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Abstract

Rainfall fluctuation is directly affected by the Earth’s climate change. It can be described

using the coefficient of variation (CV). Similarly, the ratio of CVs can be used to compare the

rainfall variation between two regions. The ratio of CVs has been widely used in statistical

inference in a number of applications. Meanwhile, the confidence interval constructed with

this statistic is also of interest. In this paper, confidence intervals for the ratio of two indepen-

dent CVs of lognormal distributions with excess zeros using the fiducial generalized confi-

dence interval (FGCI), Bayesian methods based on the left-invariant Jeffreys, Jeffreys rule,

and uniform priors, and the Wald and Fieller log-likelihood methods are proposed. The

results of a simulation study reveal that the highest posterior density (HPD) Bayesian using

the Jeffreys rule prior method performed the best in terms of the coverage probability and

the average length for almost all cases of small sample size and a large sample size

together with a large variance and a small proportion of non-zero values. The performance

of the statistic is demonstrated on two rainfall datasets from the central and southern regions

in Thailand.

Introduction

The Earth’s climate is changing due to increased greenhouse gas emission from human activi-

ties, and climate change has resulted in dramatic weather events such as heatwaves, heavy rain-

fall, droughts, etc. Thailand is a country situated in the southeastern region of Asia that is

affected by the southwest and northeast monsoons at different times of the year [1]. The coun-

try is divided into five regions: North, Northeast, Central, East, and South. Over the past three

decades, Thailand has suffered from increased temperatures and fluctuating rainfall. In this

study, rainfall is of interest because too much rain causes flooding and too little causes

droughts at different times of the year in each area of the country. Rainfall fluctuation can be

described using the CV, meaning that the ratio of CVs can be used to compare the rainfall vari-

ation between two regions. The lognormal distribution with excess zeros, a mixed distribution

of discrete and continuous random variables, has been applied in many studies involving
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observations with zero values (such as rainfall data) [2–6]. Observations with zero values con-

form to a binomial distribution whereas the positive values with skewness follow a lognormal

distribution. Moreover, the lognormal distribution with excess zeros has been widely used in

fields such as fishery surveys [7–9], climatology [10, 11], and medicine [12, 13].

The CV is the ratio of the standard deviation to the mean that is more widely used than the

standard deviation when comparing the dispersion in two or more datasets. There have been

many applications of the CV to compare the dispersion in datasets. For example, Verrill and

Johnson [14] compared the CVs of the xylan percentage for laboratory quality control data in

the United States Department of Agriculture forest products laboratory, while Gulhar et al.

[15] established confidence intervals for health-related datasets, including birth weight and

cigarette smoking. Nam and Kwon [16] applied CVs to estrogen metabolites in blood and

urine measurement data. Marek [17] used CVs for mining and ore geology to classify bitumi-

nous coal deposits in the Upper Silesian Coal Basin in Poland.

In statistical inference, the confidence intervals for the CV and the function of CVs have

attracted the interest of several researchers. Wong and Wu [18] recommended a small sample

asymptotic method to construct the confidence intervals for the CV of small sample sizes fol-

lowing normal, gamma, or Weibull distributions. Mahmoudvand and Hassani [19] proposed

two confidence intervals for the CV for a normal distribution based on an asymptotically unbi-

ased estimator for the CV that worked well, especially for small sample sizes. Hayter [20]

applied confidence intervals (a directional bound and a non-directional upper bound) for the

CV of a normal distribution applied to win probabilities. For the ratio of CVs, Nam and Kwon

[16] introduced confidence intervals based on the Wald-type, Fieller-type, and log methods,

and the method of variance estimate recovery (MOVER) of lognormal distributions. Hasan

and Krishnamoorthy [21] suggested MOVER and the fiducial method to establish confidence

intervals for small sample sizes from lognormal distributions. Wong and Jiang [22] proposed

the Bartlett-corrected likelihood ratio method to construct confidence intervals for lognormal

distributions. In addition, Sangnawakij and Niwitpong [23] used the score and Wald methods

to construct confidence intervals for the CV and function of CVs with bounded parameter

spaces in two gamma distributions for which both proposed methods were evidently suitable.

They also constructed confidence intervals using MOVER, the generalized confidence interval

(GCI), and the asymptotic confidence interval for CV and the difference between CVs with

two parameters exponential distributions of which the GCI was satisfied [24]. Moreover, for a

lognormal distribution with excess zeros, Buntao and Niwitpong [25] presented the general-

ized pivotal approach (GPA) and the closed-form method for obtaining the confidence inter-

vals for the difference between CVs and reported that GPA performed well. Later, the same

authors established the confidence intervals for the ratio of CVs under the GPA and MOVER

methods, the results revealing that GPA was the most accurate [26]. Recently, Yosboonruang

et al. [27] compared GCI and a modified Fletcher method in the confidence interval construc-

tion for CV (GCI was the most suitable). After that, they suggested FGCI, comparable with

MOVER, to establish the confidence intervals for the CV of a lognormal distribution with

excess zeros with three parameters [28]. Moreover, Yosboonruang et al. [29] reported a Bayes-

ian confidence interval compared with FGCI, the results indicating that the Bayesian method

performed the best.

In this paper, the ratio of CVs from two lognormal distributions with excess zeros is pro-

posed. Therefore, the concept of FGCI [28], the Bayesian method [29], Wald- and Fieller-type

methods [16] were extended to establish confidence intervals for the ratio of two independent

CVs from lognormal distributions with excess zeros. The proposed methods for constructing

the confidence intervals are presented in the next section. Subsequently, the results of a simula-

tion study are reported to assess the coverage probabilities and average lengths for comparing
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the proposed methods. Next, application of the proposed methods to rainfall datasets from

two regions in Thailand is demonstrated. Last, the paper is brought to a close with a discussion

and conclusion.

Materials and methods

Let Xij ¼ ðXi1;Xi2; . . . ;Xini
Þ, for i = 1, 2, j = 1, 2, . . ., ni, be a semi-continuous random sample

that conforms a lognormal distribution with excess zeros with the probability of zero values

δi,0, mean μi, and variance s2
i , denoted by Xij � Dðdi;0; mi; s

2
i Þ. The zero observations have a

binomial distribution, while the non-zero observations follow a lognormal distribution. The

numbers of zero and non-zero observations are defined as ni,0 and ni,1, respectively, where

ni = ni,0 + ni,1. This leads to the distribution function of Xij:

F xij;di;0 ;mi ;s
2
i

� �
¼

di;0 ; xij ¼ 0

di;0 þ ð1 � di;0ÞH ðxij; mi; s
2
i Þ ; xij > 0;

8
<

:
ð1Þ

where δi,0 = P(xij = 0), ni,0 * B(ni, δi,0) [6], and Hðxij; mi; s
2
i Þ is a lognormal cumulative distri-

bution function [11], so ln Xij follows a normal distribution with mean μi and variance s2
i for

Xij > 0. Thus, the probability density function of Xij can be expressed as

f ðxij; di;0; mi; s
2
i Þ

¼ di;0I0 xij

h i
þ 1 � di;0

� � 1

xij

ffiffiffiffiffiffi
2p
p

si

exp �
1

2

ln xij � mi

si

� �2
" #

Ið0;1Þ xij

h i ð2Þ

such that if xij = 0, then I0 [xij] = 1 and I(0,1) [xij] = 0, and if xij > 0, then I(0,1) [xij] = 1. Accord-

ing to Aitchison [30], the population mean and variance of Xij are mXij
¼ di;1 exp ðmi þ s

2
i =2Þ

and s2
Xij
¼ di;1 exp ð2mi þ s

2
i Þ½ exp ðs

2
i Þ � di;1�, respectively, where δi,1 = 1 − δi,0. Thus, the CV

of Xij can be defined as

CV Xij

� �
¼ Zi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ðs2

i Þ � di;1

di;1

s

: ð3Þ

The aim here is to construct the confidence interval for the ratio of the CVs:

