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Composition of the mucosa-associated
microbiota along the entire gastrointestinal
tract of human individuals
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Abstract
Background: Homeostasis of the gastrointestinal tract depends on a healthy bacterial microbiota, with alterations in

microbiota composition suggested to contribute to diseases. To unravel bacterial contribution to disease pathology, a

thorough understanding of the microbiota of the complete gastrointestinal tract is essential. To date, most microbial

analyses have either focused on faecal samples, or on the microbial constitution of one gastrointestinal location instead

of different locations within one individual.

Objective: We aimed to analyse the mucosal microbiome along the entire gastrointestinal tract within the same individuals.

Methods: Mucosal biopsies were taken from nine different sites in 14 individuals undergoing antegrade and subsequent

retrograde double-balloon enteroscopy. The bacterial composition was characterised using 16 S rRNA sequencing with

Illumina Miseq.

Results: At double-balloon enteroscopy, one individual had a caecal adenocarcinoma and one individual had Peutz-Jeghers

polyps. The composition of the microbiota distinctively changed along the gastrointestinal tract with larger bacterial load,

diversity and abundance of Firmicutes and Bacteroidetes in the lower gastrointestinal tract than the upper gastrointestinal

tract, which was predominated by Proteobacteria and Firmicutes.

Conclusions: We show that gastrointestinal location is a larger determinant of mucosal microbial diversity than inter-person

differences. These data provide a baseline for further studies investigating gastrointestinal microbiota-related disease.
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Study highlights

Summarise the established knowledge on this subject
. Alterations in the microbiota have been linked to disease, such as colorectal cancer.
. Most research focuses on colonic microbiota and most data were retrieved from faecal samples.
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What are the significant and/or new findings of this study?
. The bacterial load of mucosal samples decreased from oesophagus to proximal ileum, but drastically

increased again in the lower GI tract
. The composition of the microbiota markedly changes along the GI tract with larger diversity in the lower

GI tract than the upper GI tract.

Introduction

In recent years, an increasing level of knowledge on the
interaction between host and bacteria has made us come
to regard the gut microbiota as a separate entity.1 The
microbiota has important immunological, structural,
metabolic and defence functions in the gut. Alterations
in microbiota composition have been linked to intestinal
disease, including colorectal cancer and inflammatory
bowel disease (IBD). Unravelling the microbiota com-
position and its distribution along the gastrointestinal
(GI) lining in healthy individuals is important to under-
stand the role of the microbiota in disease.2

Characterization of the microbiota in the entire GI
tract is hampered by the fact that some locations are
more difficult to access than others and most research
has focused on the colonic faecal microbiota.1 The
mucosal microbiome is arguably the more relevant
compartment, as such mucosa-associated flora lives in
close contact with the GI tract lining. The microbial
composition of the colonic mucosa has been most
often investigated. While it is clear that the composition
and abundance of mucosal microbiota of the oesopha-
gus and stomach in healthy individuals differ from that
in the colon,3–5 information about the microbial com-
position in the jejunum and ileum is scarce because of
the inaccessibility of these sites.

Nevertheless, differences in the physiological func-
tions of GI sites logically predict regional bacterial dif-
ferences. The colonic microbiota for example, is driven
by complex carbohydrates whereas simple carbohy-
drates fuel the microbiota in the small intestine.2,6

Furthermore, the composition of the mucus layer pro-
tecting the epithelial barrier from excessive bacterial
contact differs along the intestinal tract.7,8

Given the limited information about mucosal micro-
biota in the entire GI tract, we aimed to characterise the
mucosal microbiota along the length of the entire GI
tract within the same subjects.

Methods

Subject recruitment

Subjects, all inhabitants of The Netherlands, had
abdominal symptoms of unknown cause requiring
diagnostic antegrade and subsequent retrograde
double-balloon enteroscopy (DBE). Exclusion criteria
were: patients younger than 18 years, use of antibiotics

three months before DBE, IBD, and failure to under-
stand written Dutch. The study was conducted
in accordance with the Declaration of Helsinki
Principles and approved by the ethical committee of
the Erasmus University Medical Center, Rotterdam
(MEC-2017-151) on 3 April 2017.

