functional noncoding RNAs (ncRNAs), microR-
NAs (miRNAs) are tiny molecules (∼21–23 nt) with giant
roles. miRNAs participate in gene regulation by targeting
messenger RNAs (mRNAs) and influencing their stability
and the initiation of translation. It is implied that if the
expression of miRNA is aberrant, miRNA-mediated gene
circuitries will be disordered, resulting in homeostatic imbal-
ance, pathogenesis, and oncogenesis [1, 2]. In recent years,

elucidating transcriptional regulatorymechanisms ofmiRNA
genes has been highlighted when studying miRNA function.
Core promoters of miRNA genes were promptly identified
for depicting full-length primary transcripts [3–5]. High-
throughput sequencing datasets derived from epigenetic sig-
nature and TSS-relevant experiments unfold transcriptional
start sites (TSSs) of miRNAs and offer a practical strategy to
determine miRNA promoters [6–9].

To further understand upstream regulatory elements
controlling miRNA expression, transcription factors (TFs)

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 623078, 8 pages
http://dx.doi.org/10.1155/2014/623078

http://dx.doi.org/10.1155/2014/623078


2 BioMed Research International

and their binding sites of miRNA promoters were deciphered
by either literature survey or computational prediction [10–
13]. By integrating the information of TF-miRNA regulatory
relations andmiRNA target interactions, regulatory networks
that revolved around miRNAs provide a biological insight
into how miRNAs dominate functional processes in bio-
chemical reactions or metabolic pathways [14–17]. However,
most of the foregoing studies regarded the upstream regions
of pre-miRNAs as promoters (e.g., 10 kb upstream or −900∼
+100 of the 5-start of the pre-miRNA). More convinced
miRNA promoters should be used for searching putative
TF-binding sites. In addition, the experimentally verified
TF-miRNA relations are insufficient for current miRNAs.
According to the statistics in the latest version 1.2 of Trans-
miR, only 735 entries, which include ∼201 transcriptional
factors, ∼209 miRNAs, and 16 organisms from 268 publi-
cations, were curated. A large-scale investigation of novel
cis- and trans-elements is necessary to fulfill the unmet need
for locating transcription factor binding sites (TFBSs) within
miRNA promoter regions.

Since sequence-specific TFs possess DNA-binding
domains (DBDs) to recognize specific motifs in miRNA
promoter sequences, potential binding sites can be detected
by sequence-based computational approaches, for example,
position weight matrix (PWM). A position weight matrix
(also called position specific scoring matrix, PSSM) infers a
pattern of DNA segment and is widely applied in searching
TFBSs [18–21]. Two well-known databases collecting matrix
information are TRANSFAC [22] and JASPAR [23]. To avoid
excess false positives due to short sequence motifs used for
TFBS pattern search, cis-regulatory analysis of coregulated
gene sets was executed to determine overrepresented TFBSs
[24, 25]. Although previously published web server Pscan
[26] and oPOSSUM [27] can search transcription factor
binding sites in coexpressed gene promoters to remit the
impact of false positive issue, users have to define their
coexpressed gene groups with valid gene IDs. In addition,
miRNA promoter sequences are not included in these two
web servers.

Therefore, the purpose of this study is to create a
computational pipeline to undertake large-scale investigation
of novel cis- and trans-elements for human miRNA genes
based on coexpression strategy. First, we constructed 255
coexpressed gene groups of human miRNAs. Moreover,
instead of grapping the upstream regions of pre-miRNAs
as promoter sequences, we exploited more concrete human
miRNA promoters by following the processes as previously
described [7]. Through the detection of transcription factor
binding sites within promoter regions of human miRNAs
and their coexpressed genes by using matrix information
from TRANSFAC, the common TFBSs were identified. We
then filtered the redundancy by not only the occurrence of
common TFBSs but also the expression correlation between
TF-encoded genes and corresponding human miRNA gene
groups. Finally, more reliable TF-miRNA regulatory relations
of 225 human miRNAs were provided. Furthermore, the
liver-specific hsa-miR-122 was also selected as the case study
to demonstrate the usage of this filtering approach and its
practicability.