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðs2

1
Þ � d1;1

d1;1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðs2

2
Þ � d2;1

d2;1

s : ð4Þ

In accordance with a lognormal distribution with excess zeros, the maximum likelihood esti-

mators (MLEs) of parameters δi,1, δi,0, and μi are bd i;1 ¼ ni;1=ni,
bd i;0 ¼ ni;0=ni, and

bmi ¼
Pni;1

i¼1 ln xij=ni;1, respectively. For s2
i , the unbiased estimator is

bs2
i ¼

Pni;1
i¼1 ðln xij � bmiÞ

2
=ðni;1 � 1Þ. The approaches used to construct the confidence intervals

are in the following subsections.
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The fiducial generalized confidence interval

Fiducial inference was initially suggested by Fisher [31], whereupon Hannig [32] and Li, Zhou,

and Tian [33] introduced the generalized fiducial quantities (GFQs) for δi,1 and s2
i , which are

respectively

Rdi;1
�

1

2
Beta ni;1; ni;0 þ 1

� �
þ

1

2
Beta ni;1 þ 1; ni;0

� �
ð5Þ

and

Rs2
i
¼
ðni;1 � 1Þbs2

i

Ui
; ð6Þ

where Ui � w
2
ni;1 � 1

.

Moreover, there have been several studies using FGCI to construct confidence intervals [28,

29, 32, 34–37]. From Eqs (5) and (6), the GFQ for ηi is defined as

RZi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ðRs2

i
Þ � Rdi;1

Rdi;1

s

: ð7Þ

The approach in this study points toward constructing the confidence interval for the ratio of

CVs. Thus, the GFQ for ϕ is in the form

R� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðRs2

1
Þ � Rd1;1

Rd1;1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðRs2

2
Þ � Rd2;1

Rd2;1

s : ð8Þ

Therefore, the 100(1 − α)% confidence interval for ϕ is

CIFGCI
�
¼ ½R�;l;R�;u� ¼ ½R�ða=2Þ;R�ð1 � a=2Þ�; ð9Þ

where Rϕ(α/2) and Rϕ(1 − α/2) are the (α/2)-th and (1 − α/2)-th percentiles of Rϕ, respectively.

Algorithm 1
for k = 1 : M do
Generate datasets xij, for i = 1, 2, j = 1, 2, . . ., ni, from the log-
normal distributions with excess zeros;

Calculate bd i;1 and bs2
i ;

for l = 1 : m do
Generate Beta (ni,1, ni,0 + 1) and Beta (ni,1 + 1, ni,0);
Calculate Rdi;1

, Rs2
i
, and R�;

end for
Calculate the (α/2)-th and (1 − α/2)-th percentiles of R�

end for

Bayesian methods

The probability density function of a lognormal distribution with excess zeros (Eq (2)) has

unknown parameters δi,0, μi and s2
i . The joint likelihood function is defined as

L di;0; mi; s
2
i j xij

� �
/
Y2

i¼1

d
ni;0
i;0 ð1 � di;0Þ

ni;1
Yni;1

j¼1

1

si
exp �

1

2s2
i

ðln xij � miÞ
2

� �( )

: ð10Þ
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Since we are interested in the ratio of the CVs, then the Fisher information matrix of the

unknown parameters ðd1;0; m1; s
2
1
; d2;0; m2; s

2
2
Þ computed by the second-order derivative of the

log-likelihood function can be expressed as

Iðd1;0; m1; s
2
1
; d2;0; m2; s

2
2
Þ

¼ diag
n1

d1;0ð1 � d1;0Þ

n1;1

s2
1

n1ð1 � d1;0Þ

2ðs2
1
Þ

2

n2

d2;0ð1 � d2;0Þ

n2;1

s2
2

n2ð1 � d2;0Þ

2ðs2
2
Þ

2

� �

:
ð11Þ

Subsequently, the equitailed confidence intervals and the HPD intervals are constructed for

the left-invariant Jeffreys, the Jeffreys rule, and the uniform priors.

The left-invariant Jeffreys prior. Because the lognormal distribution with excess zeros is

a combination of binomial and lognormal distributions, the Jeffreys priors for δi,0 and s2
i are

computed under these distributions. According to Jeffreys [38] and Ghosh et al. [39], the

invariant Jeffreys prior is obtained using a Fisher information matrix (I(θ)), which is given as

pðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
jIðyÞj

p
.

Because the left-invariant Jeffreys prior is non-informative, the Jeffreys invariant prior for a

binomial proportion (δi,0) is given by

p di;0

� �
¼

ffiffiffiffiffiffiffiffiffiffiffi
jIðdÞj

p
/ d

� 1
2

i;0 ð1 � di;0Þ
� 1

2: ð12Þ

This leads to the posterior distribution of δi,0 as

p di;0 j ni;0

� �
/ d

ni;0 �
1
2

i;0 ð1 � di;0Þ
ni;1 �

1
2; ð13Þ

which is a beta distribution with parameters ni,0 + 1/2 and ni,1 + 1/2, denoted by δi,0 j ni,0 *

Beta (ni,0 + 1/2, ni,1 + 1/2). Similarly for the lognormal distribution, the left-invariant Jeffreys

prior for s2
i , which is pðs2

i Þ ¼ 1=s2
i [39]. Subsequently, by combining the prior distributions of

δi,0 and s2
i , we obtain p di;0; s

2
i

� �
/ s� 2

i d
� 1

2
i;0 ð1 � di;0Þ

� 1
2 for a lognormal distribution with excess

zeros. Accordingly, the joint posterior density function for a lognormal distribution with

excess zeros is written as

pðdi;0; s
2
i j xijÞ ¼

Y2

i¼1

(
1

Beta ni;0 þ
1

2
; ni;1 þ

1

2

� � d
ni;0 �

1
2

i;0 ð1 � di;0Þ
ni;1 �

1
2

1
ffiffiffiffiffiffi
2p
p si

ffiffiffiffiffiffini;1
p

� exp �
1

2
s2

i

ni;1

ðmi � bm iÞ
2

2

6
6
6
4

3

7
7
7
5

ðni;1 � 1Þbs2
i

2

� �ni;1 � 1

2

G
ni;1 � 1

2

� � ðs2

i Þ
� 1�

ni;1 � 1

2

� exp �
ðni;1 � 1Þbs2

i

2s2
i

� �)

;

ð14Þ

where bm i ¼
Pni;1

j¼1 ln xij=ni;1 and bs2
i ¼

Pni;1
j¼1 ðln xij � bm iÞ

2
=ðni;1 � 1Þ. Therefore, the posterior

distribution of δi,0 is a beta distribution with parameters ni,0 + 1/2 and ni,1 + 1/2, denoted by

δi,0jxij * Beta (ni,0 + 1/2, ni,1 + 1/2). Similarly, the posterior distribution of s2
i is an inverse

gamma distribution with parameters (ni,1 − 1)/2 and ðni;1 � 1Þbs2
i =2, denoted by

s2
i j xij � IG½ðni;1 � 1Þ=2; ðni;1 � 1Þbs2

i =2�.
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The Jeffreys rule prior. The Jeffreys rule prior, which was previously referred to as the

square root of the determinant of the Fisher information for a binomial proportion, is

p di;0

� �
/ d

� 1
2

i;0 ð1 � di;0Þ
1
2 and for s2

i from a lognormal distribution is pðs2
i Þ / s

� 3
i [40]. Accord-

ing to the CV of the lognormal distribution with excess zeros as in Eq (3), the parameters are

independent, then the Jeffreys rule prior for ðdi;0; s
2
i Þ is p di;0; s

2
i

� �
/ s� 3

i d
� 1

2
i;0 ð1 � di;0Þ

1
2. There-

fore, the joint posterior density function is defined as

pðdi;0; s
2
i j xijÞ ¼

Y2

i¼1

(
1

Beta ni;0 þ
1

2
; ni;1 þ

3

2

� � d
ni;0 �

1
2

i;0 ð1 � di;0Þ
ni;1þ

1
2

1
ffiffiffiffiffiffi
2p
p si

ffiffiffiffiffiffini;1
p

� exp �
1

2
s2

i

ni;1

ðmi � bm iÞ
2

2

6
6
6
4

3

7
7
7
5

ni;1bs
2
i

2

� �ni;1
2

G
ni;1

2

� � ðs2

i Þ
� 1�

ni;1
2 exp �

ni;1bs
2
i

2s2
i

� �)

;

ð15Þ

where bm i ¼
Pni;1

j¼1 ln xij=ni;1 and bs2
i ¼

Pni;1
j¼1 ðln xij � bm iÞ

2
=ðni;1 � 1Þ. Subsequently, the poste-

rior densities of δi,0 and s2
i follow a beta distribution, Beta (ni,0 + 1/2, ni,1 + 3/2), and an inverse

gamma distribution, IGðni;1=2; ni;1bs
2
i =2Þ, respectively.

