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Background: Serum cystatin C (sCysC) and urinary cystatin C (uCysC) are potential biomarkers for early detection of

chronic kidney disease (CKD) in cats. An in-depth clinical validation is required.

Objectives: To evaluate CysC as a marker for CKD in cats and to compare assay performance of the turbidimetric assay

(PETIA) with the previously validated nephelometric assay (PENIA).

Animals: Ninety cats were included: 49 CKD and 41 healthy cats.

Methods: Serum CysC and uCysC concentrations were prospectively evaluated in cats with CKD and healthy cats. Based

on plasma exo-iohexol clearance test (PexICT), sCysC was evaluated to distinguish normal, borderline, and low GFR. Sensi-

tivity and specificity to detect PexICT < 1.7 mL/min/kg were calculated. Serum CysC results of PENIA and PETIA were cor-

related with GFR. Statistical analysis was performed using general linear modeling.

Results: Cats with CKD had significantly higher mean � SD sCysC (1.4 � 0.5 mg/L) (P < .001) and uCysC/urinary crea-

tinine (uCr) (291 � 411 mg/mol) (P < .001) compared to healthy cats (sCysC 1.0 � 0.3 and uCysC/uCr 0.32 � 0.97). UCysC

was detected in 35/49 CKD cats. R2 values between GFR and sCysC or sCr were 0.39 and 0.71, respectively (sCysC or

sCr = l + GFR + e). Sensitivity and specificity were 22 and 100% for sCysC and 83 and 93% for sCr. Serum CysC could

not distinguish healthy from CKD cats, nor normal from borderline or low GFR, in contrast with sCr.

Conclusion: Serum CysC is not a reliable marker of reduced GFR in cats and uCysC could not be detected in all CKD

cats.
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Chronic kidney disease (CKD) is common in geriatric
cats, with a prevalence from 30% up to 60% in cats

older than 10 years.1–3 Since CKD is an irreversible and
progressive disease, early detection and treatment is of
major importance, aiming to slow down disease progres-
sion and to improve quality of life and longevity.4,5

Glomerular filtration rate (GFR) is considered the gold
standard method to evaluate kidney function, but mea-
surement is time-consuming and is not routinely used.
Therefore, the indirect GFR markers, serum creatinine
(sCr), and urea, are routinely measured to estimate
GFR. However, these markers are insensitive. It is

widely reported but poorly documented that their serum
concentration only increases when approximately 75%
of the functional renal mass is lost.6 Moreover, they are
both influenced by muscle mass, age, feeding status, sex,
and intraindividual variation.7–9 All those disadvantages
support the need for new indirect biomarkers that can
be measured easily and reliably.

Cystatin C (CysC), a 13 kDa protein, is a proteinase
inhibitor, produced in every nucleated cell at a constant
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Abbreviations:

CBC complete blood cell count

CKD chronic kidney disease

Cr creatinine

CV coefficient of variation

CysC cystatin C

DSH/DLH domestic shorthair and longhair cats

GFR glomerular filtration rate

IRIS International Renal Interest Society

LOD limit of detection

PECCT plasma exogenous creatinine clearance test

PEC-ICT plasma exogenous creatinine-iohexol clearance test

PenICT plasma endo-iohexol clearance test

PexICT plasma exo-iohexol clearance test

PENIA particle enhanced nephelometric assay

PETIA particle enhanced turbidimetric assay

PICT plasma iohexol clearance test

RI reference interval

SBP systolic blood pressure

sCr serum creatinine

sCysC serum cystatin C

uCr urinary creatinine

uCysC urinary cystatin C

UPC urinary protein:creatinine ratio

USG urine specific gravity
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rate, that is responsible for intracellular protein
catabolism.10,11 Most of the properties required for an
ideal endogenous GFR marker apply for CysC.12 Com-
pared to sCr, several human13–16 and canine studies17,18

have shown a better correlation of sCysC with GFR. In
addition, urinary Cystatin C (uCysC) is a biomarker for
tubular damage in humans19,20 and dogs.21 In a pilot
study, our group observed a significant difference in
sCysC and uCysC concentration between CKD and
healthy cats. We also validated the human particle
enhanced nephelometric immunoassay (PENIA) for
CysC measurement22 in cats and established a reference
interval (RI) of 0.58–1.95 mg/L for sCysC. In addition,
we demonstrated that there is no influence of breed,
age, and sex on feline sCysC7 and that it is not manda-
tory to with-hold food in cats prior to evaluation of
feline sCysC.23 These findings make sCysC a promising
marker to estimate GFR in feline medicine.