2. Materials and Methods

2.1. Human miRNA Promoter Sequences. The latest genomic
coordinates of humanmiRNAs were retrieved frommiRBase
release 19 [28].HumanmiRNATSSswere identified by repro-
ducing the computational procedures described in miRStart
resource [7].The formulawhich determines tag-enriched loci
was modified by weighted tag density (tag density multiply
by tag number) in the SVM step to precisely reveal the
effect of tag intensity. Then, 1 kb upstream sequences of
human miRNA TSSs were acquired from UCSC Genome
Browser [29] (hg19/GRCh37 assembly) in FASTA format.
The updated intergenic miRNA TSSs in human genome
are listed in supplementary Table S1 (available online at
http://dx.doi.org/10.1155/2014/623078) in additional file for
reference.

2.2. Expression Profiles of Human miRNAs and Annotated
Genes. In order to determine human genes that are coex-
pressed with specific miRNA genes, GDS596 record, the
Affymetrix gene expression profiles from 79 physiologically
human normal tissues, was downloaded from Gene Expres-
sion Omnibus (GEO) [30, 31]. Among annotated human
genes in GDS596, genes were filtered out if their HGNC
symbols are invalid or have been withdrawn. On the other
hand, the expression data of 345 miRNAs in 40 normal
human tissues generated by a new type of real time reverse
transcription- (RT-) PCR-based miRNA assays were also
collected [32]. Mature miRNAs with eliminatedmiRBase IDs
(release 19) were discarded. In both expression datasets, only
17 tissues (adrenal, brain, heart, kidney, liver, lung, lymph
node, ovary, pancreas, placenta, prostate, skeletal muscle,
testicle, trachea, thymus, thyroid, and uterus) are in common
and were considered to be integrated expression profiles of
annotated genes and miRNA genes with 17 conditions. To
standardize expression levels across extensive range of both
datasets, the raw intensity was 𝑍-score transformed [33].

2.3. Coexpressed Gene Groups of Human miRNAs. After the
transformation process between two expression datasets,
Pearson’s correlation coefficient (PCC) was calculated to
estimate which annotated genes are coexpressed with specific
miRNAs. The formula of Pearson’s correlation coefficient
(usually using the letter 𝑟) is as follows:
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where 𝑋
𝑖
and 𝑌

𝑖
denote the expression level of 𝑖 condition

(tissue) of two genes 𝑥 and 𝑦 that are calculated for 𝑟,
whereas 𝑋 and 𝑌 represent the average of corresponding
expression levels in total 𝑛 conditions. Since the value of
Pearson’s correlation coefficient ranges from +1 (positively
correlated) to −1 (negatively correlated), we defined that two
genes of interest are coexpressed if their Pearson’s correlation
coefficient is more than 0.8. Subsequently, coexpressed genes
of human miRNAs were determined, and their promoter
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Figure 1: The summary of detecting TF-miR regulatory relations in human genome.

sequences (1 kb upstream from TSS) were obtained from
BioMart of Ensembl release 69 [34].

2.4. CoTFBSs in Human miRNA Promoters. In this work,
we defined coTFBS as a common TFBS located in promoter
regions of coexpressed genes. The TRANSFAC database
[22], comprising data on transcription factors, their target
genes, and regulatory binding sites, has been widely used
when studying eukaryotic transcriptional regulation. After
acquiring 1 kb promoter sequences of miRNA genes and their
coexpressed genes in FASTA format, the Match program
[35] was executed for sequence motif search of transcription
factor binding sites according to the matrix information pro-
vided by TRANSFAC (version 2011.4). A customized profile
which specified human matrices in TRANSFAC library was
used for Match to minimize both false positive and false
negative rates with core similarity and matrix similarity cut-
off values for each matrix. As defined in the publication
of Match, the core of each matrix refers to the first five
most conserved consecutive positions of a matrix. A putative
TFBS with core similarity less than 1 was filtered out. The
occurrence of each coTFBS and its expression correlation
with miRNA in coexpressed gene groups was calculated
finally. Only thosewhose encoded genes are coexpressedwith
corresponding miRNA were considered.

3. Results

3.1. HumanmiRNAs with Coexpressed Gene Group for Detect-
ing TF-miRNA Relations. Figure 1 summarizes the workflow

to investigate human TF-miRNA regulatory relations based
on expression profiles of miRNA and annotated genes. Pear-
son’s correlation coefficient (PCC) was applied to measure
the similarity of expression patterns across 17 human normal
tissues, which represents the coexpressed level between a
specific miRNA gene and an annotated gene of interest.
Due to the reason that Pearson’s 𝑟 cannot be calculated if
the expression levels in all 17 conditions are identical, 29
maturemiRNAs with such expression profiles were excluded.
After discarding the mature miRNAs whose miRBase IDs are
eliminated, 289 human miRNAs were selected to estimate
PCC values with annotated human genes in GDS596 record.