The uniform prior. For the uniform prior, the prior probability is a constant function

whereby all possible values are equally likely to be a priori [41, 42]. Accordingly, for binomial

and lognormal distributions, the uniform priors of δi,0 and s2
i are proportional to 1 [43, 44],

which implies that the uniform prior for a lognormal distribution with excess zeros is

pðdi;0; s
2
i Þ / 1. The joint posterior distribution for a lognormal distribution with excess zeros

is given by

pðdi;0; s
2
i j xijÞ ¼

Y2

i¼1

(
1

Beta ðni;0 þ 1; ni;1 þ 1Þ
d

ni;0
i;0 ð1 � di;0Þ

ni;1 1
ffiffiffiffiffiffi
2p
p si

ffiffiffiffiffiffini;1
p

� exp �
1

2
s2

i

ni;1

ðmi � bmiÞ
2

2

6
6
6
4

3

7
7
7
5

ðni;1 � 2Þbs2
i

2

� �ni;1 � 2

2

G
ni;1 � 2

2

� � ðs2

i Þ
� 1�

ni;1 � 2

2

� exp �
ðni;1 � 2Þbs2

i

2s2
i

� �)

;

ð16Þ

where bm i ¼
Pni;1

j¼1 ln xij=ni;1 and bs2
i ¼

Pni;1
j¼1 ðln xij � bm iÞ

2
=ðni;1 � 1Þ. Thus, the posterior distri-

bution for δi,0 follows a beta distribution, Beta (ni,0 + 1, ni,1 + 1), and that of s2
i is an inverse

gamma distribution, s2
i j xij � IG½ðni;1 � 2Þ=2; ðni;1 � 2Þbs2

i =2�.

The posterior distributions of δi,0 and s2
i can be replaced by following Eq (4), and then the

equitailed confidence intervals and HPD intervals are constructed by imposing Algorithm 2.

Algorithm 2
for k = 1 : M do
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Generate datasets xij, for i = 1, 2, j = 1, 2, . . ., ni, from the log-
normal distributions with excess zeros;

Calculate bd i;1 and bs2
i ;

for l = 1 : m do
Generate the posterior densities of δi,0 j xij,
• left-invariant Jeffreys prior: δi,0jxij * Beta (ni,0 + 1/2, ni,1
+ 1/2),

• Jeffreys rule prior: δi,0jxij * Beta (ni,0 + 1/2, ni,1 + 3/2),
• uniform prior: δi,0jxij * Beta (ni,0 + 1, ni,1 + 1);
Generate the posterior densities of s2

i j xij,
• left-invariant Jeffreys prior: s2

i j xij � IG½ðni;1 � 1Þ=2; ðni;1 � 1Þbs2
i =2�,

• Jeffreys rule prior: s2
i j xij � IGðni;1=2; ni;1bs

2
i =2Þ,

• uniform prior: s2
i j xij � IG½ðni;1 � 2Þ=2; ðni;1 � 2Þbs2

i =2�;
Calculate � from Eq (4) for the left-invariant Jeffreys, the
Jeffreys rule, and the uniform priors;

end for
Construct HPD intervals and equitailed confidence intervals for �

based on the left-invariant Jeffreys, the Jeffreys rule, and the
uniform priors

end for

The Wald log-likelihood method

According to Eq (10), the log-likelihood function is

ln L / n1;0 ln d1;0 þ n2;0 ln d2;0 þ n1;1 ln ð1 � d1;0Þ þ n2;1 ln ð1 � d2;0Þ

�
1

2

(

n1;1 ln s
2

1
þ

1

s2
1

Xn1;1

j¼1

ðln x1j � m1Þ
2

" #

þ n2;1 ln s2
2
þ

1

s2
2

Xn2;1

j¼1

ðln x2j � m2Þ
2

" #)

:

ð17Þ

From Eq (4), the parameter of interest is ϕ. Subsequently, the log-likelihood function is repara-

meterized in terms of ϕ by substituting η1 = ϕη2, s2
1
¼ ln ð1 � d1;0Þ þ ln ð�2

Z2
2
þ 1Þ, and s2

2
¼

ln ð1 � d2;0Þ þ ln ðZ2
2
þ 1Þ into Eq (17) as follows

ln L / n1;0 ln d1;0 þ n2;0 ln d2;0 þ n1;1 ln ð1 � d1;0Þ þ n2;1 ln ð1 � d2;0Þ

�
1

2

(

n1;1 ln ln 1 � d1;0

� �
þ ln �

2
Z2

2
þ 1

� �� �
þ

Pn1;1

j¼1 ðln x1j � m1Þ
2

ln ð1 � d1;0Þ þ ln ð�2
Z2

2
þ 1Þ

" #

þ n2;1 ln ln 1 � d2;0

� �
þ ln Z2

2
þ 1

� �� �
þ

Pn2;1

j¼1 ðln x2j � m2Þ
2

ln ð1 � d2;0Þ þ ln ðZ2
2
þ 1Þ

" #)

:

ð18Þ

Theorem 1. Let Xij � Dðdi;0; mi; s
2
i Þ, where i = 1, 2, j = 1, 2, . . ., ni. Let ln Xij � Nðmi; s

2
i Þ, for

Xij > 0. Likewise, let � ¼ f½ð exp ðs2
1
Þ � d1;0Þ=d1;0�=½ð exp ðs2

2
Þ � d2;0Þ=d2;0�g

1=2
, where δi,1 = 1 −

δi,0 for i = 1, 2, be the ratio of CVs of lognormal distributions with excess zeros. The unrestricted
MLEs of δi,1, μi, and s2

i are bd i;1 ¼ ni;1=ni, bmi ¼
Pni;1

j¼1 ln xij=ni;1, and bs2
i ¼

Pni;1
j¼1 ðln xij � bmiÞ

2
=ni,

respectively. Consequently, bZ i ¼ ½ð exp ðbs2
i Þ �

bd i;1Þ=
bd i;1�

1=2 and b� ¼ f½ð exp ðbs2
1
Þ � bd1;1Þ=

bd1;1�=
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½ð exp ðbs2
2
Þ � bd2;1Þ=

bd2;1�g
1=2

. Therefore, the asymptotic variance of b� is

Var b�
� �

¼
n1;1�

4
½s2

2
ðZ2

2
þ 1Þ�

2
þ n2;1½s

2
1
ðZ2

1
þ 1Þ�

2

2n1;1n2;1Z
2
1
Z2

2

: ð19Þ

Proof. Following Nam and Kwon [16], since the MLE of s2
i is bs2

i ¼
Pni;1

j¼1 ðln xij � bmiÞ
2
=ni,

where bm i ¼
Pni;1

j¼1 ln xij=ni;1 for i = 1, 2, then the log-likelihood function for reparameterization

from Eq (17) can be written as

ln L / n1;0 ln d1;0 þ n2;0 ln d2;0 þ n1;1 ln ð1 � d1;0Þ þ n2;1 ln ð1 � d2;0Þ

�
1

2

(

n1;1 ln ln 1 � d1;0

� �
þ ln �

2
Z2

2
þ 1

� �� �
þ

n1;1bs
2
1

ln ð1 � d1;0Þ þ ln ð�2
Z2

2
þ 1Þ

" #

þ n2;1 ln ln 1 � d2;0

� �
þ ln Z2

2
þ 1

� �� �
þ

n2;1bs
2
2

ln ð1 � d2;0Þ þ ln ðZ2
2
þ 1Þ

" #)

