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Wnt/β-catenin and NOTCH signaling contribute to the pathogenesis and growth of
(PanNENs). The wnt and Notch signaling pathways form an integrated signaling
device termed “wntch” and regulate stochastic cell fate decisions, suggesting the
essentiality of Wnt/Notch interactions in disease progression. However, the function
of Wnt/Notch interactions in PanNENs is unclear. We analyzed RNA sequencing
(RNA-seq) data to identify differentially expressed lncRNAs, mRNAs and pathways
according to enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways associated with PanNENs. RNA-seq analysis revealed
that the levels of the lncRNA XLOC_221242 and the mRNA encoding Delta/Notch-like
epidermal growth factor (EGF)-related receptor (DNER) were significantly increased in
tumor tissues compared with normal tissues (n = 3). Protein-protein interaction (PPI)
prediction combined with transcriptional profiling data analysis revealed that DNER
expression levels were positively correlated with those of DNA-binding factor (RBPJ),
S phase kinase-associated protein 1 (Skp1), CTNNB1 and Cadherin-2 (CDH2), which
promote PanNEN tumorigenesis and progression. These results were consistent with
those of immunohistochemical analysis of DNER, RBPJ, SKP1, CTNNB1, and CDH2
expression (n = 15). These findings provide compelling clinical and molecular evidence
supporting the conclusion that DNER and the related RBPJ, SKP1, CTNNB1, and
CDH2 signaling contribute to PanNEN tumorigenesis and progression by activating
wnt/Notch interactions.

Keywords: pancreatic neuroendocrine neoplasms, RNA sequencing, DNER, Wnt, Notch

INTRODUCTION

The incidence of pancreatic neuroendocrine neoplasms (PanNENs), which account for only 1–2%
of all pancreatic malignancies, is increasing (Anderson and Bennett, 2016). The treatment, curative
surgery and systemic medication, is dependent on various factors to improve the survival outcome
of patients with PanNENs (Ishida and Lam, 2020). The survival of patients with PanNENs has
improved over time, but some factors, including G stage, surgical resection margin, lymph node,
TMN stage, metastasis, the necrosis and vascular invasion (Gao Y. et al., 2018). Although most

Frontiers in Genetics | www.frontiersin.org 1 November 2020 | Volume 11 | Article 587402

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.587402
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.587402
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.587402&domain=pdf&date_stamp=2020-11-27
https://www.frontiersin.org/articles/10.3389/fgene.2020.587402/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-587402 November 23, 2020 Time: 15:9 # 2

He et al. DNER Pathway in PanNENs

PanNENs are benign, some can progress to metastasis, depending
on their size, functional status, and grade (Fang and Shi, 2019).

The molecular pathogenesis of PanNENs is not clear. Via
whole-exome sequencing, MEN1 inactivation, DAXX/ATRX
mutation and/or loss, and mutations in mammalian target
of rapamycin (mTOR) pathway genes, MUTYH, CHECK2,
and BRCA2 were found to be related to the tumorigenesis
of PanNENs (Vinik et al., 2000; Chai et al., 2018). To
explore lncRNAs in PanNENs, sequencing is used. High
expression of either of two lncRNAs—MALAT1 or HOTAIR—
was reported to be negatively associated with characteristics of
lower aggressiveness, including lower T stage and less frequent
development of metastases, independent of histologic grade
(Chu et al., 2019).

The functional roles of long noncoding RNA (lncRNA)-
mRNA expression profiles in PanNENs are unclear. This study
aimed to identify the lncRNA and mRNA expression profiles and
explore the lncRNA-mRNA coexpression networks associated
with PanNEN tumorigenesis.

MATERIALS AND METHODS

Patients and Samples
Between September 2010 and December 2019, we obtained 15
samples of pathologically proven PanNEN tissues from patients
at the Second Affiliated Hospital, Xi’an Jiaotong University. Then,
three pairs of samples (including tumor and adjacent tumor
tissues) from five random patients were used for RNA sequencing
(RNA-seq) analysis. All samples were frozen in liquid nitrogen
immediately after resection and stored at −80◦C.