Three human CysC quantitation devices are currently
available: ELISA,24 particle enhanced turbidimetric
assay14 (PETIA) and particle enhanced nephelometric
assay (PENIA).25 The latter 2 analytical methods are
more suitable for clinical use, since an ELISA is more
expensive, labour-intensive, and time-consuming.26 No
commercial veterinary assays are currently available,
which requires validation of human assays. The PENIA
was validated previously by our group.22 The validation
of the PETIA has been added as supporting informa-
tion to this article.

The objectives of this study were 4-fold. Firstly,
sCysC and uCysC were compared between a large num-
ber of CKD and healthy cats. Secondly, the correlation
of sCysC and sCr with GFR measured using plasma
exogenous creatinine clearance test (PECCT), plasma
endo-iohexol clearance test (PenICT) and plasma exo-
iohexol clearance test (PexICT), was compared. Thirdly,
the sensitivity and specificity of sCysC to detect
decreased GFR were determined and compared with
sCr. Fourthly, to determine which assay would be most
suitable for clinical use, PENIA versus PETIA measure-
ments of sCysC were each correlated with GFR esti-
mated by PECCT, PenICT, and PexICT.

Materials and Methods

This study was carried out in strict accordance with the recom-

mendations in the Guide for the Care and Use of Laboratory Ani-

mals of the National Institutes of Health. The protocol was

approved by the Local Ethical and Deontological Committee of

the Faculty of Veterinary Medicine, Ghent University

(EC2011_197). Informed consent was obtained from all owners

whose animals participated in the study.

Animals

Adult CKD and healthy cats were included, regardless of breed

and sex. In all cats, physical examination, complete blood count

(CBC), serum biochemistry (BC), including total thyroxine (TT4)

measurement in cats older than 6 years, and urinalysis were per-

formed to assess the general health status. Diagnosis of CKD was

made prior to inclusion. Cats were diagnosed with CKD based on

the presence of compatible clinical and laboratory findings (i.e.

renal azotemia (sCr and urea exceeding the RI we established in a

previous study7 i.e. (0.73‒1.83 mg/dL; 64.5‒161.8 lmol/L) for sCr

and (17.4‒ 35.6 mg/dL; 6.2‒12.7 mmol/L) for serum urea) and urine

specific gravity (USG) <1.035). Cats with CKD were classified into

four stages according to the IRIS guidelines.27 Cats with border-

line sCr, but abnormal renal ultrasonographic findings at time of

inclusion, with available follow-up data confirming CKD, were

also included. CKD cats with evidence of relevant concurrent sys-

temic diseases based on their history, physical examination, CBC,

BC, or urinalysis were excluded. Cats that were receiving calcium

antagonists were excluded from inclusion in the study because of

concerns that these medications would modify GFR. For

patients that were receiving angiotensin converting enzyme (ACE)-

inhibitors, or angiotensin receptor blockers (ARB), treatment was

discontinued at least 1 week prior to inclusion in the study. Renal

diet and phosphorus binders did not have to be withdrawn.

Cats with lack of important abnormalities in history, physical

examination, CBC, BC an urinalysis were defined as “healthy”.

Criteria for normal urinalysis were: USG >1.035, inactive urine

sediment, urinary protein:creatinine ratio (UPC) <0.4, and negative

bacterial urine culture.28 Healthy cats receiving medication within

1 month prior to inclusion that could affect kidney health, such as

nonsteroidal anti-inflammatory drugs (NSAIDs) corticosteroids,

antibiotics, b-blocking agents, calcium antagonists, and ACE-

inhibitors or ARB, were excluded.