Sampling

Mucosal samples were obtained endoscopically using
antegrade and subsequent retrograde double balloon
enteroscopy (DBE) at the Erasmus Medical Center
using Fujinon EN-450P5 and EN-450T5 (Fujinon
Inc., Saitama, Japan) endoscopes. Endoscopes were
disinfected before use. Mucosal biopsies using standard
biopsy forceps were taken at nine different sites of the
GI tract (Figure 1). Upper GI biopsies (oesophagus to
proximal ileum) were collected using antegrade endos-
copy and lower GI biopsies (distal ileum to rectum)
with retrograde endoscopy. Between the antegrade
and retrograde endoscopy the canal of the endoscope
was cleaned with sterile water. All patients used bowel
preparation before DBE consisting of macrogol and
electrolytes (Klean-Prep (Norgine BV, Amsterdam,
The Netherlands)).

Samples were stored in Eppendorf cups (0.2ml) with a
stabilising reagent Allprotect (Qiagen Gmbh, Hilden,
Germany). The samples were homogenised using the
MagNA Lyser machine (Roche Diagnostics,
Mannheim, Germany), stored in Trizol tubes
(Invitrogen, Groningen, The Netherlands) and immedi-
ately frozen and stored at –80� C for subsequent analyses.
DNA was isolated from the samples using QIAamp
DNA mini kit (Qiagen) with an initial bead beating
step added to the protocol, as described previously.9

Generation of 16 S rRNA gene amplicons

Sequencing libraries were prepared by amplifying the
V3–V4 region of the 16 S rRNA gene using the 341f-
805 r primers, as described earlier.10 After the initial
amplification, PCR (Polymerase chain reaction) prod-
ucts were confirmed with gel electrophoresis and puri-
fied using Agencourt AMPure XP magnetic beads
(Beckham Coulter Inc., Bromma, Sweden). A second
PCR was performed to attach Illumina adapters and
barcodes that allow for multiplexing and the products
were purified as above, quantified and pooled into equi-
molar amounts. Samples were sequenced using the
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Illumina MiSeq platform at Science for Life
Laboratory, Solna, Sweden. From the generated
sequence data, primer sequences were trimmed away
and the paired-end reads produced by the sequencing
instrument were merged using SeqPrep version 1.1
(https://github.com/jstjohn/SeqPrep) with default par-
ameters and thereafter the merged sequences were pro-
cessed with QIIME 1.8 pipeline (Quantitative Insights
into Microbial Ecology).11 A de novo operational taxo-
nomic unit (OTU) strategy was used to assign
sequences to OTUs. Using the UCLUST algorithm
built into the QIIME pipeline, sequences were clustered
at 97% identity against the Greengenes reference
database.12,13

PCR analysis

Conventional PCR was performed for the confirmation
of bacterial and human DNA isolation of biopsies.

While analysing the results of this study, we noticed
that the family Helicobacteraceae were present not
only in the antrum, but also in other parts of the GI
tract. However, sequencing did not allow us identify
this feature on species level. To improve our under-
standing, we performed additional analyses by PCR.
DNA amplification was executed with the Applied
Biosystems 2720 Thermal Cycler (Applied Biosystems,
USA) using 16 S (different from sequencing PCRs),
Helicobacter pylori (HP) specific UreA and VacA S1/
S1, and human ACTB primers (Supplementary
Material Table S1). For HP genes, the reaction mixture
contained GoTaq buffer (Promega, Madison,
Wisconsin, USA), 1.25mM MgCl2 (Promega),
0.167mM (each) deoxynucleotides (Roche
Diagnostics), 2.5 U GoTaq polymerase (Promega),
333 nM of each primer (Sigma-Aldrich, St Louis,
Missouri, USA) and 2 ml un-normalised stock DNA.
PCR cycle consisted of four minutes 95�C, several
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Figure 1. Overview of the study. (a) Location of the retrieved mucosal biopsies of the gastrointestinal (GI) tract. (b) Marked differences in

bacterial taxa are present between different GI locations as indicated by boxplot of the median Shannon’s index of the different locations.

(c) Diversity as measured by Shannon’s index is higher in the distal ileum, ascending colon, descending colon and rectum as compared to

distal oesophagus, antrum, proximal duodenum, distal jejunum and proximal ileum. (d) Relative abundance of the major phyla fluctuates

along the GI tract. Asc: ascending; Desc: descending; Dist: distal; Prox: proximal.
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cycles of 30 s denaturing at 95�C, 30 seconds annealing
and one minute extension at 72�C, followed by the final
extension for 10min at 72�C. Annealing temperature
was 60�C for 16 S, UreA and VacA and 60.5�C for
ACTB. Number of cycles was 40 for HP genes, and
35 for 16 S and ACTB. Amplicons were analysed by
gel electrophoresis using 2% agarose gel in 1X TBE
(Tris-borate-EDTA) buffer and bacterial DNA load
was quantified using Image J software.