Among them, however, only 255 human miRNAs have
more than one coexpressed genes (PCC > 0.8). Moreover,
25 out of 255 human miRNAs have no identified TSSs by
following the previous strategy [7] and have to be filtered.
In total, 230 human miRNAs were qualified to discover
putative cis- and trans-elements in their promoter regions.
The number of members of each miRNA coexpressed gene
group ranges from several to thousand (see Table S2 in
additional file for details).

3.2. Putative TF-miRNA Relations Were Explored according to
the Occurrence of CoTFBS. Theoretically, a group of genes
that are coexpressed may be regulated by common transcrip-
tion factors. Based on this concept, a specific transcription
factor binding site located in the promoter regions of most
genes in each coexpressed group implies that its correspond-
ing TF is the most possible one controlling the expression
of these genes. Here, we introduce the term “coTFBS” which



4 BioMed Research International

Promoter region

miRNA gene
TSS

Coding gene 2
TSS

Coding gene 3
TSS

Coding gene 4

Coding gene 1
TSS

coTFBS

TSS

Figure 2:The concept of coTFBS. Protein-coding genes 1, 2, 3, and 4
are coexpressed with the miRNA gene. Colored rectangles represent
transcription factor binding motifs in each promoter region. The
common TFBS (pink) located within the promoters of miRNA gene
and other four genes represents the “coTFBS” of this gene group.

represents the common TFBS of a coexpressed gene group
to filter redundant TF candidate of miRNA genes. For
example, the “pink rectangle” binding motifs were detected
in the proposed miRNA and other four gene promoters in
Figure 2. The occurrence of this coTFBS is five. By scanning
TFBSs in promoter regions of each miRNA gene and its
coexpressed gene group using Match based on TRANSFAC
library (version 2011.4) and following the filtering process, the
putative TFs that regulate a specificmiRNAwere determined.
In this work, we successfully identified putative TF-miRNA
relations of 225 human miRNAs. The full list of putative TFs
for each human miRNA promoter can be accessed in Table
S3.

3.3. Case Study: hsa-miR-122. hsa-miR-122 is one of the
intergenic miRNAs whose TSS and promoter have been
experimentally characterized [7]. Previous studies reported
that this liver-specific miRNA is significantly downregulated
in hepatocellular carcinoma and profoundly affects carcino-
genesis [36]. Because of the explicit promoter and biological
importance, hsa-miR-122 was selected as the case study to
investigate which TFs may regulate its gene expression. 261
annotated genes coexpressed with miR-122 were identified
according to their expression levels with Pearson’s correlation
coefficient (PCC) more than 0.8. Figure 3 compares the
expression patterns of 261 coexpressed genes (the pink line
represents the average value of their expression) with hsa-
miR-122 among 17 human normal tissues, indicating that
remarkable peaks appear in liver for all the coexpressed
genes. The expression image (see Figure S1 in additional file)
also reveals the similar trends between hsa-miR-122 and its
coexpressed genes.

Then, the promoter sequences (1 kb upstream from TSS)
of hsa-miR-122 gene and 261 coexpressed genes were col-
lected to identify coTFBSs using Match. The occurrence
of putative transcription factors of miR-122 is listed in
Table 1. AmongTF candidates regulating hsa-miR-122, the TF
bindingmotif ofHNF-4alpha can be found in 191 coexpressed
gene promoters. In 2011, Li et al. reported that HNF-4alpha

is a key regulator positively controlling the expression of
miR-122 in liver [37], proving our computational finding.
They performed not only the luciferase reporter gene assay to
detect the trans-activation effect of HNF-4alpha in miR-122
promoter but also the ChIP and EMSA assays to determine
HNF-4alpha binding of miR-122 promoter in vitro and in
vivo. Moreover, other liver-enriched transcription factors
including HNF-1alpha, HNF-3alpha, HNF-3beta, and HNF-
6 showed a strong positive correlation with miR-122. The
knockout of HNF1A, FOXA1, and FOXA2 by RNAi assay
reduces the expression of miR-122, suggesting that these
transcription factors may bind to miR-122 promoter and
transcriptionally regulate miR-122 [38]. Importantly, HNF-
1alpha, HNF-3alpha, and HNF-3beta were identified in
our list of TF candidates, and a HNF-6 binding site was
determined (−2720 from miR-122 TSS) if the 3 kb promoter
sequence of miR-122 was used.