RNA-Seq and Data Analysis
Total RNA was extracted using TRIzol reagent (Takara
Biomedical Technology, Beijing, China). The RNA integrity
and quantity were finally measured using an RNA Nano 6000
Assay Kit in a Bioanalyzer 2100 system (Agilent Technologies,
CA, United States). The RNA library for lncRNA-seq was
constructed as a stranded library with rRNA depletion. After
library construction and sample pooling, the samples were
subjected to Illumina sequencing. lncRNA-seq commonly uses
PE150 (paired-end 150 nt) sequencing to obtain 12G of raw
data. Raw data (raw reads) in FASTQ format were first processed
with in-house Perl scripts. The clean reads for each sample were
first mapped to a reference genome with HISAT2 software. The
read alignment results were then transferred to the program
StringTie for transcript assembly. All transcripts were merged
using Cuffmerge software. The characteristics of novel lncRNAs
were compared with those of known lncRNAs and mRNAs.
Quantification of transcripts and genes was performed using
StringTie software, and Reads Per Kilobase of transcript per
Million mapped reads (RPKM) values were obtained. The
resulting P-values were adjusted using the Benjamini and
Hochberg method for controlling the false discovery rate
(FDR). Genes meeting the following criteria were considered
differentially expressed: | log2 (fold change) | >0 and adjusted
P-value (padj) <0.05.

GO Enrichment, KEGG Pathway, and PPI
Analyses
The functional roles of differentially expressed genes (DEGs)
were revealed by determining the transcriptional profiles
acquired using RNA-seq and by Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses. GO covers three domains: cellular component (CC),
molecular function (MF), and biological process (BP). The KEGG
resource is a collection of databases encompassing genomes,
biological pathways, diseases, drugs, and chemical substances.
The KEGG pathway database, the wiring diagram database, is
the core of the KEGG resource. It is a collection of pathway
maps integrating many entities, including genes, proteins, RNAs,
chemical compounds, glycans, and chemical reactions, as well as
disease genes and drug targets, which are stored as individual
entries in the other KEGG databases. The PPI network of
the DEGs was constructed according to information acquired
using the STRING database1. To identify hub genes in the PPI
network, we implemented maximal clique centrality analysis into
cytoHubba (a Cytoscape plugin). Maximal clique centrality is
a topological analytical method that effectively screens for hub
genes (Chin et al., 2014).

LncRNA-mRNA Coexpression Network
Construction
To explore interactions among these differential expression
profiles of lncRNAs and mRNAs in PNEN tumors and adjacent
tissues, we constructed coexpression network. The lncRNA-
mRNA networks were constructed according to the normalized
signal intensity of specific mRNA and lncRNA expression. For
each mRNA-lncRNA pair, we calculated the Pearson correlation
coefficient and selected the significant correlation pairs used to
construct the network. In network analysis, degree centrality is
the key parameter that determines the relative importance of an
mRNA or lncRNA within the network19. Degree centrality is
defined as the number of links numbers between one node and
another node. The clustering coefficient indicates the density of
the connections between each gene and the adjacent genes; the
larger the clustering coefficient, the greater is the importance of a
gene in regulating the network.

Immunohistochemistry (IHC)
Immunohistochemical staining was performed on 3-µm
sections of formalin-fixed, paraffin-embedded samples. After
deparaffinization with xylene and rehydration, antigen retrieval
was performed with 10 mM citrate buffer (pH 6.0) for 20 min.
Endogenous peroxidase activity was blocked by incubation
with 0.3% hydrogen peroxide and a blocking protein (Dako,
CA, United States) for 10 min. The primary antibody was
added overnight at 4◦C, and the sections were then washed.
The following antibodies were used: mouse monoclonal anti-
Delta/Notch-like epidermal growth factor (EGF)-related receptor
(DNER) (Merck Life Science (Shanghai) Co., Ltd. Shanghai,
China), rabbit anti-DNA-binding factor (RBPJ) (Merck Life

1https://string-db.org/
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Science (Shanghai) Co., Ltd., Shanghai, China), rabbit anti-S
phase kinase-associated protein 1 (SKP1) (Merck Life Science
(Shanghai) Co., Ltd., Shanghai, China), rabbit anti-CTNNB1
(Merck Life Science (Shanghai) Co., Ltd., Shanghai, China),
and mouse monoclonal anti-Cadherin-2 (CDH2) (Merck Life
Science (Shanghai) Co., Ltd., Shanghai, China). The secondary
biotinylated goat anti-mouse or goat anti-rabbit antibody (Dako)
was then applied for 30 min, and the sections were then incubated
with streptavidin peroxidase (Dako LSAB+ HRP kit) for 30 min.
After washing, the slides were stained with diaminobenzidine
(DAB) chromogen solution (Dako), counterstained with
hematoxylin in accordance with a standard protocol, dehydrated
through a graded ethanol series, and mounted. Sections were
without the primary antibodies to ensure the specificity of the
primary antibodies. No immunostaining was detected in these
sections, indicating the specificity of the primary antibodies
used in this study.