Statistical analysis

The similarity between two samples was calculated
using weighted Unifrac distances. Biodiversity within
a sample was measured using the Shannon index. All
diversity calculations were also performed for a least
detectable relative abundance of 0.1%, corresponding
to 1000 sequences in a sample, but this did not alter the
results (data not included). Principal coordinate ana-
lysis (PCoA) using Bray Curtis metrics based on abun-
dance data from sequences classified to genus level was
performed to determine clustering patterns among the
subjects.

Differences in diversity and similarity indices were
tested with Mann-Whitney or Kruskal-Wallis test
using the IBM SPSS statistics 21 software (Chicago,
Illinois, USA). For differences in relative abundance
of specific bacterial taxa we used Wilcoxon tests
and linear regressions using the r statistical framework,
version 3.0.1.

Results

Subject population

Fourteen subjects undergoing an antegrade and subse-
quent retrograde DBE were included. In 13 patients, the
mucosal samples were also studied by histology. Twelve
subjects had no relevant anomalies found with DBE and
histology (Table 1). One patient had Peutz-Jeghers
polyps in the distal jejunum and one patient had a
caecum tumour in the distal ileum (Supplementary
Material Table S1). Written informed consent was
obtained from each patient included in the study.

Overview of sequencing data generated from
the samples

A total of 118 mucosal samples were retrieved from
nine locations of the GI tract in 14 individuals. Eight
samples could not be sequenced due either to inability
to analyse the retrieved samples or inability to reach
the site.

First, we confirmed bacterial DNA isolation from all
samples by conventional PCR. While human genomic

Table 1. Baseline characteristics of subjects.

Characteristics Numbers

Mean age, mean (IQR) (years) 51 (42–60)

Sex, n (%)

Male 7 (50%)

Race, n (%)

Caucasian 10 (71%)

Other 4 (29%)

BMI, mean (SD) (kg, m2) 22.9 (5,4)

Unknown, n 5

Current smoker, n (%)

Yes 8 (58%)

No 3 (21%)

Unknown 3 (21%)

Alcohol, n (%)

Yes 6 (43%)

No 5 (36%)

Unknown 3 (21%)

Medication use, n (%)

Yes 11 (79%)

No 3 (21%)

Medical history, n (%)

Hypertension 1 (7%)

Diabetes 2 (13%)

Cardiac disease 1 (7%)

Peripheral arterial disease 2 (13%)

Stroke 1 (7%)

Chronic pulmonary disease 1 (7%)

Liver disease 1 (7%)

Resection part of GI tract 2 (13%)

Other 2 (13%)

No medical history 2 (13%)

Presenting symptoms, n (%)

Iron deficiency anaemia 5 (29%)

Diarrhoea 4 (24%)

Abdominal complaints 4 (24%)

Weight loss 3 (18%)

Rectal blood loss 1 (5%)

Findings DBE, n (%)

No abnormal findings 10 (71%)

Ulcerative lesions in small bowel 1 (7%)

Polyps in small bowel 2 (14%)

Polyps in colon 1 (7%)

Pathology finding, n (%)

No abnormal findings 9 (64%)

Reflux oesophagitis 1 (7%)

Chronic inflammation antrum 1 (7%)

Chronic inflammation SB 1 (7%)

Peutz-Jeghers polyps 1 (7%)

Ulcerative changes 1 (7%)

BMI: body mass index; DBE: double-balloon enteroscopy; GI: gastrointes-

tinal; IQR: interquartile range; SB: small bowel; SD: standard deviation.
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DNA content was similar in all samples
(Supplementary Material Figure S1), the bacterial
load decreased from oesophagus to proximal ileum,
but increased again in the lower GI tract (Figure 2).
Samples were subsequently subjected to 16S rRNA
gene amplicon sequencing using a V3-V4 specific
primer set, resulting in a total of 4.369.079 high-quality
sequences, with 37.026 sequences per sample (range:
17.294–68.696).