:

The asymptotic variance of b� is obtained using the Fisher information which is also written as

I yð Þ ¼ � E
@

2 ln L
@y

2

� �

:

By the second-order partial derivative, the Fisher information elements are

I11 ¼ � E
@

2 ln L
@�

2

� �

¼
2n1;1Z

2
1
Z2

2

½s2
1
ðZ2

1
þ 1Þ�

2

I22 ¼ � E
@

2 ln L
@Z2

2

� �

¼
2n1;1�

2
Z2

1

½s2
1
ðZ2

1
þ 1Þ�

2
þ

2n2;1Z
2
2

½s2
2
ðZ2

2
þ 1Þ�

2

I33 ¼ � E
@

2 ln L
@d

2

1;0

 !

¼
n1

d1;0ð1 � d1;0Þ

I44 ¼ � E
@

2 ln L
@d

2

2;0

 !

¼
n2

d2;0ð1 � d2;0Þ

I55 ¼ � E
@

2 ln L
@m2

1

� �

¼
n1;1

s2
1

I66 ¼ � E
@

2 ln L
@m2

2

� �

¼
n2;1

s2
2

I12 ¼ I21 ¼ � E
@

2 ln L
@�@Z2

� �

¼
2n1;1Z

3
1

½s2
1
ðZ2

1
þ 1Þ�

2

and the other elements are zeros. By the left-hand block of the matrix I� 1
n ðyÞ, I11, the
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asymptotic variance of b� is

Varðb�Þ ¼ I11 ¼ I11 �
I2

12

I21

� �� 1

¼
n1;1�

4
½s2

2
ðZ2

2
þ 1Þ�

2
þ n2;1½s

2
1
ðZ2

1
þ 1Þ�

2

2n1;1n2;1Z
2
1
Z2

2

;

where η1 = ϕη2 and s2
i ¼ ln di;1 þ ln ðZ2

i þ 1Þ for i = 1, 2.

Following the MLEs of the parameters di;1 ¼
bd i;1, Zi ¼ bZ i, s

2
i ¼ bs

2
i , for i = 1, 2, and � ¼ b�,

the variance estimate for b� is

dVar b�
� �

¼
n1;1
b�4½bs2

2
ðbZ2

2
þ 1Þ�

2
þ n2;1½bs

2
1
ðbZ2

1
þ 1Þ�

2

2n1;1n2;1bZ
2
1
bZ2

2

: ð20Þ

The asymptotically standard normal distribution is

Z1 ¼
b� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðb�Þ

q � N 0; 1ð Þ: ð21Þ

Therefore, the 100(1 − α)% two-sided confidence interval for ϕ based on the Wald log-likeli-

hood method is

� ¼ b� � z1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðb�Þ

q

; ð22Þ

where z1−α/2 is the (1 − α/2)-th percentile of the standard normal distribution.

The Fieller log-likelihood method

Following Eq (17) and since s2
i ¼ ln ð1 � di;0Þ þ ln ðZ2

i þ 1Þ, the log-likelihood function can

be written as

ln L / n1;0 ln d1;0 þ n2;0 ln d2;0 þ n1;1 ln ð1 � d1;0Þ þ n2;1 ln ð1 � d2;0Þ

� 1

2

(

n1;1 ln ln 1 � d1;0

� �
þ ln Z2

1
þ 1

� �� �
þ

Pn1;1

j¼1 ðln x1j � m1Þ
2

ln ð1 � d1;0Þ þ ln ðZ2
1
þ 1Þ

" #

þ n2;1 ln ln 1 � d2;0

� �
þ ln Z2

2
þ 1

� �� �
þ

Pn2;1

j¼1 ðln x2j � m2Þ
2

ln ð1 � d2;0Þ þ ln ðZ2
2
þ 1Þ

" #)

:

ð23Þ

Theorem 2. Let Xij � Dðdi;0; mi; s
2
i Þ, where i = 1, 2, j = 1, 2, . . ., ni, and let ln Xij � Nðmi; s

2
i Þ,

for Xij > 0. The CV of a lognormal distribution with excess zeros is
Zi ¼ f½ exp ðs2

i Þ � di;1�=di;1g
1=2

, where δi,1 = 1 − δi,0 for i = 1, 2. Let bd i;1 ¼ ni;1=ni,

bmi ¼
Pni;1

j¼1 ln xij=ni;1, and bs2
i ¼

Pni;1
j¼1 ðln xij � bmiÞ

2
=ni be the unrestricted MLEs of δi,1, μi, and

s2
i , respectively. Likewise, bZ i ¼ f½ exp ðbs2

i Þ �
bd i;1�=

bd i;1g
1=2

. Therefore, the asymptotic variance of
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bZ i are

Var bZ ið Þ ¼
f½ln ð1 � di;0Þ þ ln ðZ2

i þ 1Þ�ðZ2
i þ 1Þg

2

2ni;1Z
2
i

; ð24Þ

for i = 1, 2.

Proof. The MLEs of the parameters are obtained from the first-order derivative of Eq (23) as

bd i;1 ¼ ni;1=ni, bmi ¼
Pni;1

j¼1 ln xij=ni;1, and bs2
i ¼

Pni;1
j¼1 ðln xij � bmiÞ

2
=ni. Thus,

bZ i ¼ f½ exp ðbs2
i Þ �

bd i;1�=
bd i;1g

1=2
, for i = 1, 2. Similarly to Theorem 1, the elements of the Fisher

information matrix are

Imn ¼ � E
@

2 ln L
@Zm@Zn

� �

¼
2ni;1Z

2
i

f½ln ð1 � di;0Þ þ ln ðZ2
i þ 1Þ�ðZ2

i þ 1Þg
2

for m = n = 1, 2, i = 1, 2, Imn for m = n = 3, 4, 5, 6 follows from Theorem 1 when s2
i ¼

ln ð1 � di;0Þ þ ln ðZ2
i þ 1Þ and Imn = 0 for m, n = 1, 2, . . ., 6 and m 6¼ n. The asymptotic vari-

ances of bZ1 and bZ2 are

Var bZ1ð Þ ¼ I11 ¼ I� 1
11
¼
f½ln ð1 � d1;0Þ þ ln ðZ2

1
þ 1Þ�ðZ2

1
þ 1Þg

2

2n1;1Z
2
1

and

Var bZ2ð Þ ¼ I22 ¼ I� 1
22
¼
f½ln ð1 � d2;0Þ þ ln ðZ2

2
þ 1Þ�ðZ2

2
þ 1Þg

2

2n2;1Z
2
2

:

Since δi,1 = 1 − δi,0 and the MLEs of δi,1 and s2
i are bd i;1 and bs2

i , respectively, then the esti-

mated variance of bZ i is

dVar bZ ið Þ ¼
½bs2

i ðbZ
2
i þ 1Þ�

2

2ni;1bZ
2
i

; ð25Þ

where bs2
i ¼ ln bd i;1 þ ln ðbZ2

i þ 1Þ, for i = 1, 2. According to Fieller [45], the statistic

Z2 ¼
bZ1 � �bZ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVarðbZ1Þ þ �
2dVarðbZ2Þ

q � N 0; 1ð Þ: ð26Þ

Therefore, the 100(1 − α)% two-sided confidence interval for ϕ based on the Fieller log-likeli-

hood method is

� ¼
bZ1bZ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbZ1bZ2Þ
2
� ½bZ2

1
� z2

1� a=2
dVarðbZ1Þ�½bZ

2
2
� z2

1� a=2
dVarðbZ2Þ�

q

bZ2
2
� z2

1� a=2
dVarðbZ2Þ

: ð27Þ

where z1−α/2 is the (1 − α/2)-th percentile of a standard normal distribution.