Statistical Analysis
The Raw data meet the standard for the next step by assessing
sequencing error rate, data volume, comparison rate, etc. The
RNA-seq standard analysis process includes quality control,
comparison, splicing, screening, quantitative analysis, difference
significance analysis, and functional enrichment.

Quality assessment of sequencing data, including original
sequence data, sequencing data filtering, sequencing error rate
distribution check, GC content distribution difference, and clean
reads used for subsequent analysis were obtained. StringTie
applied the network flow algorithm to splice and quantify
transcripts and genes. Cuffmerge software was used to merge the
transcripts obtained from the splicing of various samples. The
comparison, splicing, and screening of the known transcripts and
the predicted Novel_lncRNA, Novel_mRNA, and Unclassified
transcripts were all quantified with expression levels. After the
quantitative analysis is completed, the expression matrix of all
samples can be obtained, and then the expression significance
analysis of gene or transcript level can be performed in order to
find the functional genes or transcripts related to the treatment
group. The gene was analyzed with Cuffdiff (quantified with
Cuffdiff) or edgeR (quantified with RSEM) software, and padj
<0.05 was taken as the significance criterion for the difference
(if PADJ was less than 0.05, P-value < 0.05 was used for the
difference screening).

RESULTS

DEGs Associated With PanNENs
The workflow of the study is shown in Figure 1A. To
identify DEGs, we performed RNA-seq on samples from
three patients with PanNENs. We identified 363 differentially
expressed lncRNAs, of which 318 were upregulated and 45 were
downregulated at the transcriptional level (Figure 1B). We also
identified 1861 differentially expressed mRNAs, of which 1609
were upregulated and 252 were downregulated (Figure 1C). The
top 20 differentially expressed lncRNAs between the normal and
tumor tissues of patients with PanNENs are listed in Table 1.

The top 20 differentially expressed mRNAs (i.e., DEGs) between
the normal and tumor tissues of patients with PanNENs are
listed in Table 2. Heatmaps and volcano plots of the distributions
of differentially expressed lncRNAs and mRNAs are shown in
Figures 1D,E. Volcano plots of the distributions of DEGs are
shown in Figures 1F,G. The lncRNA XLOC_221242 was one of
the most upregulated lncRNAs among tumor tissues compared
with the matched paratumor tissues (log2 fold change = 13.8463,
padj = 0.002372158).

GO and KEGG Analyses of DEGs
To further illustrate the functions of DEGs in PanNENs,
GO and KEGG pathway enrichment analyses were performed.
The clusterProfiler2 software was used to explore the pathway
enrichment analysis with gene database of GO and KEGG. From
the GO enrichment analysis results, the most significant 20 terms
were selected to draw the histogram for display and Padj < 0.05
was the significant enrichment of KEGG pathway. GO analysis
identified 267 GO terms significantly enriched with the DEGs: 44
MF terms, 167 BP terms and 56 CC terms. Synaptic transmission,
neuron projection, synapse and cell projection part were the
four descriptive terms (Supplementary Figure 2A). The top 20
significantly enriched GO terms in the BP, CC and MF categories
are shown in Supplementary Figures 2B–D, respectively. BP
analysis showed that the top two terms enriched with DEGs
were related to synaptic transmission (n = 216) and potassium
ion transport (n = 65). CC analysis showed that the top two
terms enriched with DEGs were neuron projection (n = 222)
and synapse (n = 192). MF analysis showed that the top two
terms enriched with DEGs were gated channel activity (n = 109)
and ion channel activity (n = 119). Among these terms, neuron
projection (n = 222) and synaptic transmission (n = 216) were
the most highly enriched with DEGs. Three pathways with padj
<0.05 were identified by KEGG pathway analysis of the DEGs, as
shown in Supplementary Figures 2E,F. Among these pathways,
the most significantly enriched were neuroactive ligand-receptor
interaction (n = 83) and olfactory transduction (n = 78). It is
not clear weather GO and KEGG pathway enrichment analyses
is related to the expression level of genes among tumor tissues
compared with the matched paratumor tissues.