Procedures

A standard physical examination was performed in all cats

including systolic blood pressure (SBP) measurement using the

Doppler ultrasonic technique and a standardized procedure

according to the ACVIM consensus guidelines.29 Cats were consid-

ered hypertensive if SBP >160 mmHg.29 Thyroid gland palpation

was performed in cats older than 6 years, as previously

described.30 All cats were fasted at least 10 hour before the sam-

pling procedure. Five mL of blood was taken by jugular venipunc-

ture using a 23 G needle. After centrifugation (5 minutes at 1931

9 g), serum was analyzed the same day. The CBCa and BCb were

performed in all cats. Ten mL of urine was taken by cystocentesis

with a 22 G needle. The USG was determined using a manual

refractometerc . Urinalysis consisted of a urinary dipstick test,d ,e

measurement of UPC,f sediment analysis and bacterial culture.g

Urine was centrifuged (3 minutes at 355 9 g) and the urinary sedi-

ment was analyzed within 30 minutes according to Paepe et al.31

The supernatant and remaining serum were divided in aliquots of

0.300 mL and stored at �72°C until batched analysis.

Glomerular filtration rate was measured by the combined

plasma exogenous creatinine-iohexol clearance test (PEC-ICT),

using a protocol previously described by van Hoek et al.32 Briefly,

a 22 G catheter was placed in the cephalic vein. Creatinineh was

dissolved in 4 mL of 0.9% sodium chloride. First iohexoli (64 mg/

kg [0.1 mL/kg]), followed by Cr (40 mg/kg) and 3 mL of 0.9%

sodium chloride was injected. Blood samples were taken by jugular

venipuncture just before the injection and at 5, 15, 30, 60, 120, 180,

360, 480, 600 minutes after injection. The samples were placed in

EDTA tubes, centrifuged (5 minutes at 1931 9 g) and plasma was

stored in aliquots of 0.300 mL at �72°C until analysis.

Assays

Serum CysC and uCysC were analyzed with PENIAj using the

nephelometer,k previously validated for cats,22 and with PETIAll

using the Cobas auto-analyzer.m The validation report of the

PETIA for CysC measurement in cats has been added as Data S1.

Urinary CysC was expressed as a ratio to the urinary Cr (uCr)

concentration, to compensate for differences in urine flow rates.33

Feline Cystatin C as GFR Marker 1075



Plasma Cr was analyzed with an enzymatic assayn and plasma

concentrations of the stereo-isomers endo-and exo-iohexol were

determined by high performance liquid chromatography with

ultraviolet UV detection, both validated by van Hoek et al.32

Serum Cr measured in BCb was analyzed with a modified Jaff�e
assay, validated at a veterinary commercial laboratory.o

Pharmacokinetics for GFR determination

All analyses were performed using WinNonlin.p The data were

subjected to noncompartmental analysis, as described by Watson

et al.34 The area under the plasma concentration versus time curve

(AUC) was calculated using the trapezoidal rule with extrapolation

to infinity. The ratio of endo-and exo-iohexol was determined per

batch of iohexol and the administered dose of each stereoisomer

was calculated. The plasma clearance of Cr, endo- and exo-iohexol

was determined by dividing the dose administered by AUC and

indexed to bodyweight (mL/min/kg).

Statistical analysis

Statistical analyses were performed using statistical softwareq

and at the 0.05 significance level. The renal parameters SBP, sCr,

serum urea, sCysC, USG, UPC, and uCysC/uCr approached nor-

mal distribution and the Student’s t-test was used to test for signif-

icant differences between the healthy cats and cats with CKD. The

effect of status (CKD, healthy) on sCysC and uCysC, the effect of

the IRIS stage on sCysC and uCysC, the relationship between

uCysC/uCr and UPC and the comparison between sCysC mea-

sured with PENIA versus PETIA were tested by ANOVA. In case

of a significant effect, pairwise comparisons were performed with

the Tukey’s test. If the uCysC concentration was < limit of detec-

tion (LOD), it was arbitrarly fixed to 0.

The correlation between GFR and either sCysC or sCr were

determined with ANOVA using general linear model (GLM):

Marker = l + GFR + e with marker being sCr, sCysCPENIA,

sCysCPETIA, 1/sCr, 1/sCysCPENIA, 1/sCysCPETIA; GFR was

GFR-Cr, GFR-exo or GFR-endo; e, error term of the model. For

each marker, the R2 of the regression was determined.