Note that: The variance of the estimator for ratio of CVs from Theorem 1 and the variance

of the estimator for CV from Theorem 2 are equal to the variances which are reported by Nam

and Kwon [16] when δ1,1, δ2,1 = 1.
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Table 1. The coverage probabilities and average lengths of 95% two-sided confidence intervals for the ratio of CVs of lognormal distributions with excess zeros.

n1: n2 δ1: δ2 s2
1

: s2
2

Coverage Probabilities (Average Lengths)

FGCI Equitailed HPD Wald Fieller

B-LIJ B-JR B-U B-LIJ B-JR B-U

25:25 0.5:0.5 0.5:0.5 0.9654 0.9835 0.9799 0.9859 0.9872 0.9844 0.9893 0.9061 0.9516

(1.3234) (1.4643) (1.3937) (1.5297) (1.3608) (1.3037) (1.4109) (0.7803) (0.8304)

0.5:1.0 0.9586 0.9719 0.9671 0.9760 0.9725 0.9679 0.9760 0.9330 0.9475

(1.1076) (1.1805) (1.1220) (1.2369) (1.1129) (1.0636) (1.1579) (0.7528) (0.9368)

1.0:2.0 0.9535 0.9573 0.9489 0.9640 0.9555 0.9496 0.9628 0.9407 0.8281

(1.7466) (1.7645) (1.6379) (1.9158) (1.4734) (1.3975) (1.5569) (1.0605) (1.1056)

2.0:2.0 0.9514 0.9559 0.9477 0.9636 0.9573 0.9514 0.9627 0.9127 0.8597

(10.9684) (11.3842) (9.5735) (14.3922) (6.2440) (5.5766) (7.1173) (2.5565) (9.6299)

0.8:0.8 0.5:0.5 0.9561 0.9675 0.9631 0.9717 0.9711 0.9667 0.9754 0.9215 0.9579

(1.1465) (1.2155) (1.1818) (1.2381) (1.1582) (1.1287) (1.1775) (0.8839) (0.9510)

0.5:1.0 0.9555 0.9618 0.9566 0.9665 0.9623 0.9580 0.9679 0.9319 0.9654

(0.8710) (0.9016) (0.8747) (0.9254) (0.8672) (0.8431) (0.8887) (0.7100) (0.8447)

1.0:2.0 0.9538 0.9529 0.9477 0.9584 0.9495 0.9455 0.9545 0.9360 0.9438

(1.1656) (1.1758) (1.1340) (1.2198) (1.0753) (1.0432) (1.1082) (0.8974) (1.8105)

2.0:2.0 0.9501 0.9503 0.9445 0.9554 0.9511 0.9463 0.9552 0.9147 0.9723

(4.1302) (4.2305) (3.9862) (4.5007) (3.2591) (3.1220) (3.4102) (2.1424) (3.9999)

25:50 0.5:0.5 0.5:0.5 0.9631 0.9804 0.9769 0.9821 0.9776 0.9725 0.9805 0.8478 0.8945

(1.1354) (1.2463) (1.1768) (1.3098) (1.1396) (1.0852) (1.1826) (0.6463) (0.6637)

0.5:1.0 0.9561 0.9735 0.9692 0.9765 0.9714 0.9653 0.9746 0.8943 0.9739

(0.9068) (0.9743) (0.9210) (1.0214) (0.9043) (0.8615) (0.9387) (0.5858) (0.6421)

1.0:2.0 0.9513 0.9600 0.9535 0.9651 0.9583 0.9517 0.9632 0.9133 0.9937

(1.4721) (1.5075) (1.3869) (1.6444) (1.2475) (1.1733) (1.3248) (0.8232) (1.1562)

2.0:2.0 0.9548 0.9577 0.9499 0.9635 0.9543 0.9473 0.9605 0.8630 0.9895

(10.3410) (10.0671) (8.3466) (12.8534) (5.5641) (4.9297) (6.4182) (2.1428) (2.7247)

0.8:0.8 0.5:0.5 0.9553 0.9683 0.9653 0.9718 0.9706 0.9674 0.9773 0.9011 0.9323

(0.9915) (1.0529) (1.0218) (1.0811) (0.9942) (0.9679) (1.0177) (0.7378) (0.7615)

0.5:1.0 0.9549 0.9660 0.9621 0.9697 0.9650 0.9602 0.9719 0.9099 0.9621

(0.7237) (0.7571) (0.7351) (0.7791) (0.7208) (0.7016) (0.7395) (0.5652) (0.6086)

1.0:2.0 0.9503 0.9548 0.9513 0.9586 0.9581 0.9543 0.9619 0.9227 0.9943

(0.9815) (0.9901) (0.9555) (1.0304) (0.8970) (0.8709) (0.9267) (0.7072) (0.8692)

2.0:2.0 0.9500 0.9530 0.9481 0.9577 0.9581 0.9534 0.9623 0.8895 0.9829

(3.7856) (3.7697) (3.5480) (4.0469) (2.8749) (2.7497) (3.0279) (1.7976) (2.1417)

25:100 0.5:0.5 0.5:0.5 0.9592 0.9803 0.9756 0.9830 0.9736 0.9659 0.9778 0.7939 0.8203

(1.0311) (1.1495) (1.0758) (1.2122) (1.0394) (0.9820) (1.0809) (0.5785) (0.5853)

0.5:1.0 0.9543 0.9745 0.9689 0.9788 0.9685 0.9582 0.9719 0.8447 0.9081

(0.7945) (0.8644) (0.8109) (0.9090) (0.7896) (0.7474) (0.8201) (0.4895) (0.5095)

1.0:2.0 0.9526 0.9637 0.9580 0.9684 0.9611 0.9515 0.9649 0.8653 0.9762

(1.3343) (1.3555) (1.2358) (1.4897) (1.0972) (1.0246) (1.1716) (0.6752) (0.7689)

2.0:2.0 0.9516 0.9553 0.9462 0.9624 0.9495 0.9401 0.9568 0.8298 0.9202

(9.5088) (10.2704) (8.2102) (13.2450) (5.3998) (4.7107) (6.2762) (1.9127) (2.1279)

0.8:0.8 0.5:0.5 0.9548 0.9670 0.9643 0.9713 0.9675 0.9619 0.9740 0.8671 0.8899

(0.9126) (0.9673) (0.9359) (0.9988) (0.9077) (0.8810) (0.9333) (0.6615) (0.6709)

0.5:1.0 0.9554 0.9627 0.9597 0.9654 0.9625 0.9575 0.9697 0.8796 0.9219

(0.6407) (0.6715) (0.6502) (0.6935) (0.6332) (0.6151) (0.6517) (0.4826) (0.4985)

1.0:2.0 0.9507 0.9555 0.9520 0.9595 0.9584 0.9555 0.9647 0.8897 0.9595

(0.8574) (0.8692) (0.8360) (0.9081) (0.7766) (0.7520) (0.8048) (0.5893) (0.6416)

2.0:2.0 0.9525 0.9512 0.9471 0.9551 0.9550 0.9503 0.9611 0.8657 0.9255

(3.5906) (3.5590) (3.3357) (3.8322) (2.6723) (2.5466) (2.8233) (1.6200) (1.7423)

(Continued)
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Table 1. (Continued)

n1: n2 δ1: δ2 s2
1

: s2
2

Coverage Probabilities (Average Lengths)

FGCI Equitailed HPD Wald Fieller

B-LIJ B-JR B-U B-LIJ B-JR B-U

50:50 0.2:0.2 0.5:0.5 0.9675 0.9885 0.9869 0.9902 0.9904 0.9889 0.9913 0.8934 0.9381