Construction of lncRNA-mRNA
Coexpression Networks and PPI
Network in PanNENs
To analyze protein interactions, a protein-protein interaction
(PPI) network was constructed with the STRING online database.
We have selected the 100 upregulated mRNAs identified in the
above RNA-seq analysis to construct the PPI network. Network
analysis revealed that the DNER network was mainly involved in
regulating the Wnt and Notch signaling pathways required for
cell proliferation, differentiation and apoptosis (Supplementary
Figure 3A). PPI analysis indicated that the levels of the mRNAs
encoding RBPJ, SKP1, CTNNB1, CDH2, SCG2, VGF, and TFF3
were significantly increased in PanNEN tumor tissues compared

2http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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FIGURE 1 | Differential lncRNA and mRNA expression between tumor and paratumor tissues of patients with PanNENs. (A) Workflow of the study. (B) Numbers of
upregulated and downregulated lncRNAs. (C) Numbers of upregulated and downregulated mRNAs. (D) Heatmap of differentially expressed lncRNAs between the
tumor and paratumor tissues. (E) Heatmap of differentially expressed mRNAs between the tumor and paratumor tissues. (F) Volcano plot of differentially expressed
lncRNAs between the tumor and paratumor tissues. (G) Volcano plot of differentially expressed mRNAs between the tumor and paratumor tissues n = 3.

with the matched paratumor tissues and may be involved in
the DNER signaling pathway in PanNENs (Supplementary
Figure 3A). Comparing PPI results with GO and KEGG results,

we found that DNER signaling pathway participating in many
processes of GO and KEGG pathway enrichment, including
secretion by cell, cytoplasmic vesicle and calcium ion binding.
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TABLE 1 | Patient characteristics.

Overall (n = 16) PNET (n = 11) PNEC (n = 5)

Age, median (range) 55.4 (35 − 68) 54.3 (35 − 65) 58.0 (49 − 68)

Gender, no. (%)
◦Male 9 (56.3) 6 (54.5) 2 (40)

◦Female 7 (43.7) 5 (45.5) 3 (60)

◦Tumor size (cm) 3.375 3.45 3.2

WHO classification, no. (%)
◦NET G1 1 (6.25) 1 (9.1)

◦NET G2 10 (62.5) 10 (90.9)

◦NET G3 5 (31.25) 5 (100)

◦ (NEC) Unknown 0 0 0

Curative resection, no. (%)
◦Yes 12 (75) 8 (72.7) 4 (80)

◦No 4 (25) 3 (27.3) 1 (20)

Disease sites, no. (%)
◦Head 4 (25) 2 (18.18) 2 (40)

◦Neck 11 (68.75) 0 (0) 1 (20)

◦Body and tail 1 (6.25) 9 (81.82) 2 (40)

Ki-67 index (%)
◦
≤2% 3 (18.75) 3 (27.27) 0 (0)

◦3-20% 11 (68.75) 8 (72.73) 3 (60)

◦>20% 2 (12.5) 0 (0) 2 (40)

CgA (%)
◦Positive 16 (100) 11 (100) 5 (100)

◦Negtive 0 (0) 0 (0) 0 (0)

TABLE 2 | Top 20 differentially expressed LncRNA between tumor tissues and normal tissues of patients with PanNENs.