Diversity of the microbiota along the GI tract

To estimate the diversity of the microbial communities
of the biopsies in the entire GI tract, analysis of alpha
diversity, represented by Shannon’s index, was per-
formed (Figure 1). The location of sampling had a
significant influence on the alpha diversity of the micro-
biota, with samples taken from oesophagus to proximal
ileum harbouring a lower level of microbial diversity
than samples obtained from terminal ileum to rectum
(p< 0.05). When comparing the average alpha-diversity
of the individual locations from individual subjects, a
wide spread in the mean Shannon index between indi-
viduals became apparent with, in particular, subject 12

showing a low diversity in all samples (Figure 3(a)).
This patient was diagnosed with a caecum tumour.
Nevertheless, all participants, except subject 10,
showed a higher alpha-diversity in lower GI locations
(Figure 3(b)) as compared to upper GI locations.

Differential microbial composition along
the GI tract

We further searched for clustering patterns among sam-
ples according to their microbial population structure
by PCoA based on Bray Curtis distance metrics. Again,
a distinct separation of bacterial community structure
was observed, with samples from the distal oesophagus
to the proximal ileum clustering together, separately
from distal ileum to rectum (Figure 4). Several
samples clustered neither with the upper nor the lower
GI samples, but belonged to the patient diagnosed with
a caecum tumour. These samples from this patient
appeared to be dominated by Enterobacteriaceae.
(Supplementary Material Figure S2).

Cluster analysis using Euclidian distance at family
level was used to visualise these data in a different
way, which again demonstrates the separate clustering
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Figure 2. Differential bacterial load at the mucosa along the gastrointestinal tract. Bacterial abundance at all locations of the 14 included
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of this patient with a caecum tumour and the lower and
upper GI tract samples (Supplementary Material
Figure S3). Samples from individual patients appear
to cluster more closely together in lower GI samples
than upper GI samples (Supplementary Material
Figures S3 and S4).

The similarity in microbiota composition between
different sites in the GI tract was also visualised using
weighted UniFrac distances, which showed that the
microbial composition in the rectum was a good pre-
dictor for the microbial composition in the ascending
and descending colon and – to a somewhat lesser
extent – the distal ileum (Figure 5(a)). The composition
of the microbiota in the distal oesophagus was also
compared to the other locations in the GI tract.
However, the microbiota in the distal oesophagus was
not as good a predictor for the other locations in the
upper GI tract as the rectum was for the lower GI tract
(Figure 5(b)).

Characterization of mucosa-associated
microbiota

All regions in the GI tract were dominated by three
major bacterial phyla: Bacteroidetes, Firmicutes and
Proteobacteria. Although ubiquitously dominant
within the entire GI tract, each of the three phyla
revealed distinct profiles along the length of the GI
tract (Figure 1(d)). The mucosa-associated microbiota
of the upper GI tract was dominated by Proteobacteria
(mean abundance of 40� 2.1%) and Firmicutes
(38� 2.3%). However, in the lower GI tract the level
of Proteobacteria decreased consistently (distal colon
(5.3� 0.4%)). Firmicutes, already highly abundant in
the upper GI tract, dominated the large intestine with
the highest level in the distal colon (mean abundance
64� 7%). Bacteroidetes was present at low levels in the
upper GI tract (8� 1.6%), but became a dominant
phylum in the lower GI tract (mean abundance in
ascending colon 28� 1.6%).

The most prevalent bacterial families in the upper GI
tract were Veillonellaceae, Pseudomonadaceae and
Streptococcaceae (Figure 6). In contrast to other sites
in the GI tract, Prevotellaceae (relative abundance of
8%) and Helicobacteraceae (relative abundance
of 8%) were dominant in the antrum. Helicobacter spe-
cies were detected in nine subjects, and predominated
the antrum of one subject (S6) to the extent that other
species were almost not found (Supplementary
Material Figure S3). PCR analysis of the UreA and
VacA gene confirmed that the Helicobacteraceae
detected by sequencing were indeed Helicobacter pylori
(Figure 7(a)). Helicobacter was present across the entire
upper GI tract, and some lower GI tract locations in
three subjects, which confirms data that this bacterium
may spread beyond the stomach (Supplementary
Material Figure S5). Interestingly, subject S14 showed
high levels of Helicobacteraceae in the proximal duode-
num, while not detected in the antrum (Figure 7(b)).