(1.4029) (1.5611) (1.4427) (1.6879) (1.4160) (1.3269) (1.5007) (0.6473) (0.6791)

0.5:1.0 0.9625 0.9778 0.9743 0.9803 0.9755 0.9729 0.9767 0.9166 0.9160

(1.2525) (1.3672) (1.2661) (1.4770) (1.2576) (1.1810) (1.3302) (0.7180) (1.0312)

1.0:2.0 0.9524 0.9617 0.9527 0.9697 0.9631 0.9555 0.9689 0.9392 0.7470

(2.4409) (2.4928) (2.1804) (2.9603) (1.8501) (1.7018) (2.0355) (1.1185) (1.7014)

2.0:2.0 0.9533 0.9613 0.9512 0.9697 0.9571 0.9500 0.9647 0.9063 0.8193

(40.7663) (36.0997) (21.8269) (65.5736) (11.6103) (9.0939) (15.9990) (2.8913) (5.2774)

0.5:0.5 0.5:0.5 0.9598 0.9823 0.9807 0.9835 0.9835 0.9827 0.9849 0.9105 0.9327

(0.7841) (0.8854) (0.8689) (0.8957) (0.8595) (0.8443) (0.8689) (0.5544) (0.5713)

0.5:1.0 0.9549 0.9679 0.9648 0.9701 0.9689 0.9671 0.9715 0.9281 0.9475

(0.6816) (0.7365) (0.7209) (0.7477) (0.7210) (0.7062) (0.7316) (0.5435) (0.6019)

1.0:2.0 0.9508 0.9583 0.9545 0.9616 0.9589 0.9546 0.9619 0.9427 0.9540

(0.9225) (0.9453) (0.9228) (0.9676) (0.8966) (0.8774) (0.9154) (0.7578) (1.0524)

2.0:2.0 0.9500 0.9528 0.9483 0.9561 0.9556 0.9521 0.9587 0.9277 0.9967

(2.7610) (2.8132) (2.7145) (2.9196) (2.3746) (2.3092) (2.4431) (1.7547) (2.8522)

0.8:0.8 0.5:0.5 0.9563 0.9671 0.9643 0.9697 0.9677 0.9658 0.9701 0.9279 0.9477

(0.7258) (0.7740) (0.7646) (0.7788) (0.7565) (0.7477) (0.7610) (0.6165) (0.6389)

0.5:1.0 0.9532 0.9570 0.9547 0.9606 0.9585 0.9565 0.9615 0.9365 0.9583

(0.5606) (0.5818) (0.5743) (0.5881) (0.5715) (0.5644) (0.5777) (0.4986) (0.5417)

1.0:2.0 0.9529 0.9500 0.9467 0.9524 0.9503 0.9482 0.9537 0.9443 0.9637

(0.7013) (0.7099) (0.7000) (0.7197) (0.6869) (0.6779) (0.6960) (0.6267) (0.7872)

2.0:2.0 0.9501 0.9502 0.9473 0.9525 0.9549 0.9532 0.9572 0.9347 0.9973

(1.8696) (1.8701) (1.8372) (1.9029) (1.7035) (1.6779) (1.7292) (1.4471) (1.7632)

50:100 0.2:0.2 0.5:0.5 0.9658 0.9882 0.9855 0.9891 0.9873 0.9830 0.9879 0.8433 0.8855

(1.2156) (1.3690) (1.2439) (1.4802) (1.2081) (1.1179) (1.2694) (0.5533) (0.5645)

0.5:1.0 0.9630 0.9821 0.9784 0.9839 0.9817 0.9752 0.9824 0.9113 0.9712

(1.0392) (1.1399) (1.0410) (1.2270) (1.0282) (0.9547) (1.0788) (0.5707) (0.6263)

1.0:2.0 0.9549 0.9655 0.9599 0.9703 0.9662 0.9575 0.9695 0.9301 0.9753

(2.0945) (2.2044) (1.8812) (2.6662) (1.6118) (1.4499) (1.7906) (0.8727) (0.5866)

2.0:2.0 0.9538 0.9571 0.9485 0.9642 0.9548 0.9444 0.9610 0.8528 0.9797

(67.8516) (61.5960) (34.1736) (164.6780) (13.8966) (10.3774) (22.4465) (2.3299) (3.0886)

0.5:0.5 0.5:0.5 0.9635 0.9821 0.9806 0.9829 0.9805 0.9774 0.9819 0.8793 0.9045

(0.6718) (0.7570) (0.7399) (0.7661) (0.7309) (0.7154) (0.7383) (0.4717) (0.4779)

0.5:1.0 0.9559 0.9739 0.9723 0.9752 0.9715 0.9679 0.9737 0.9097 0.9511

(0.5556) (0.6052) (0.5918) (0.6130) (0.5882) (0.5758) (0.5951) (0.4297) (0.4496)

1.0:2.0 0.9505 0.9586 0.9567 0.9611 0.9617 0.9573 0.9643 0.9262 0.9882

(0.7576) (0.7811) (0.7609) (0.7979) (0.7341) (0.7172) (0.7473) (0.5904) (0.6832)

2.0:2.0 0.9503 0.9529 0.9502 0.9563 0.9583 0.9540 0.9609 0.9050 0.9792

(2.5209) (2.5261) (2.4280) (2.6227) (2.0993) (2.0352) (2.1614) (1.4996) (1.6864)

(Continued)
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Algorithm 3
for k = 1 : M do
Generate datasets xij, for i = 1, 2, j = 1, 2, . . ., ni, from the log-

normal distributions with excess zeros;

Calculate bd i;1 and bs2
i ;

Calculate dVarðb�Þ from Eq (20) and dVarðbZ iÞ from Eq (25);
Construct two-sided confidence intervals for � based on the Wald

log-likelihood and Fieller log-likelihood methods
end for

Table 1. (Continued)

n1: n2 δ1: δ2 s2
1

: s2
2

Coverage Probabilities (Average Lengths)

FGCI Equitailed HPD Wald Fieller

B-LIJ B-JR B-U B-LIJ B-JR B-U

0.8:0.8 0.5:0.5 0.9535 0.9659 0.9639 0.9668 0.9657 0.9630 0.9684 0.9121 0.9310

(0.6263) (0.6669) (0.6586) (0.6734) (0.6496) (0.6418) (0.6555) (0.5218) (0.5300)

0.5:1.0 0.9529 0.9593 0.9575 0.9616 0.9575 0.9550 0.9609 0.9172 0.9489

(0.4624) (0.4817) (0.4756) (0.4872) (0.4710) (0.4654) (0.4763) (0.3999) (0.4148)

1.0:2.0 0.9531 0.9518 0.9495 0.9543 0.9517 0.9489 0.9546 0.9286 0.9765

(0.5747) (0.5844) (0.5767) (0.5925) (0.5615) (0.5547) (0.5688) (0.4967) (0.5467)

2.0:2.0 0.9529 0.9518 0.9485 0.9531 0.9599 0.9575 0.9618 0.9165 0.9705

(1.6544) (1.6684) (1.6388) (1.7006) (1.4996) (1.4773) (1.5243) (1.2334) (1.3380)

100:100 0.2:0.2 0.5:0.5 0.9637 0.9885 0.9875 0.9888 0.9908 0.9904 0.9917 0.8920 0.9182

(0.7637) (0.8899) (0.8673) (0.9033) (0.8618) (0.8411) (0.8735) (0.4694) (0.4801)

0.5:1.0 0.9616 0.9755 0.9732 0.9781 0.9785 0.9772 0.9804 0.9227 0.9277

(0.7215) (0.8006) (0.7793) (0.8150) (0.7834) (0.7633) (0.7971) (0.5276) (0.5839)

1.0:2.0 0.9513 0.9607 0.9556 0.9641 0.9615 0.9579 0.9639 0.9433 0.9315

(1.0450) (1.0894) (1.0542) (1.1220) (1.0187) (0.9904) (1.0444) (0.8018) (1.3385)