Gene_id Gene name CA2_FPKM NC2_FPKM Log2Fold change P-adj UP/Down

XLOC_221242 XLOC_221242 43.868717 0 13.84633451 0.002372158 UP

XLOC_001021 XLOC_001021 30.916481 0 19.08556019 0.045747422 UP

XLOC_000438 XLOC_000438 26.02661 0 18.73528684 0.005385522 UP

XLOC_007895 XLOC_007895 13.885583 0 15.94233185 0.019183975 UP

XLOC_121259 XLOC_121259 5.570594333 0 14.12548719 0.036679241 UP

XLOC_121456 XLOC_121456 4.664696 0 15.22911587 0.006009066 UP

ENSG00000283217 AC068205.1 4.406602667 0 13.12333025 0.021655539 UP

XLOC_185143 XLOC_185143 4.323860333 0 15.75083787 0.028367132 UP

XLOC_000502 XLOC_000502 2.878419667 0 16.63851527 0.019756611 UP

ENSG00000243701 DUBR 2.863058 0 12.96832391 0.010042746 UP

ENSG00000130669 PAK4 6.864150667 534.4499207 −7.343546907 0.011034912 Down

ENSG00000089163 SIRT4 3.414264667 194.723648 −6.902059562 0.018306064 Down

ENSG00000132906 CASP9 1.585171333 106.159612 −7.140516249 0.016036468 Down

ENSG00000174876 AMY1B 0 56.44988633 −21.25643039 3.26E-06 Down

XLOC_001021 XLOC_001021 0 36.775833 −19.35332279 0.037935633 Down

XLOC_000423 XLOC_000423 0 35.82703133 −20.15640705 0.003373516 Down

XLOC_000438 XLOC_000438 0 32.291636 −19.98628759 0.035141067 Down

XLOC_001021 XLOC_001021 0 16.51662433 −19.12719458 0.039133681 Down

XLOC_000423 XLOC_000423 0 9.269675333 −18.30626306 0.01095923 Down

XLOC_001021 XLOC_001021 0 7.757990667 −17.96437169 0.045899957 Down

The coexpression networks in the tumor and paratumor tissue
were constructed according to the normalized signal intensity of
specific mRNA and lncRNA expression. Due to the abundant
information in the mRNA-lncRNA coexpression network, we

sorted the mRNAs/lncRNAs by their degree, which represents
the number of interactions with other mRNAs/lncRNAs in the
network, selected the top five lncRNAs and top 100 mRNAs, and
constructed the coexpression network related to these genes. In
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Supplementary Figure 3B, the red circles represent lncRNAs, the
blue ovals represent mRNAs, and the lines represent functional
relationships. The 100 upregulated mRNAs were matched with
thefive5 upregulated lncRNAs in the coexpression network table.
We found that three of the five lncRNAs were coexpressed
with 12 of the 100 mRNAs and that DNER was the most
upregulated mRNA.

Patient Characteristics
A total of 16 patients with PanNENs were enrolled in this study
(Table 1). The median age was 55.4 (range, 35–68), and the
cohort had a male:female ratio of 9:7. The vast majority of the
patients (74%) had nonfunctioning tumors. Eleven patients were
diagnosed with PanNENs, and five patients were diagnosed with
pancreatic neuroendocrine carcinoma (PNEC). Among the 16
patients, the mean tumor diameters were 3.375, 3.45, and 3.20 cm
in the combined cohort, patients with PanNEN and patients with
PNEC, respectively. According to the WHO classification criteria,
1/11 patients had G1, 10/11 had G2 and 5 had G3 tumors. Among
the patients, 8/11 (72.7%) in the PNEN group and 4/5 (80%) in
the PNEC group underwent curative resection. Among the 11
PNEN patients, 2/11 (18.18%) had a tumor localized at the head
of the pancreas, and 9/11 (81.82%) had a tumor localized at the
body or tail of the pancreas. Among the five PNEC patients, 2/5
(40%) had a tumor localized at the head of the pancreas, 1/5 (20%)
had a tumor localized at the neck of the pancreas and 2/5 (40%)
had a tumor localized at the body or tail of the pancreas. The
Ki-67 index was also analyzed. Among the 11 PNEN patients,
the Ki-67 index was ≤2% in 3/11 (27.27%) and 3–20% in 8/11
(72.73%). Among the five PNEC patients, the Ki-67 index was 3–
20% in 3/5 (60%) and >20% in 2/5 (40%). We next analyzed the
CgA status and found that all patients were positive.

High Expression Levels of DNER and
Related Genes in PanNETs
We validated the DNER expression levels in cohort two. The
RNA-seq profiles revealed that the levels of DNER mRNA and
coexpression of LncRNA XLOC_221242 in tumors, compared
with those of normal tissues, were significantly increased in
pancreatic neuroendocrine tumor (PNET) patients. PPI analysis
indicated that the levels of the mRNAs encoding RBPJ, SKP1,
CTNNB1, and CDH2 were significantly increased and that these
molecules may be involved in the DNER signaling pathway. We
then quantified the expression of DNER, RBPJ, SKP1, CTNNB1,
and CDH2 in solid tumor and paratumor paraffin sections by
immunohistochemistry and found strong cytoplasmic positivity
of DNER in tumor tissue compared with paratumor tissue
(Figure 2A), with significant differences (Figure 2C, P < 0.05).
We also found strong nuclear positivity of RBPJ and SKP1 in
tumor tissue compared with paratumor tissue (Figures 2B,E),
with significant differences (Figures 2D,G, P < 0.05). CTNNB1
and CDH2 were localized at the cell membrane, and we found
strong cell membrane positivity of CTNNB1 and CDH2 in tumor
tissue compared with paratumor tissue (Figures 2F,I), with
significant differences (Figures 2H,J, P < 0.05). The structure of
the tumor and paratumor tissue is shown in Figure 2K.

