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Abstract

Sterol regulatory element-binding proteins (SREBPs) are key transcription factors regulating 

cholesterol and fatty acid biosynthesis. SREBP activity is tightly regulated to maintain lipid 

homeostasis, and is modulated upon extracellular stimuli such as growth factors. While the 

homeostatic SREBP regulation is well studied, stimuli-dependent regulatory mechanisms are still 

elusive. Here we demonstrate that SREBPs are regulated by a previously uncharacterized 

mechanism through TGF-β activated kinase 1 (TAK1), a signaling molecule of inflammation. We 

found that TAK1 binds to and inhibits mature forms of SREBPs. In an in vivo setting, hepatocyte-

specific Tak1 deletion upregulates liver lipid deposition and lipogenic enzymes in the mouse 

model. Furthermore, hepatic Tak1 deficiency causes steatosis pathologies including elevated blood 

triglyceride and cholesterol levels, which are established risk factors for the development of 

hepatocellular carcinoma (HCC) and are indeed correlated with Tak1-deficiency-induced HCC 

development. Pharmacological inhibition of SREBPs alleviated the steatosis and reduced the 

expression level of the HCC marker gene in the Tak1-deficient liver. Thus, TAK1 regulation of 

SREBP critically contributes to the maintenance of liver homeostasis to prevent steatosis, which is 

a potentially important mechanism to prevent HCC development.
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INTRODUCTION

Sterol regulatory element-binding proteins (SREBPs) are a basic helix-loop-helix-leucine 

zipper (bHLH-LZ) transcription factor family, which are the central regulators of lipogenesis 

by transcriptionally activating a number of genes involved in fatty acids, triglycerides and 

cholesterol synthesis.1 Mammalian SREBP family has three isoforms, SREBP1a, SREBP1c 

and SREBP2.2 SREBP1a and SREBP1c are splicing variants and are derived from Srebf1 
gene, and SREBP2 is encoded by Srebf2. SREBP1a and SREBP1c play predominant roles 

in fatty acid and triglyceride synthesis by upregulating a series of enzymes including acetyl 

CoA carboxylase, fatty acid synthase (FASN), and steadily CoA denatures (SCD). While 

SREBP1a and SREBP1c are functionally overlapped, SREBP1c is known to be the 

predominant form in the liver. SREBP2 is selectively involved in cholesterol synthesis and 

uptake by upregulating enzymes such as HMG CoA synthase, HMG CoA reductase and 

mevalonate kinase (MVK). SREBP2 can play compensatory roles to upregulate fatty acid 

and triglyceride synthesis when SREBP1 isoforms are genetically deleted.3 Homeostatic 

SREBP activity is controlled by its unique sterol-dependent feedback loop.1 Inactive 

precursor SREBPs are localized onto the endoplasmic reticulum (ER) membrane and 

interact with polytopic SREBP cleavage activated protein (SCAP) and insulin-induced gene 

protein (Insig).4 When cholesterol levels drop, SREBPs are released from ER to the Golgi 

apparatus where SREBP undertakes protein processing to release the N-terminal bHLH-LZ 

domain. The mature bHLH-LZ SREBP enters the nucleus and binds as a dimer to SREBP 

responsive element (SRE) within promoters of its target genes. As SREBP2 activates 

cholesterol synthesis, cholesterol gradually builds up in the cell and activates negative 

feedback loop in which cells restore Insig-SCAP interaction to terminate the SREBP 

pathway.5 Mature SREBPs are constantly degraded through a ubiquitin-proteasome 

system,6, 7 which prevents sustained transcriptional activation of lipogenic genes and ensures 

a quick response to the negative feedback regulation.

In addition to the sterol-dependent feedback loop regulation, SREBP activity is modulated in 

response to extracellular stimuli. Growth factors enhance the activity of SREBP through the 

AKT-mTOR pathway, which provides membrane lipids as cell building materials to support 

cell growth.8–12 Unfolded protein-induced stress conditions, ER stress, are also known to 

activate SREBP.13, 14 in which upregulated lipogenesis supplies the ER membrane to 

alleviate ER stress conditions.15, 16 Conversely, protein kinase AMPK, which is activated by 

nutrient stress (low cellular ATP), is reported to directly phosphorylate and inhibit SREBP, 

which reduces lipogenesis to restore the ATP level by limiting energy expenditure.17 While 

the mechanism of sterol feedback loop regulation of SREBP is extensively studied, stimuli-

induced regulatory mechanisms of SREBP are still elusive.

TAK1 is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family, 

and is activated by inflammatory cytokines such as IL-1, TNFα or Toll-like receptor 

ligands.18 TAK1 signaling promotes inflammatory responses through its downstream targets 

including but not limited to transcription factors NF-κB and AP-1. Deletion of Tak1 causes 

TNFα-induced cell death followed by tissue damage and animal mortality in the epithelial 

and endothelial-specific Tak1-deficiet mouse models.19–21 Hepatocyte-specific deletion of 

Tak1 causes hepatocyte death resulting in liver injury,22–24 which is also due to TNFα-
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induced cell death.23, 25 However, unlike epithelial- or endothelial-specific deletion of Tak1, 

hepatocyte-specific Tak1 deletion does not cause acute animal mortality but induces 

hepatocellular carcinoma (HCC) around 2 months of age.22–24 Several cancer-associated 

abnormalities have been implicated in Tak1 deficiency-induced HCC, which include TGF-β-

induced fibrosis 26 and hyper-proliferation of hepatocytes.24 One reasonable expiation of 

why Tak1 deficiency induces HCC is compensatory hyper-proliferation of hepatocytes, 

which is initiated by TNFα-induced cell death. However, while ablation of TNFα signaling 

effectively rescues cell death,23, 25 it does not abolish development of HCC as described in 

this report. Thus, TNFα-induced cell death is not solely the cause of HCC, and the 

mechanism by which Tak1 deficiency induces HCC is still elusive.