We also studied if sCysC could distinguish cats with normal,

borderline, or low GFR, based on PexICT, compared with sCr.

The cut-off concentrations for normal GFR were defined as GFR

≥1.7 mL/min/kg, for borderline GFR as GFR 1.2–1.7 mL/min/kg

and for low GFR as GFR <1.2 mL/min/kg, as determined previ-

ously by our group.35

Sensitivity and specificity of sCr and of sCysC to detect decreased

GFR (PexICT < 1.7 mL/min/kg) were calculated. “Positive test”

was defined as sCr >1.83 mg/dL (161.8 lmol/L) and sCysC

>1.95 mg/L. “Negative test” was defined as sCr <1.83 mg/dL

(161.8 lmol/L) and sCysC <1.95 mg/L. These concentrations were

based on the reference intervals (RI’s) we established in a previous

study.7 The nonparametric receiving operating curve (ROC) for

sCysC and sCr were additionally configured.

Results

Study Population

In total, 90 cats were recruited (age range: 1.1 years
to 19 years), namely 49 CKD and 41 healthy cats.

For the 49 CKD cats, breed distribution was: 1
Siamese, 1 Oriental Shorthair, 1 Persian, 1 Maine Coon,
1 Burmese, 2 Ragdolls, 2 Birmans, 4 British Shorthair
cats, and 36 domestic shorthair and longhair cats
(DSH/DLH). Four cats were female intact, 19 female
neutered, and 26 male neutered. Mean � SD age was

10 � 4.7 years and mean � SD body weight was
4.1 � 1.2 kg. One cat had IRIS stage 1 nonproteinuric
CKD and was diagnosed based on ultrasonographic
findings, low USG and borderline sCr. The cat had
IRIS stage 2 CKD and IRIS stage 3 CKD, 5 months
and 2 years after inclusion respectively. Twenty cats
had IRIS stage 2 CKD, of which 5 were proteinuric
(UPC > 0.4), 5 borderline proteinuric (UPC [0.2–0.4]),
and 10 did not have proteinuria. Thirteen cats had IRIS
stage 3 CKD. Six of those cats were proteinuric, 3 were
borderline proteinuric, and the other 4 cats did not
have proteinuria. Fifteen cats had IRIS stage IV CKD,
of which 11 were proteinuric and 4 borderline protein-
uric. One cat with severe proteinuria (UPC = 4.22) also
had glucosuria without hyperglycemia. Three CKD cats
were treated with ACE-inhibitors but treatment was
ceased 1 month prior to inclusion. One CKD cat was
treated with ARB, and treatment was stopped 2 weeks
prior to inclusion.

For the 41 healthy cats, breed distribution was: 1 Bir-
man cat, 1 Persian cat, 2 Ragdolls, 2 British Shorthair,
and 35 domestic short-or longhair (DSH/DLH) cats.
Two cats were female intact, 25 female neutered, and 14
male neutered. Mean � SD age was 9.9 � 3.5 years
and mean � SD body weight was 4.4 � 1.2 kg.

Systolic blood pressure measurement was performed
in 45 CKD and 37 healthy cats. The other 8 cats were
not cooperative enough, to reliably determine SBP.
Four CKD cats were hypertensive, of which only 1 was
proteinuric. Also 4 of the healthy cats had SBP
>160 mmHg. Although fundic exam was not under-
taken to distinguish white-coat hypertension from true
hypertension, white-coat hypertension was a likely
explanation, since those cats were very stressed during
the measurement.28 Systolic blood pressure, sCr, serum
urea, sCysC, USG, UPC, of both CKD and healthy
cats are presented in Table 1.

Comparison of sCysC and uCysC between cats with
CKD and healthy cats

Serum CysC was measured in all cats and uCysC in
44 CKD cats and all healthy cats. Urinary CysC was

Table 1. Descriptive statistics of both CKD and
healthy cats. The variables are presented as
mean � SD.