In addition, the TF binding site of NR1B2 can be found in
226 coexpressed gene promoters. A previous research article
published in 1987 indicated that the inappropriate expression
of HAP gene (the official HGNC symbol is RARB) may relate
to the hepatocellular carcinogenesis, and hap protein may
directly participate in the hepatocellular transformation [39].
It is implied that transcription factorNR1B2may bind tomiR-
122 promoter and regulate its expression.

4. Discussion

For large-scale investigation of human TF-miRNA relations
in this study, the expression profiles of human miRNAs and
over ten thousands genes from normal human tissues facil-
itate the acquirement of miRNA coexpressed gene groups.
However, the latest usable RT-qPCR miRNA expression data
for human normal tissues were published in 2007 [32]. The
currently available data are almost derived from cancer cell
lines or tumor tissues. Totally 230 coexpressed gene groups
limit the coTFBS analysis of most miRNAs in existence.
Besides, based on the cut-off 0.8 PCC value applied to define
coexpression between a miRNA and an annotated gene, 34
miRNAs have no coexpressed genes and 50 miRNAs have
less than ten coexpressed genes. Although each miRNA
has sufficient coexpressed genes to analyze its putative cis-
and trans-elements if the lower PCC cut-off was used, it
may cause the trade-off of specificity when determining
miRNA coexpressed genes. For example, hsa-let-7a-1 has
no coexpressed gene when using 0.8 PCC value but has 29
coexpressed genes if 0.6 PCC value was applied.

It is noteworthy that the normalization process between
two raw expression datasets was only 𝑍-score transformed,
without using log

10
transformation before 𝑍-score standard-

ization. According to the definition of formula, Pearson’s
correlation coefficient calculates linear correlation between
two variables and has an invariant property in statistics.
In fact, the log

10
transformation tends to alter the original

expression patterns and sharply reduces the scale of raw
intensity, resulting in unexpected affection of PCC values.
Figure S2 illustrates an example of hsa-miR-122 expression
patterns with and without log

10
transformation. In addition
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Figure 3: 261 human protein-coding genes are coexpressed with hsa-miR-122.The pink curve in 3(b) represents the average value of miR-122
coexpressed genes among 17 human normal tissues. The remarkable peaks appear in liver.

to the high expression level in liver, two obvious peaks of
brain and thymus appear in the log

10
transformed expres-

sion profile of hsa-miR-122. The members of hsa-miR-122
coexpression group also reflect the variation. Unlike more
than two hundred coexpression genes by using 𝑍-score
transformed expression data, merely five coexpressed genes
left based on the cut-off 0.8 PCC value by 𝑍-score and log

10

transformed data.
Another limitation of TFBS/TF detection depends on

present transcription factor binding matrices collected in
TRANSFAC. As is well known, sequence motif search of
transcription factor binding sites is executed by the Match
program according to the matrix information in TRANSFAC
library. A specific TFBS in miRNA promoter will not be
detected if the corresponding matrix has not been obtained
by in vitro selection studies. Here is an example. Unlike hsa-
miR-122, miR-224 is upregulated in HCC through epigenetic
mechanisms and controls several crucial cellular processes
[40]. Wang et al. indicated that miR-224 expression is recip-
rocally regulated by HDAC1, HDAC3, and EP300. Our result
shows that P300 (encoded by EP300) is the TF candidate of
miR-224, and its TFBS can be found in 227 coexpressed gene
promoters. Because matrices of histone deacetylases 1 and 3
are not available in TRANSFAC, no such transcription factors
were predicted.

In conclusion, rather than traditional PWM search char-
acterizing putative cis-elements in promoter regions, the
coTFBS strategy was developed to determine more confident
TFBSs for human miRNAs. The investigation was restricted
by the incomplete expression profiles of present human
miRNAs. Once most expression profiles of miRNAs in the

latest database are available, TF candidates of more miRNAs
can be explored in the future. Furthermore, although more
and more ChIP-seq data were generated and were useful
to identify transcription factor binding sites [41–43], the
corresponding ChIP-seq data of specific TFs are still the
minority. It is expected that large-scale ChIP analysis of
general TFs contributes more confident TFBSs by observing
the aggregated peaks within promoter regions of human
miRNAs.