In the distal jejunum, Bradyrhizobiaceae (relative
abundance of 6%) occurred more often compared to
other parts of the GI tract. The same applies to
Micrococcaceae (relative abundance of 4%) in the
proximal ileum. The lower GI tract was dominated by
Lachnospiraceae, Bacteroidaceae, Ruminococcaceae and
Veillonellaceae. The highest abundance of the bacterial
family Clostridiaceae (relative abundance of 1%) was
seen in the distal ileum. Rikenellaceae was only seen
with a higher relative abundance than 1% in the
rectum.

Discussion

This study describes the composition of the microbiota
along the entire GI tract in the same individuals

8.0
(a)

(b)

7.2

6.4

5.6

4.8

1.0

3.2

2.4

1.6

0.8

0.0

S1 S2 S3 S4 S5 S6 S7 S8 S9
S10 S11 S12 S13 S14

S1 S2 S3 S4 S5 S6 S7 S8 S9
S10 S11 S12 S13 S14

8.0

7.2

6.4

5.6

4.8

1.0

S
ha

nn
on

’s
 in

de
x

S
ha

nn
on

’s
 in

de
x

3.2

2.4

1.6

0.8

0.0

Figure 3. The a-diversity of the microbiota of the gastrointestinal

(GI) tract (a) Boxplot of the median Shannon’s index over all

locations within each subject (S1–S14). Subject S12 shows a low

a-diversity. The outlier for subject S6 represents the antrum biopsy.

(b) The same data, but represented in a Jitter plot, with each dot

representing a location in the GI tract. Green-coloured dots rep-

resent the distal oesophagus, antrum, proximal duodenum, distal

jejunum and proximal ileum (upper GI tract) and the yellow col-

oured dots represent the distal ileum, ascending colon, descending

colon and rectum (lower GI tract samples). All subjects, except S10

show a higher a-diversity in samples obtained from the lower GI

tract as compared to the upper GI tract.
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Figure 4. Principal coordinate analysis (PCoA) plot illustrates a clear difference between gut location and composition of the microbiota.

Different coloured dots represent different locations of the gastrointestinal (GI) tract. The green circle contains mainly oesophagus,

antrum, proximal duodenum, distal jejunum and proximal ileum samples (upper GI tract), the yellow circle contains only distal ileum,

ascending colon, descending colon and rectum samples (lower GI tract). The blue circle highlights samples dominated by

Enterobacteriaceae which were all derived from one patient with a caecum tumour (S12).
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without significant pathology. In agreement with earlier
reports, the bacterial load decreases from the oesopha-
gus to the proximal ileum, but drastically increases again
in the lower GI tract, starting from the distal ileum. The
composition of the microbiota markedly changes along
the GI tract, with the most prevalent bacterial families
present in the upper GI tract Veillonellaceae,
Pseudomonadaceae and Streptococcaceae, while the
lower GI tract is dominated by Lachnospiraceae,
Bacteroidaceae and Ruminococcaceae.

Our findings to a large extent reflect data obtained
from other studies comparing only partly matched sam-
ples, but probing multiple locations within one patient
may provide better accuracy. One report comparing
only duodenal and rectal content from healthy individ-
uals reported higher Shannon diversity values in both
mucosa and luminal content from the duodenum,14

while others support our findings of a less complex
luminal microbiota in the small intestine compared to
the colonic content.6,15

Arguably, the least studied GI sites in the current
literature are the jejunum and distal ileum. In the jeju-
num, Proteobacteria and Firmicutes were the most
dominant phyla, and at family level Veillonellaceae,
Pseudomonadaceae and Streptococcaceae dominated.
A previous study retrieving mucosal biopsies from the
proximal jejunum of 19 healthy individuals also
observed Proteobacteria, Bacteroidetes and Firmicutes
as the predominant phyla, although family level classi-
fication indicated Brevibacteriaceae, Barnesiellaceae
and Leuconostocaceae.16 Possible explanations for
these discrepancies could be the difference in individual
populations (Taiwanese versus Dutch population) as
well as alternative methodologies used for sampling,
preparation and analysis of the samples.