Moreover, the expression levels of RBPJ, SKP1, CTNNB1,
and CDH2 were positively correlated with those of DNER
(Figures 3A–D). Taken together, these findings indicate that
DNER may upregulate the expression of RBPJ, SKP1, CTNNB1,
and CDH2 to promote PNEN tumorigenesis. We made a
model of the pathway of PanNENs. LncRNA XLOC_221242
regulates the expression of DNER, which is the key factor of
Notch signal pathway. DNER regulates its downstream target
RBPJ and SKP1, and also interacts with the important factors
of Wnt signaling pathways, CTNNB1 and CDH2, regulating
tumor proliferation, differentiation, invasion, migration and
angiogenesis of PanNENs tumorigenesis (Figure 4).

DISCUSSION

Due to the widespread use of imaging studies, the diagnosis
of PanNENs has significantly increased. Most PanNENs can be
diagnosed in asymptomatic, early or metastatic stages. PanNENs
can be classified according to their Ki-67 index and can be
classified as functional or nonfunctional depending on the
clinical or hormonal hypersecretion syndrome (Larghi et al.,
2019). Surgical treatment is the main therapeutic method and
can significantly prolong life expectancy (Szeliga and Jackowski,
2018). The survival of patients with all NETs, especially those with
distant-stage gastrointestinal NETs and PanNENs, has improved
over time, reflecting improvements in therapies, which will help
us to prioritize future research directions (Dasari et al., 2017).

A larger proportion of germline mutations are found in
sporadic pancreatic neuroendocrine tumors (PanNETs) than in
other NETs in genes such as the DNA repair genes MUTYH,
CHEK2, and BRCA2, affecting processes such as chromatin
remodeling, activation of mTOR signaling (including previously
undescribed EWSR1 gene fusions), telomere maintenance,
hypoxia and HIF signaling (Scarpa et al., 2017). Proteomic
analysis has also identified several regulator proteins with
critical tumor dependencies, including key regulators of the
neuroendocrine lineage progenitor state and immunoevasion
(Alvarez et al., 2018). Moreover, numerous studies have
investigated the prognostic utility of epigenetic profiles and
tissue-based biomarkers as well as the expression of various
noncoding RNAs, including lncRNAs and microRNAs (miRNAs)
(Lee et al., 2019).

In this study, high-throughput RNA-seq technology designed
for genome-wide identification was used to detect the profiles
of differentially expressed lncRNAs and mRNAs in three pairs
of tumors and corresponding para-tumor tissues in PanNENs.
To screen clinically significant lncRNAs and mRNAs from
the large number of differential transcripts, we screened
the transcripts according to the following criteria: the same
differential expression in all three pairs of samples and higher
absolute fold change values o as selected by coexpression network
analysis. Finally, we used IHC to select 5 coexpressed proteins in
15 PanNEN samples.

Aberrant mutation or epigenetic silencing of Wnt/β-catenin
contributes to the pathogenesis and growth of NETs and
has important clinical implications for their prognosis and

Frontiers in Genetics | www.frontiersin.org 6 November 2020 | Volume 11 | Article 587402

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-587402 November 23, 2020 Time: 15:9 # 7