Variable (unit) CKD (n = 49)

Healthy

(n = 41) P-value

SBP (mmHg) 135 � 27 142 � 20 P = .06

sCr (mg/dL) 4.06 � 2.53 1.23 � 0.26 P < .001

Serum Urea (mg/dL) 74.5 � 54.3 26.3 � 5.9 P < .001

sCysC (mg/L) 1.4 � 0.5 1.0 � 0.3 P < .001

USG 1.019 � 0.009 1.045 � 0.007 P < .001

UPC 0.67 � 0.92 0.21 � 0.14 P = .003

uCysC/uCr (mg/mol) 291 � 411 0.32 � 0.97 P < .001

CKD, chronic kidney disease; SBP, systolic blood pressure; sCr,

serum creatinine; sCysC, serum cystatin C; USG, urine specific

gravity; UPC, urinary protein:creatinine ratio; uCysC/uCr, urinary

cystatin C:creatinine ratio.

1076 Ghys et al



<LOD (0.049 mg/L) in 15/44 CKD cats and in all but 5
healthy cats. We observed that there was a significant
effect (P < .001) of the status (CKD or healthy) on
sCysC and uCysC/uCr with significantly higher concen-
trations in CKD cats (Table 1). The IRIS stage also
had a significant positive effect (P < .001) on both
sCysC and uCysC/uCr, with increasing mean concentra-
tions as IRIS stage increased (Table 2). However, R2

between IRIS stage and CysC was weak (0.31 for
sCysC and 0.29 for uCysC). Also UPC had a significant
effect (P < .001) on uCysC/uCr in the whole population
and in cats with CKD. R2 was 0.54 for the whole popu-
lation and 0.50 for the cats with CKD.

Comparison of correlation between GFR and sCysC
versus sCr

The PEC-ICT was performed in 17 CKD and 15
healthy cats. The mean � SD Cr, endo- and exo-
iohexol clearances of the CKD and healthy cats are pre-
sented in Table 3. In 1 healthy cat, the serum sample
60 minutes after injection was not available, and there-
fore the GFR of that cat was calculated based on 9
samples instead of 10 samples. Both for the PENIA and
the PETIA, there was a significant correlation between
GFR and sCysC. The scatter plots of sCr and sCysC
PENIA, sCysC PETIA versus PexICT are presented in
Fig 1. The other GFR-markers showed comparable
results. The regression coefficients with P-values are pre-
sented in Table 4.

Determination of Sensitivity and Specificity of sCysC

Results from the clearance test demonstrated that one
cat classified as “healthy” actually had borderline GFR
and another cat classified as “healthy” had low GFR.
In addition, one “CKD” cat actually had borderline
GFR and another had normal GFR. The boxplots of
sCysC and sCr from cats classified with normal, border-
line, and low GFR are presented in Fig 2. For sCysC,
the overlap was much larger compared to sCr between
cats with normal GFR, cats with borderline and low
GFR. Serum CysC exceeded the RI previously estab-
lished by our group, in only 4 of 16 cats with low

GFR. In contrast, sCr exceeded the RI in all of them.
Indeed, the sensitivity of detecting decreased GFR
(<1.7 mL/min/kg) was 22% for sCysC compared with
83% for sCr. In contrast, the specificity for sCysC was
100% compared with 93% for sCr. The ROC is pre-
sented in Fig 3.

Comparison between PETIA and PENIA for sCysC
Analysis

The two methods were highly correlated (R2 = 0.94
P < .001), but sCysC concentrations measured with
PETIA were significantly higher (P < .001) than those
measured with PENIA. No significantly better correla-
tion between sCysC PETIA and GFR (whatever the
marker) than between sCysC PENIA and GFR could
be observed (Fig 2, Table 4). Fig 4 presents the Bland-
Altman Plot in which PENIA and PETIA are com-
pared. The mean � SD difference was calculated as
1.84 � 0.95 mg/L. The limits of agreement were wide
and the difference increases as the mean increases.

Discussion

The main results of this study are: (1) sCysC was sig-
nificantly higher in cats with CKD, compared with
healthy cats, but an important overlap was present; (2)
urinary CysC was not present in all cats with CKD; (3)
the correlation between GFR measured with PEC-ICT
and sCysC was weaker than that between GFR and
sCr, regardless of the sCysC assay.