5. Conclusions

In organisms, not all of ribonucleic acids (RNAs) are trans-
lated to proteins. miRNAs are such noncoding RNAs which
play critical roles in gene regulation, even if it is generally
believed that proteins convey vital information from genes
and execute biological functions to maintain life processes.
Although target prediction has been the mainstream when
studying miRNA functions for a while, researchers start to
explore TF-miRNA interactions and study the transcrip-
tional regulation of miRNAs, which are necessary to depict
how miRNAs participate in diverse biological processes.
To determine putative TFs and TFBSs located in human
miRNA promoters, we created a computational pipeline
which not only allows large-scale investigation as long as the
expression profiles of miRNAs are available, but also filters
the redundancywhen searching short sequence.This valuable
information is helpful in understanding miRNA functions
and provides knowledge to evaluate the therapeutic potential
in clinical research.
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Table 1: Putative transcription factors regulating miR-122 gene.The bold items indicate the experimental-supported TFs. PCC represents the
Pearson’s correlation coefficient between each TF-encoded gene and miR-122.

Matrix ID Transcription factor Gene PCC Occurrence
V$ELF1 Q6 Elf-1 ELF1 0.192827 242
V$MAFB 01 MAFB MAFB 0.383476 239
V$TBX5 02 TBX5 TBX5 0.132419 227
V$NR1B2 Q6 NR1B2 RARB 0.117271 226
V$CDX2 Q5 02 CDX-2 CDX2 0.105817 215
V$GATA1 01 GATA-1 GATA1 0.0128229 215
V$SMAD3 Q6 01 Smad3 SMAD3 0.0915205 203
V$HNF4A Q6 01 HNF-4alpha HNF4A 0.316168 191
V$SOX5 01 SOX5 SOX5 0.149287 185
V$SPI1 03 SPI1 SPI1 0.268782 178
V$ERBETA Q5 ER-beta ESR2 0.303769 176
V$GATA1 02 GATA-1 GATA1 0.0128229 173
V$GATA1 05 GATA-1 GATA1 0.0128229 168
V$GATA1 06 GATA-1 GATA1 0.0128229 168
V$CDX2 Q5 01 Cdx-2 CDX2 0.105817 167
V$MAZ Q6 MAZ MAZ 0.414832 166
V$MYOD Q6 01 MyoD MYOD1 0.306424 164
V$PITX3 Q2 PITX3 PITX3 0.127413 160
V$ING4 01 ING4 ING4 0.234372 158
V$HNF3B Q6 HNF-3beta FOXA2 0.44036 154
V$CDX2 01 Cdx-2 CDX2 0.105817 152
V$CRX Q4 Crx CRX 0.243011 149
V$HNF3A 01 HNF3A FOXA1 0.140429 148
V$GATA1 04 GATA-1 GATA1 0.0128229 139
V$ERR1 Q3 ERR1 ESRRA 0.18197 135
V$CEBPE Q6 CEBPE CEBPE 0.0949125 133
V$HNF1 02 HNF-1alpha HNF1A 0.363153 122
V$CRX 02 Crx CRX 0.243011 119
V$NEUROD 02 NeuroD NEUROD1 0.0402891 114
V$MAZ Q6 01 MAZ MAZ 0.414832 110
V$OC2 Q3 OC-2 ONECUT2 0.124899 102
V$IRF7 Q3 IRF-7 IRF7 0.13082 100
V$PIT1 Q6 Pit-1 POU1F1 0.319886 99
V$DBP Q6 01 DBP DBP 0.043001 76
V$CEBPG Q6 01 C/EBPgamma CEBPG 0.027117 73
V$MYOD 01 MyoD MYOD1 0.306424 72
V$CREL 01 c-Rel REL 0.29444 44
V$CEBPG Q6 C/EBPgamma CEBPG 0.027117 43
V$ATF4 Q6 ATF-4 ATF4 0.0251237 40
V$HOXA7 01 HOXA7 HOXA7 0.397453 31
V$E2F1 Q4 E2F-1 E2F1 0.110614 29
V$ATF5 01 ATF5 ATF5 0.912782 26



BioMed Research International 7

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

Chia-Hung Chien, Shun-LongWeng,Wen-Chi Chang, Ann-
Ping Tsou, and Hsien-Da Huang conceived and designed the
experiments. Chia-Hung Chien and Yi-Fan Chiang-Hsieh
analyzed the data and performed the experiments. Chia-
Hung Chien wrote the paper.