He et al. DNER Pathway in PanNENs

FIGURE 2 | Expression levels of DNER signaling pathway components in the clinical cohort. (A) Immunohistochemical staining of DNER in PanNEN tumor tissues
compared with matched paratumor tissues. (B) Immunohistochemical staining of RBPJ in PanNEN tumor tissues compared with matched paratumor tissues.
(C) Immunohistochemical staining analysis with IMAGE J was used to determine the protein level of DNER. (D) Immunohistochemical staining analysis with IMAGE J
was used to determine the protein level of RBPJ. (E) Immunohistochemical staining of SKP1 in PanNEN tumor tissues compared with matched paratumor tissues.
(F) Immunohistochemical staining of CTNNB1 in PanNEN tumor tissues compared with matched paratumor tissues. (G) Immunohistochemical staining analysis with
IMAGE J was used to determine the protein level of SKP1. (H) Immunohistochemical staining analysis with IMAGE J was used to determine the protein level of
CTNNB1. (I) Immunohistochemical staining analysis with IMAGE J was used to determine the protein level of CDH2. (J) Immunohistochemical staining analysis with
IMAGE J was used to determine the protein level of CDH2. (K) Hematoxylin-eosin (HE) staining in PanNEN tumor tissues compared with matched paratumor
tissues. (*P < 0.05 compared with paratumor tissues).
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FIGURE 3 | The expression levels of RBPJ, SKP1, CTNNB1, and CDH2 are upregulated and positively correlate with DNER expression in PanNENs. (A) RBPJ
protein expression compared with DNER protein expression in PanNENs (n = 15). (B) SKP1 protein expression compared with DNER protein expression in PanNENs
(n = 15). (C) CTNNB1 protein expression compared with DNER protein expression in PanNENs (n = 15). (D) CDH2 protein expression compared with DNER protein
expression in PanNENs (n = 15).

FIGURE 4 | LncRNA XLOC_221242 regulates the expression of DNER, which is the key factor of Notch signal pathway. DNER regulates its downstream target
RBPJ and SKP1, and also interacts with the important factors of Wnt signaling pathways, CTNNB1 and CDH2, regulating tumor proliferation, differentiation,
invasion, migration, and angiogenesis of PanNENs tumorigenesis.
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treatment (Kim et al., 2013). The Wnt/β-catenin pathway exhibits
alterations, including β-catenin accumulation and loss of APC,
in some PanNENs, and these alterations are not correlated with
tumor grade, tumor stage, or disease-specific survival (Weiss
et al., 2016). Neurotensin (NT) is a direct target of the Wnt/β-
catenin pathway, and inhibition of NT signaling can suppress cell
proliferation and decrease the expression levels of growth-related
proteins in NET cells (Kim et al., 2015).

The NOTCH signaling pathway, which can act as either a
tumor suppressor or an oncogene, has been shown to play an
important role in the pathogenesis of NENs. NOTCH receptors
can be found on neuroendocrine cells, suggesting the need to
fully understand the role and potential therapeutic implications
of gene mutations and NOTCH signaling in NENs (Von Arx
et al., 2019). Moreover, the genetic heterogeneity of NETs suggests
that a full understanding of the roles of Notch signaling in NETs
is required (Crabtree et al., 2016).

The Notch and Wnt pathways are two highly conserved
signaling pathways during animal development. The molecular
mechanisms underpinning the interactions between the Notch
and Wnt pathways can cooperatively regulate transcriptional
targets; in addition, one pathway can affect the other, and
direct molecular crosstalk occurs between the signal transduction
machineries (Collu et al., 2014). The wnt and Notch signaling
pathways form an integrated signaling device termed “wntch” to
limit variability in terms of sharpening boundaries and regulating
stochastic cell fate decisions (Hayward et al., 2008). In both
breast and colorectal cancer, wnt signaling can activate Notch
by inducing Notch ligand expression, suggesting the essentiality
of wnt/Notch interactions in disease progression (Rodilla et al.,
2009; Lopez-Garcia et al., 2010).

GO analysis revealed the cell components, BPes and MFs in
which the upregulated and downregulated mRNAs are involved
in PanNEN. KEGG pathway analysis was applied to evaluate
the differentially expressed mRNAs and cellular pathways.
Collectively, the lncRNA-mRNA coexpression network and the –
PPI network indicated that the levels of the mRNAs encoding
RBPJ, SKP1, CTNNB1, CDH2, SCG2, VGF, and TFF3, which
are related to NOTCH and Wnt signaling, were significantly
increased in PanNEN tumor tissues compared with the matched
paracancer tissues and that these molecules may be involved in
the DNER signaling pathway in PanNENs.