Although sCysC was significantly higher in CKD ver-
sus healthy cats, several other findings argue against the
use of sCysC in cats: an obvious overlap in sCysC
between both groups was present, as previously
described in cats22,36 and dogs.37 In addition, only 6 of
the 49 CKD cats had sCysC above the upper limit
(1.95 mg/L) of the RI, determined in a previous study.7

Furthermore, although significant, the correlations
between sCysC and IRIS stage were weak and probably
not clinically relevant, since not all cats with CKD IRIS
stage 3 or 4 had a higher sCysC concentration com-
pared with the healthy cats or cats with CKD IRIS
stage 2.

Urinary CysC was also significantly different between
CKD and healthy cats. In contrast with sCysC, an
overlap for uCysC was absent. As for sCysC, a

Table 2. Serum CysC (sCysC) and urinary cystatin C
to creatinine ratio (uCysC/uCr) measured met the neph-
elometric assay in the healthy cats and cats with CKD
for each IRIS stage. Data are presented as mean � SD.
n represents number of cats.

Status sCysC (mg/L)

uCysC/uCr

(mg/mol)

Healthy (n = 41) 1.0 � 0.28 0.32 � 0.95

CKD IRIS stage 1 (n = 1) 1.065 7.40

CKD IRIS stage 2 (n = 17) 1.26 � 0.40 123.62 � 374.4

CKD IRIS stage 3 (n = 11) 1.50 � 0.50 254.0 � 206.0

CKD IRIS stage 4 (n = 15) 1.67 � 0.57 526.80 � 489.87

CKD, chronic kidney disease; IRIS, international renal interest

society; SD, standard deviation LOD, limit of detection.

Table 3. Mean � SD of plasma clearance (mL/min/
kg) of creatinine, exo-iohexol and endo-iohexol in CKD
and healthy cats.

CKD (n = 17) Healthy (n = 15)

PECCT 0.9 � 0.3 2.3 � 0.6

PexICT 0.9 � 0.4 2.1 � 0.5

PenICT 1.2 � 0.5 2.9 � 0.7

Cr, creatinine; CKD, chronic kidney disease; PECCT, plasma

exogenous creatinine clearance test; PexICT, plasma exogenous

iohexol clearance test; PenICT, plasma endogenous iohexol clear-

ance test.
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significant but weak correlation between uCysC/uCr
and the IRIS stage was present, and not all CKD cats
with IRIS stage 3 or 4 had higher uCysC/uCr compared

to healthy cats and CKD cats with IRIS stage 2.
Indeed, 5 of the 41 healthy cats had a detectable uCysC
concentration. With normal kidney function CysC is
completely reabsorbed and catabolized in the
tubules.38,39 Small quantities can still be found in the
urine, but one would expect this concentration to be
<LOD.40 Two of the 5 healthy cats with detectable
uCysC were borderline proteinuric. None of those 5
cats had overt proteinuria, azotemia, or isostenuric
urine, so CKD is unlikely. Nevertheless, no follow-up
or GFR results are available for those cats, so early

Fig 1. Scatter plots of the glomerular filtration rate (GFR) deter-

mined with a plasma exogenous iohexol clearance test (PexICT)

and serum creatinine (sCr), cystatin C analyzed with the particle

enhanced nephelometric immunoassay (sCysC PENIA) and cys-

tatin C analyzed with the particle enhanced turbidimetric

immunoassay (sCysC PETIA).

Table 4. R2 values and associated P-values of sCr and
sCysC measured with the PENIA and PETIA versus
plasma clearance of creatinine, exo-and endo-iohexol.

PECCT PexICT PenICT

sCysC PENIA 0.46 (P < .001) 0.34 (P < .001) 0.37 (P < .001)

sCysC PETIA 0.44 (P < .001) 0.31 (P = .003) 0.36 (P = .001)

sCr 0.74 (P < .001) 0.68 (P < .001) 0.67 (P < .001)

sCr, serum creatinine; sCysC, serum cystatin C; PENIA, particle

enhanced nephelometric immunoassay; PETIA, particle enhanced

nephelomtric immunoassay; PECCT, plasma exogenous creatinine

clearance test; PexICT, plasma exo-iohexol clearance test; PenICT,

plasma endo-iohexol clearance test.