Acknowledgments

Thanks are due to Pei-Wen Jiang for the assistance of pro-
gramming and system maintenance and to Hsi-Yuan Huang
for experience sharing in expression profile analysis. This
research was supported by a grant from National Science
Council of the Republic of China for financially supporting
this research under Contract nos. NSC 102-2313-B-006-
004, NSC 101-2311-B-009-003-MY3, NSC 100-2627-B-009-
002, NSC 102-2911-I-009-101, and NSC 99-2628-B-006-016-
MY3.

References

[1] S. M. Khoshnaw, A. R. Green, D. G. Powe, and I. O. Ellis,
“MicroRNA involvement in the pathogenesis and management
of breast cancer,” Journal of Clinical Pathology, vol. 62, no. 5, pp.
422–428, 2009.

[2] R. Schickel, B. Boyerinas, S.-M. Park, andM. E. Peter, “MicroR-
NAs: key players in the immune system, differentiation, tumori-
genesis and cell death,”Oncogene, vol. 27, no. 45, pp. 5959–5974,
2008.

[3] H. K. Saini, S. Griffiths-Jones, and A. J. Enright, “Genomic
analysis of human microRNA transcripts,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 104, no. 45, pp. 17719–17724, 2007.

[4] H. K. Saini, A. J. Enright, and S. Griffiths-Jones, “Annotation
of mammalian primary microRNAs,” BMC Genomics, vol. 9,
article 564, 2008.

[5] J. Qian, Z. Zhang, J. Liang et al., “The full-length transcripts
and promoter analysis of intergenic microRNAs in Drosophila
melanogaster,” Genomics, vol. 97, no. 5, pp. 294–303, 2011.

[6] A. Barski, R. Jothi, S. Cuddapah et al., “Chromatin poises
miRNA- and protein-coding genes for expression,” Genome
Research, vol. 19, no. 10, pp. 1742–1751, 2009.

[7] C.-H. Chien, Y.-M. Sun, W.-C. Chang et al., “Identifying
transcriptional start sites of human microRNAs based on high-
throughput sequencing data,”Nucleic Acids Research, vol. 39, no.
21, pp. 9345–9356, 2011.

[8] M. Bhattacharyya, L. Feuerbach, T. Bhadra, T. Lengauer, and S.
Bandyopadhyay, “MicroRNA transcription start site prediction
withmulti-objective feature selection,” Statistical Applications in
Genetics and Molecular Biology, vol. 11, no. 1, article 6, 2012.

[9] Y. Saito, H. Suzuki, T. Taya et al., “Development of a novel
microRNA promoter microarray for ChIP-on-chip assay to
identify epigenetically regulated microRNAs,” Biochemical and

Biophysical Research Communications, vol. 426, no. 1, pp. 33–37,
2012.

[10] J. Wang, M. Lu, C. Qiu, and Q. Cui, “TransmiR: a transcription
factor microRNA regulation database,” Nucleic Acids Research,
vol. 38, supplement 1, pp. D119–D122, 2009.

[11] R. Shalgi, D. Lieber, M. Oren, and Y. Pilpel, “Global and local
architecture of the mammalian microRNA-transcription factor
regulatory network,” PLoS Computational Biology, vol. 3, no. 7,
article e131, 2007.

[12] C.-Y. Chen, S.-T. Chen, C.-S. Fuh, H.-F. Juan, and H.-C.
Huang, “Coregulation of transcription factors and microRNAs
in human transcriptional regulatory network,” BMC Bioinfor-
matics, vol. 12, supplement 1, article S41, 2011.

[13] A. Re, D. Core, D. Taverna, andM. Caselle, “Genome-wide sur-
vey of microRNA-transcription factor feed-forward regulatory
circuits in human,”Molecular BioSystems, vol. 5, no. 8, pp. 854–
867, 2009.

[14] O. Friard, A. Re, D. Taverna, M. de Bortoli, and D. Corá,
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