Delta/Notch-like epidermal growth factor (EGF)-related
receptor mediates Notch signaling via cell-cell interactions and
contributes to the morphological and functional maturation
of Bergmann glia via the Notch signaling pathway (Saito
and Takeshima, 2006). DNER can also promote breast cancer
cell progression and metastasis by activating Girdin/PI3K/AKT
signaling (Wang et al., 2019). DNER promotes the PC-3 cell
growth and prostate cancer progression by modulating the
primary genes related to cancer stem cells (Wang et al., 2017).
NOTCH1 regulates gene expression by associating with RBPJ
and is oncogenic in murine and human T-cell progenitors (Wang
et al., 2011). RBPJ is the major transcriptional effector of Notch
signaling (Lake et al., 2014). Protein-bound polysaccharide-K
(PSK) was found to reduce RBPJ expression and block RBPJ-
induced invasiveness and proliferation under hypoxic conditions

by inhibiting matrix metalloproteinase expression in pancreatic
cancer cells (Yamasaki et al., 2016). Short hairpin RNA (shRNA)
targeting RBPJ was found to efficiently inhibit cell growth and
alter the expression of the cell cycle inhibitors p21 and p27;
the cell cycle activators CDK2, CDK4, and CyclinD1; and the
apoptosis suppressor Bcl-2 (Xue et al., 2015).

Skp1–Cullin1–F-Box protein (SCF) complexes play crucial
roles in cellular processes and physiological dysfunctions
such as those observed in cancer biology, including sustained
proliferation, poor differentiation, invasion and migration,
angiogenesis, DNA damage, metabolism, and resistance to cell
death. Skp1 and SCF assembly components are coexpressed
during the development of breast, colon, prostate, lung
and gastric cancers (Hussain et al., 2016). The Skp1-6-OAP
interaction results in proteolysis of NIPA, Skp2, and TRCP
and upregulation of their substrates, such as E-Cadherin,
ultimately resulting in prometaphase arrest (Liu et al., 2015).
Cytoplasmic expression of SKP1 was found to be significantly
associated with stratifin (SFN) positivity, tumor malignancy,
and unfavorable patient outcomes. SFN-SKP1 binding results
in SCFFBW7 dysfunction and allows several oncoproteins,
including p-cyclin E1, p-c-Myc, p-c-Jun, and cleaved Notch
1, to evade ubiquitination and subsequent degradation
(Shiba-Ishii et al., 2019).

CTNNB1 is a well-known member of the Wnt signaling
pathway and encodes β-catenin. Polymorphisms in this gene
are associated with cancer risk and may be novel predictive
biomarkers for cancer risk (Li et al., 2017). β-Catenin is the
main downstream effector and transcriptional coactivator of
TCF/LEF target gene expression and is involved in canonical
WNT signaling. WNT/CTNNB1 play a central role in the
maintenance of multiple adult tissue stem cell populations, and
their expression is a hallmark of colorectal cancer in early and
later stages (Van Schie and Van Amerongen, 2020).

Cadherin-2 is a member of the cadherin family and regulates
many cellular processes, including angiogenesis, apoptosis, and
chemoresistance (Miao et al., 2018). CDH2 is upregulated in
various cancers, including colorectal, bladder, lung and gastric
cancers (Gao S. et al., 2018). miR-124 can inhibit the expression
of CDH2, which might lead to a therapeutic strategy targeting
CDH2 in human lung cancer (Ma et al., 2016). Activation of
Wnt/β-catenin signaling can promote the expression of cadherin
2 and alter cell shape (Fu et al., 2020). After its production,
SCG2 can be rapidly cleaved into bioactive peptides, including
secretoneurin, which has been shown to suppress endothelial
cell apoptosis and enhance the proliferation, migration and
angiogenesis of endothelial cells by stimulating VEGF signaling,
the MAPK system and/or the PI3-kinase/Akt pathway (Luo et al.,
2020). SCG2 is upregulated in granulosa cells across species
and may mediate ovulatory angiogenesis in the human ovary
(Hannon et al., 2018).

RNA sequencing revealed the levels of DNER mRNA and
coexpression of the lncRNA XLOC_221242 in tumors compared
with normal tissues. PPI analysis indicated that the levels of
the mRNAs encoding RBPJ, SKP1, CTNNB1, and CDH2 were
significantly increased and that these molecules may be involved
in the DNER signaling pathway. In addition, the expression
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levels of RBPJ, SKP1, CTNNB1, and CDH2 were positively
correlated with those of DNER, as demonstrated by IHC. Taken
together, these findings indicate that DNER may upregulate the
expression of RBPJ, SKP1, CTNNB1, and CDH2 to promote
PNEN tumorigenesis.

CONCLUSION

Our study demonstrates that DNER may upregulate the
expression of RBPJ, SKP1, CTNNB1, and CDH2 to promote
PNEN tumorigenesis. Although our results are largely
incomplete, these findings indicating the NOTCH-Wnt
interaction may provide insight for PanNEN research, leading
to an era of precision medicine for NETs.
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