2.0:2.0 0.9522 0.9589 0.9543 0.9627 0.9599 0.9571 0.9631 0.9270 0.9835

(3.4830) (3.5748) (3.3877) (3.7837) (2.8333) (2.7227) (2.9520) (1.8358) (2.4826)

0.5:0.5 0.5:0.5 0.9562 0.9829 0.9820 0.9836 0.9831 0.9820 0.9835 0.9056 0.9177

(0.5149) (0.5854) (0.5805) (0.5878) (0.5765) (0.5719) (0.5788) (0.3961) (0.4021)

0.5:1.0 0.9543 0.9725 0.9710 0.9739 0.9706 0.9701 0.9723 0.9307 0.9420

(0.4555) (0.4926) (0.4879) (0.4958) (0.4873) (0.4826) (0.4904) (0.3895) (0.4093)

1.0:2.0 0.9513 0.9558 0.9546 0.9588 0.9581 0.9555 0.9603 0.9457 0.9545

(0.5917) (0.6083) (0.6020) (0.6142) (0.5957) (0.5897) (0.6013) (0.5379) (0.6305)

2.0:2.0 0.9523 0.9529 0.9510 0.9550 0.9590 0.9585 0.9622 0.9387 0.9918

(1.4645) (1.4979) (1.4795) (1.5164) (1.4009) (1.3850) (1.4158) (1.1982) (1.3712)

0.8:0.8 0.5:0.5 0.9520 0.9681 0.9674 0.9699 0.9682 0.9667 0.9688 0.9345 0.9434

(0.4892) (0.5242) (0.5212) (0.5255) (0.5174) (0.5146) (0.5188) (0.4333) (0.4410)

0.5:1.0 0.9507 0.9599 0.9582 0.9603 0.9601 0.9579 0.9611 0.9379 0.9499

(0.3813) (0.3973) (0.3948) (0.3992) (0.3932) (0.3908) (0.3951) (0.3531) (0.3677)

1.0:2.0 0.9512 0.9498 0.9492 0.9518 0.9501 0.9487 0.9522 0.9437 0.9623

(0.4669) (0.4715) (0.4685) (0.4746) (0.4642) (0.4612) (0.4671) (0.4406) (0.4900)

2.0:2.0 0.9510 0.9505 0.9485 0.9524 0.9554 0.9527 0.9563 0.9415 0.9786

(1.1197) (1.1283) (1.1201) (1.1361) (1.0821) (1.0748) (1.0892) (0.9968) (1.0932)

https://doi.org/10.1371/journal.pone.0265875.t001
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Results and discussion

Simulation studies

Simulation studies were conducted to compare the performances of the methods used to con-

struct the confidence intervals using FGCI, the Bayesian methods (the left-invariant Jeffreys,

the Jeffreys rule, and the uniform priors), and the Wald and Fieller log-likelihood methods.

The optimal method was the one with a coverage probability equal to or greater than the nomi-

nal confidence level of 0.95 together with the shortest average length. Following Wu and Hsieh

[46], cases that were expected to have non-zero values of less than 10 were not considered.

Sample sizes (ni), δi,1, and s2
i were set as reported in Table 1. For all of the simulations, 15,000

runs were generated and 5,000 replicates were defined for the FGCI and Bayesian methods via

Monte Carlo simulation using RStudio version 1.1.463.

Table 1 and Figs 1–3 present the coverage probabilities and average lengths of the confi-

dence intervals for the various methods. The results show that the coverage probabilities of

FGCI were consistently close to the nominal confidence level of 0.95 for all cases. The

coverage probabilities of the Bayesian method using the uniform prior (B-U) for both the

equitailed confidence interval and HPD interval were greater than or close to the nominal con-

fidence level of 0.95 for all cases. The Bayesian methods using the left-invariant Jeffreys

(B-LIJ) and the Jeffreys rule (B-JR) priors based on equitailed confidence intervals and HPD

intervals attained coverage probabilities greater than or close to the nominal confidence level

of 0.95 in almost every case. However, those attained by the Wald log-likelihood method were

less than the nominal confidence level 0.95 for all cases whereas those produced by the Fieller

log-likelihood method were greater than or close to the nominal confidence level 0.95 in some

cases.

The average lengths of B-JR based on the HPD interval was the shortest for most of the

cases when the sample size was small (n1 and/or n2 = 25). For large sample sizes (n1, n2 = 50,

100), B-JR based on the HPD interval had mainly narrow average lengths for the cases of δ1,1,

δ2,1 = 0.2 for all variances and δ1,1, δ2,1 = 0.5, 0.8 together with s2
1
, s2

2
¼ 1; 2, while those of

FGCI were the shortest for cases with small variance(s) (s2
1

and/or s2
2
¼ 0:5).

Fig 1. Line graphs for comparing the coverage probabilities (CP) and average lengths (AL) of all methods in cases of the different sample sizes.

https://doi.org/10.1371/journal.pone.0265875.g001
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An empirical example

As previously mentioned, the CV can be used to measure the dispersion in a dataset, especially

in cases like rainfall data that conform to a lognormal distribution with excess zeros. Therefore,

daily rainfall data from the central and southern regions (Chumphon province) in August

2017, collected by the Central and Southern Region Irrigation Hydrology Center were used to

construct confidence intervals for evaluating the proposed methods. The datasets were shown

in Tables 2 and 3. The data with zero values implied a binomial distribution whereas the posi-

tive observations for both regions were skewed, as shown in Fig 4, and so log transformation

of the positive values was applied. It is imperative to check the distribution of the data, and so

a minimum Akaike information criteria (AIC) analysis was conducted. The AIC values of the

rainfall data from the central and southern regions for normal, lognormal, and Cauchy

Fig 2. Line graphs for comparing the coverage probabilities (CP) and average lengths (AL) of all methods in cases of the different probabilities of non-zero

values.

https://doi.org/10.1371/journal.pone.0265875.g002

Fig 3. Line graphs for comparing the coverage probabilities (CP) and average lengths (AL) of all methods in cases of the different variances.

https://doi.org/10.1371/journal.pone.0265875.g003
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distributions were 1491.7130, 1251.7700, and 1390.5430 and 952.6130, 840.1782, and

919.0321, respectively. Thus, the lognormal distribution was suitable for both datasets. This

was further confirmed using normal Q-Q plots (Fig 5). The summary statistics for the rainfall

data from the central and southern regions were n1 = 390, bd1;1 ¼ 0:4667, bm1 ¼ 1:7573,

bs2
1
¼ 1:6636, bZ1 ¼ 0:7340 and n2 = 248, bd2;1 ¼ 0:5121, bm2 ¼ 1:7913, bs2

2
¼ 1:1872,

bZ2 ¼ 0:6083, respectively. The ratio of CVs between two regions was ϕ = 1.2066, and the 95%

confidence intervals for ϕ are reported in Table 4.

The lower and upper bounds from the results indicate that the dispersion of rainfall in the

central region was more than the southern region. This is because the southern region has

abundant precipitation throughout the year due to being located on the peninsula surrounded

by the Andaman Sea and the Gulf of Thailand. The central region is located on the plains that

Table 2. Daily rainfall data from central region on August, 2017.