In terms of the proximal and distal ileum, our sam-
ples were found to have large differences in compos-
ition. In the proximal ileum, Proteobacteria and
Firmicutes dominated, whereas Firmicutes and
Bacteroidetes were the dominant phyla in the distal
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ileum. It is conceivable that the distal ileum was con-
taminated from the colon, either due to sampling or
through bowel movements. At present the only com-
parison that can be made in this context comes from
animal studies. A study comparing 10 paired GI loca-
tions in mice showed that the largest difference between
two locations in terms of bacterial diversity was seen
between ileum and proximal cecum, with lower GI sam-
ples clustering away from upper GI samples.17,18 In
pigs, a similar clear separation between the upper and
lower GI could be seen, although in this case the divid-
ing line appeared to lie between jejunum and ileum.17,18

A further notable finding in our study was that a
patient who had a caecum tumour showed a significant
dysbiosis predominated by Enterobacteriaceae in all
other GI sites tested. A role for Enterobacteriaceae in
carcinogenesis has been suggested before, as several
enterobacterial strains are known to produce DNA-
damaging genotoxins and may therefore cause muta-
tions.19,20 The major strength of this study is that we
collected nine mucosal samples along the entire GI tract

of 14 different individuals allowing us to study the com-
position of the microbiota along the length of the gut.
Since all individuals underwent an antegrade DBE fol-
lowed directly by a retrograde DBE, no bias could have
occurred based on the timeframe.

There are also a number of limitations. Firstly, the
same endoscope was used for anterograde and retro-
grade DBE. Although the canal of the endoscope was
cleaned with sterile water between the antegrade and
retrograde DBE, it is impossible to exclude contamin-
ation from the upper GI tract to the lower GI tract using
this methodology.21 However, the low level of similarity
of the microbial composition in the upper and lower GI
tract suggests that this is not a major issue in our study.
Secondly, the subjects in our study underwent DBE for
unexplained symptoms and therefore may not fully
represent healthy individuals. However, ethical consid-
erations preclude performing DBE in individuals with-
out clinical indication and thus we consider our study
the best that can be achieved with current technical
approaches. Third, neither DBE nor histopathology of
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Figure 7. Helicobacter pylori predominates in the antrum from one patient, and extends beyond the stomach. (a) Relative abundance of

Helicobacter species across the nine different gastrointestinal (GI) sites in subject S6 as determined by sequencing. Identity of Helicobacter

pylori at species level was confirmed by PCR in the high Helicobacter abundant samples by UreA and VacA. The antrum was dominated by

H. pylori, resulting in a low diversity in this sample (see Figure 2 and Supplementary Material S4). 16 S PCRs, similar to Figure 2, are

shown here to allow comparison of total bacterial abundance in these samples. (b) Relative abundance of Helicobacter species across the

different GI sites in subject S14 as determined by sequencing. Identity of H. pylori at species level was confirmed by PCR of UreA. Numbers

are as described above, X represents a missing samples. While H. pylori was not detected in the antrum, high levels were present in the

proximal duodenum. 1: distal oesophagus; 2: antrum; 3: proximal duodenum; 4: distal jejunum, 5: proximal ileum; 6: distal ileum;

7: ascending colon; 8: descending colon; 9: rectum; þ: positive control of pure H. pylori culture strain ATCC�43504 (American Type Culture

Collection, Rockville, Maryland, USA); �: negative control (water).
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the retrieved biopsies showed clinical abnormalities
except for one patient with a caecum tumour and one
patient with Peutz-Jeghers polyps. Fourth, patients
were treated with colonic lavages prior to DBE, which
could potentially have diminished the diversity of the
mucosa-associated microbiota. Unfortunately, a DBE
cannot be performed without bowel preparation.22

Finally, stool samples were not collected of these
patients and therefore the faecal microbiota could not
be analysed. Whether stool and mucosal microbiome
correlate well is somewhat debated in literature, and
having stool samples would have been of value.1,14

With the exception of the patient with a caecum
tumour, the data represented here could be conceived
as representing the ‘normal’ mucosal microbiome.
While it is already well described that education of the
immune system depends on the intestinal microbiome,
to what extent local mucosal differences affect local
immunological responses is less well elucidated.
Diseases like IBD are largely driven by an altered
immunological response towards intestinal microbes.
Thus a comparison of disease-location specific mucosal
microbial changes to normal microbiome signatures at
these sites may be of use.23 The use of faecal microbiota
transplantation for IBD has been advocated, and it is
thought that optimal donor selection is important for
clinical efficacy, although more research is needed to
identify which components of the gut microbiome con-
stitute key members.24

In conclusion, we have generated a first overview of
the composition of the microbiota along the entire GI
tract. This study is of particular importance in helping
us to understand the interactions between bacterial
communities and human cells and takes us to the next
step in describing the impact of the microbiota on
health and its involvement in diseases.
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