Fig 2. Boxplot of serum cystatin C (sCysC) for cats with normal

GFR (GFR ≥ 1.7 mL/min/kg) determined with a plasma exo-

iohexol clearance test (PexICT); borderline GFR (GFR (1.2–
1.7 mL/min/kg)) and low GFR (GFR < 1.2 mL/min/kg).
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CKD cannot be excluded. Unexpectedly, 15 of the 49
CKD cats had uCysC <LOD, of which 2 cats were pro-
teinuric and 2 borderline proteinuric. In a previous
study41 of our group, uCysC could also not be detected
in 5 of the 10 included cats with CKD. Those observa-
tions are surprising. Most of the cats with CKD have
tubulo-interstitial lesions. Therefore, we expected detect-
able uCysC in most of the CKD cats. However, without
histopathology, a less typical form of CKD cannot be
excluded. In contrast, uCysC seemed to be valuable as
marker for local proximal damage in hyperthyroid
cats.42 Therefore, the prognostic value and ability to

detect early tubular damage of uCysC should be evalu-
ated further with investigation of renal biopsies.

The major objective of the present study was to com-
pare the correlation of GFR with sCysC and sCr. In
contrast with human studies14,15,43 and studies in
dogs17,18 a weaker correlation was found between
PECCT, PenICT, PexICT, and sCysC measured with
PENIA or PETIA compared with sCr. In addition, the
use of the inverse values increased R2 value for sCr, but
not for sCysC PETIA or sCysC PENIA. From these
findings we can conclude that sCysC does not appear to
be advantageous over sCr for detection of CKD in cats.

Our results are different from a similar study in cats,
demonstrating a significantly better correlation of
sCysC with PICT compared to that with sCr.36 In the
study of Po�swiotowska-Kaszczyszyn a one-compartmen-
tal model and the slope-intercept method corrected with
the Brochner-Mortensen formula was used to calculate
GFR.44 It has been shown that one-compartmental
models overestimate true GFR, because of underestima-
tion of AUC and the slope-intercept method with the
Brochner-Mortensen formula can cause increasing
errors with increasing clearances.45 Since we used a dif-
ferent method for GFR calculation, it is difficult to
compare the results from the present study with the
study from Po�swiotowska-Kaszczyszyn. In addition, in
this study we determined GFR with 3 different markers
(Cr, endo-and exo-iohexol) to evaluate sCysC. How-
ever, no better correlation of each of the 3 methods
with sCysC could be observed.

Early kidney impairment in some of the healthy cats
could not be excluded. Therefore, in the subgroups in
which GFR was measured, we correlated sCysC and
sCr with renal function. Only 2 of the 15 cats previ-
ously classified as “healthy” had low and borderline
GFR respectively. These 2 cats did not show high
sCysC value exceeding the RI. Serum CysC overlapped
between cats with low, borderline, and normal GFR,
indicating that sCysC cannot distinguish between those
three groups. For sCr, the overlap was less severe and
could mainly be observed between cats with low and
borderline GFR, as would have been expected. In dogs
on the other hand, a significantly better correlation
between sCysC and PECCT18 or PICT17 has been
shown. However, an overlap in sCysC between healthy
dogs and dogs with CKD was also present,17,46,47 and
canine sCysC also seemed to overlap between dogs with
normal and borderline GFR in the study from Wehner
and co-workers.17 Nevertheless, in contrast with studies
in dogs,17,18 no higher sensitivity of sCysC than of sCr
to detect decreased GFR in cats could be observed in
the present study. In contrast, a higher specificity was
present, which means that if sCysC is increased in cats,
CKD is definitely present.

The findings of the present study do not encourage
the clinical use of CysC measurement in cats. How-
ever, suboptimal CysC determination in cats cannot be
completely ruled out. We obtained a signal with the
PETIA and PENIA, but we cannot exclude that mea-
surement of CysC in cats by human assays is subopti-
mal. Western blot analysis with antibodies from the

Fig 3. Nonparametric receiver operating characteristics (ROC)

plots of the sensitivity and specificity of sCysC and sCr for distin-

guishing cats with normal and reduced GFR (<1.7 mL/min/kg)

determined with plasma exo-iohexol clearance test (PexICT).