Date Stations

N.67 C.2 C.13 C.30 Ct.4 Ct.5A Ct.7 Ct.9 Ct.2A S.9 S.13 S.28 T.7

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0

2 0.0 0.0 0.0 9.2 4.2 0.0 0.0 0.0 17.0 0.0 9.6 2.2 0.0

3 0.0 0.0 0.0 1.1 2.6 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0

4 8.2 0.0 0.0 0.0 0.6 0.0 28.5 6.1 1.4 26.2 0.0 0.0 0.0

5 3.9 4.4 36.1 0.0 0.4 0.0 10.0 3.0 0.0 56.3 15.2 8.6 0.0

6 0.0 0.0 2.2 0.0 0.0 10.5 0.0 0.0 1.8 4.1 3.2 4.5 2.9

7 0.0 0.0 0.4 13.5 0.0 19.2 1.0 10.2 4.1 1.5 2.5 1.3 27.9

8 4.0 19.1 0.0 0.0 0.0 7.8 0.0 0.0 3.1 7.8 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 11.0 0.0 17.4 0.0 3.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0

11 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12 0.0 0.0 9.5 0.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0

14 1.3 0.9 0.0 0.0 0.0 0.0 13.5 10.8 0.0 0.0 0.0 0.0 1.1

15 44.2 9.3 10.8 3.4 70.0 0.0 8.3 3.0 52.0 9.3 0.0 0.0 0.0

16 12.0 6.4 26.6 22.2 54.5 54.8 11.5 25.4 9.2 12.3 5.7 2.2 12.4

17 2.6 0.0 9.5 12.5 15.3 65.6 18.5 2.0 9.4 0.0 2.6 12.8 16.2

18 1.0 11.8 12.3 21.6 12.9 14.3 4.0 46.7 0.8 6.2 18.8 6.8 2.2

19 0.0 0.6 44.8 5.1 0.0 0.0 36.5 17.0 14.7 2.1 0.0 26.7 9.5

20 67.8 17.9 3.8 7.6 0.2 17.2 5.5 8.0 9.9 0.0 20.5 0.5 40.0

21 0.0 0.8 0.0 15.4 0.2 6.4 0.0 14.2 0.0 0.0 0.0 0.0 0.0

22 15.0 0.0 0.0 8.5 3.1 0.0 2.2 5.4 0.0 0.0 0.0 0.0 0.0

23 0.0 0.0 0.0 13.9 0.0 8.3 1.5 0.0 0.0 10.0 0.0 0.0 10.5

24 38.5 2.3 24.8 6.5 8.0 5.4 0.0 0.8 30.0 6.2 6.4 0.0 0.0

25 13.0 7.6 0.0 9.3 10.0 10.2 2.0 3.4 0.0 0.0 3.3 0.0 0.0

26 0.0 5.1 0.0 1.9 0.3 7.4 0.0 44.7 0.0 13.6 26.8 26.3 3.9

27 24.7 55.7 12.7 18.2 30.0 0.0 35.0 22.1 13.4 13.0 62.5 4.6 89.9

28 11.0 14.7 0.0 0.0 53.6 10.2 14.0 1.0 7.0 10.6 0.0 2.5 4.9

29 4.8 2.2 0.0 0.0 4.3 15.4 0.0 0.0 21.1 0.0 3.1 0.0 0.0

30 4.4 24.8 0.0 0.0 13.6 0.0 8.0 16.5 19.1 7.3 2.4 5.2 41.9

31 0.0 0.0 0.0 12.7 1.3 0.0 2.0 3.8 0.0 0.0 0.0 0.0 7.2

Source: Central region irrigation hydrology center (http://hydro-5.rid.go.th/)

https://doi.org/10.1371/journal.pone.0265875.t002
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cause irregular precipitation, thus the dispersion of the rainfall data is larger than in the south-

ern region.

Conclusion

FGCI, Bayesian methods based on the left-invariant Jeffreys, Jeffreys rule, and uniform priors,

and the Wald and Fieller log-likelihood methods were used to construct the confidence inter-

vals for the ratio of CVs of lognormal distributions with excess zeros. Coverage probabilities

and the average lengths were used to evaluate the performance of the proposed methods.

The simulation results indicate that the coverage probabilities for all cases of the FGCI and

Bayesian methods using the uniform prior and almost all cases of the Bayesian method using

the left-invariant Jeffreys and Jeffreys rule priors were close to or greater than the target.

Table 3. Daily rainfall data from southern region on August, 2017.

Date Stations

100191 100251 100261 100271 100281 100291 100301 100311

1 2.0 0.0 4.7 13.6 2.3 2.3 14.7 11.3

2 0.0 0.0 4.8 2.2 3.9 3.9 3.2 0.0

3 6.0 0.0 3.4 4.1 0.0 0.0 8.0 2.0

4 5.0 0.0 2.9 0.0 0.0 0.0 40.8 5.0

5 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 2.6 0.0 0.0 0.0 13.9 2.1

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 30.0 0.0 0.0 0.0 7.2 1.3

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.0

12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 63.0 10.5 3.6 6.1 42.2 42.2 18.6 10.6

15 0.0 7.0 16.1 22.6 18.3 18.3 1.6 0.0

16 3.0 0.0 17.0 7.4 5.2 5.2 1.8 0.0

17 25.0 5.0 9.0 21.6 17.3 17.3 32.7 27.0

18 16.0 6.0 7.5 16.2 11.3 11.3 20.2 12.8

19 2.0 0.4 7.0 14.0 3.7 3.7 5.0 1.5

20 9.0 0.0 3.1 6.3 8.4 8.4 11.2 1.7

21 0.0 0.0 10.6 3.6 0.0 0.0 0.0 0.0

22 0.0 4.0 6.0 12.2 4.4 4.4 0.3 0.0

23 6.0 0.7 16.9 25.7 0.0 0.0 6.6 1.5

24 0.0 0.8 0.9 24.4 0.0 0.0 0.0 2.1

25 8.0 0.4 19.1 27.1 0.0 0.0 8.0 6.0

26 6.0 0.0 9.2 26.4 0.0 0.0 9.2 3.0

27 1.0 0.5 6.2 13.2 0.0 0.0 3.9 1.2

28 8.0 1.0 27.8 18.7 4.5 4.5 10.0 8.5

29 0.0 1.2 0.0 0.0 0.0 0.0 0.0 1.2

30 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0

31 0.0 0.0 12.3 0.0 0.0 0.0 0.0 0.0

Source: Southern region irrigation hydrology center (http://hydro-8.com/main/Submenu/3-RAIN/3-RAIN-02.html)

https://doi.org/10.1371/journal.pone.0265875.t003

PLOS ONE Confidence intervals for ratio of coefficients of variation of lognormal distributions with excess zeros

PLOS ONE | https://doi.org/10.1371/journal.pone.0265875 March 23, 2022 17 / 21

http://hydro-8.com/main/Submenu/3-RAIN/3-RAIN-02.html
https://doi.org/10.1371/journal.pone.0265875.t003
https://doi.org/10.1371/journal.pone.0265875


However, when considering the average lengths, the Bayesian method using the Jeffreys rule

prior based on the HPD interval produced the shortest ones in cases of small sample sizes and

a large sample size together with a small expected number of non-zero observations and a

large variance, while FGCI was optimal for the other cases. Therefore, the HPD Bayesian

method using the Jeffreys rule prior and the FGCI method are suitable for constructing confi-

dence intervals for the ratio of CVs of lognormal distributions with excess zeros.

Nam and Kwon [16] introduced the Wald-type and Fieller-type methods for the ratio of

CVs of lognormal distributions that were appropriate for medium sample sizes. In the present

study, this method was extended for a lognormal distribution with zero-inflated observations.

However, the coverage probabilities of the Wald log-likelihood method were less than the tar-

get for all cases whereas those of the Fieller log-likelihood method were greater than the target

for a few cases when the probability of non-zero values was more than half and for a large vari-

ance. Moreover, the average lengths of these methods were wider than the FGCI and Bayesian

methods. Hence, the Wald and Fieller log-likelihood methods are not recommended for

Fig 4. Density of rainfall data sets from central and southern regions in Thailand.

https://doi.org/10.1371/journal.pone.0265875.g004

Fig 5. Normal Q-Q plot of log-transformed for rainfall data sets from central and southern regions in Thailand.

https://doi.org/10.1371/journal.pone.0265875.g005
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constructing confidence intervals for the ratio of CVs of lognormal distributions with excess

zeros.

Furthermore, the confidence intervals evaluation in the empirical study is coincidental with

the simulation results.
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