Fig 4. Bland-Altman Plot of serum cystatin C analyzed with the

particle enhanced tubidimetric immunoassay (PETIA) and particle

enhanced nephelometric immunoassay (PENIA).
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PENIA22 could not demonstrate good cross-reactivity
at 13 kDa, in contrast with the antibodies from the
PETIA (Data S1). For both assays, bands at 26 and
52 kDa were visible. In humans, it has been shown
that denaturing agents or high temperature can cause
di-and polymerization of CysC.48 It is unknown
whether this occurs in dogs and cats. Alternatively, the
human polyclonal anti-human CysC antibodies might
detect polymers and not 13 kDa CysC in cats.
Another explanation for suboptimal testing could be
the relatively limited homology between human and
CysC in cats. A homology of 70% between cat and
human CysC has been described,49,50 but the epitope
sequence to which the antibody binds is not provided
by the manufacturers, which makes evaluation of
cross-reactivity between the anti-human CysC antibod-
ies and feline CysC difficult. Therefore, a cat assay
should be developed, followed by a re-evaluation of
this marker. Until then, we do not recommend the use
of CysC as renal marker in cats.

Conclusion

Serum CysC was not able to distinguish healthy cats
from cats with CKD. Furthermore, uCysC was not pre-
sent in all CKD cats. A limitation of this study was the
requirement to fix the value of CysC concentration
when it was below LOD. There is no consensus regard-
ing how to manage this situation but whichever value is
chosen, it will have the effect of decreasing variability
and inducing a statistical bias. An alternative option
would have been to use a value other than 0, i.e. half of
LOD, however, overall this would not have altered the
significant difference identified between the healthy and
CKD cats. Whatever the marker for GFR determina-
tion and assay for CysC measurement, a markedly
weaker correlation between GFR and sCysC compared
with sCr was demonstrated. Therefore, we do not
advise to use sCysC in cats as an indirect marker for
GFR.

Footnotes

a Advia 2120, Siemens, Brussels, Belgium
b Architect C16000, Abbott Max-Planck-Ring, Wiesbaden,

Germany
c Atago, Tokyo, Japan
d Iricell velocity, chemical system, Instrumentation Laboratory,

Zaventem, Belgium
e IQ 200 SPRINT, Instrumentation Laboratory, Zaventem, Bel-

gium
f Immulite 2000 system, Siemens Healthcare Diagnostics, Mar-

burg, Germany
g Wask Copan, MLS, Vitek 2 system, Biomerieux, Brussels, Bel-

gium
h Anhydrous creatinine, Sigma Chemical Co, St Louis, MO
i Omnipaque 300, GE Healthcare, Amersham Health, Wemmel,

Belgium
j Particle enhanced nephelometric assay, Siemens Healthcare Diag-

nostics, Marburg, Germany

k BN Prospec Nephelometer, Siemens Healthcare Diagnostics,

Marburg, Germany
l Particle enhanced turbidimetric assay, Dako, Glostrup, Denmark
m Cobas C system, Roche Diagnostics Gmbh, Mannheim,

Germany
n Vettest, Idexx laboratories Europe B.V., Amsterdam, the

Netherlands
o Med Vet Lab, Antwerp, Belgium
p WinNonlin version 4.0.1., Scientific Consulting Inc. Apex, NC)
q Systat 12, Systat Software Inc
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Supporting Information

Additional Supporting Information may be found
online in the supporting information tab for this article:

Data S1. Materials and methods.
Fig S1. Western Blot analysis with chemiluminiscent

detection of the polyclonal rabbit anti-human cystatin C
antibody from the particle enhanced turbidimetric
immunoassay (PETIA) in feline serum (1A) and urine (1B).

Fig S2. Sequential dilution of serum (2A) and urine (2B)
of a cat with chronic kidney disease (CKD) analyzed with
PETIA illustrating linearity.
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