HCC in the Tak1-deficient liver develops spontaneously and very quickly within several 

weeks, which is different from any abnormalities that are observed in mouse models 

harboring liver-specific deletion of NF-κB or AP-1 pathways.24, 27, 28 For example, deletion 

of NF-κB slowly induces HCC at over 12 months of age.24, 29, 30 Deletion of AP-1 

activators, JNKs, in hepatocytes enhances chemical-induced HCC but no spontaneous HCC 

has been reported.27 Thus, we postulate that TAK1 deficiency induces HCC predominantly 

not through impaired NF-κB or AP-1. Here we report an identification of SREBPs as new 

TAK1 targets. We show that Tak1 deficiency caused hepatic steatosis through dysregulation 

of SREBP. Steatosis is recognized as a liver lesion, which can progress to or facilitate HCC. 

Our results demonstrate that TAK1 regulation of SREBP is critical in liver homeostasis by 

preventing hepatic steatosis, which could further associate with the prevention of HCC.

RESULTS

Tnfr1 deletion does not effectively block tumorigenesis in Tak1-deficient liver

Hepatocyte-specific Tak1-deficient mice have been generated and characterized in three 

independent studies,22–25 which demonstrated that deletion of Tak1 in the liver induces liver 

lesions characterized by hepatocyte death and early onset of HCC within 2 months of age. 

Ablation of TNFα signaling by deletion of Tnfr1 has been demonstrated to abolish 

hepatocyte death in Tak1-deficient liver,23, 25 indicating that TNFα is the cause of Tak1-

deficient hepatocyte death. Cell death is known to induce compensatory proliferation, which 

is implicated in tumorigenesis.31 Thus, we initially anticipated that TNFα-induced cell death 

is the cause of HCC. However, we unexpectedly observed liver tumors in mice having liver-

specific deletion of Tak1 in the Tnfr1−/− background (Tak1LKO Tnfr1−/−) at 5–8 months old 

(supplementary Fig. S1A). To validate this observation, we examined the levels of fetal liver 

gene expression, including a non-cording RNA, H19, alpha-fetoprotein (Afp) and Rex3, 

which are known to be upregulated at the early stage of HCC.32–34 We previously reported 

that the Tak1LKO liver at 4–5 weeks of age does not have visually detectable tumors, but 

these HCC markers are highly increased.22 In the Tak1LKO Tnfr1−/− livers, the levels of the 

HCC markers were still upregulated compared to the wild type littermate livers, although the 

levels were slightly or moderately lower compared to littermate mice having functional TNF 

signaling (Tak1LKO Tnfr1+/−) (Fig. 1A). At 4–5 months of age, the H19 RNA level was 

highly varied but still upregulated in the Tak1LKO Tnfr1−/− liver compared to the control 
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littermate livers (supplementary Fig. S1B). Thus, TNFα-induced hepatocyte death is not 

solely the cause of tumorigenesis in the Tak1-deficient liver.

Tak1 deficiency causes liver steatosis through a previously unidentified mechanism

Tak1-deficient liver also exhibited typical features of steatosis including lipid depositions 

(supplementary Fig. S2), which is consistent with a recent report by Seki’s group.35 The 

levels of both blood triglycerides and cholesterol were upregulated in Tak1LKO mice (Fig. 

1B, 1C supplementary Fig. S3). Importantly, we found that deletion of Tnfr1 did not reduce 

the levels of blood triglycerides or cholesterol (Fig. 1B and 1C). Given that Tnfr1 deletion 

completely blocks the hepatocyte death in Tak1LKO mice,25 the hepatic steatosis is 

independent on TNF-induced cell death in Tak1LKO liver. Many cellular processes not 

limited to excess lipogenesis or impaired breakdown of lipids have been implicated in 

hepatic steatosis.36, 37 Accordingly, a diverse set of cell signaling molecules are known to be 

involved in the development of steatosis including well-known targets of TAK1, i.e. NF-κB 

and JNK. Liver-specific deletion of NF-κB or JNK causes hepatic steatosis.29, 38 AMP-

activated protein kinase (AMPK) is also a target of TAK1,39 and was reported to inhibit 

lipogenesis.17 An earlier study reports that deletion of Tak1 reduces AMPK activation in 

cultured hepatocytes.35 Thus, we next examined whether these targets of TAK1 were 

impaired in the Tak1-deficient liver in vivo. Unexpectedly, we found that activities of NF-κB 

and JNK were not pronouncedly altered by deletion of Tak1 in the liver (supplementary Fig. 

S4). Furthermore, the level of AMPK activity was not reduced but rather increased in the 

Tak1-deficient liver (supplementary Fig. S4). Thus, these TAK1 targets are unlikely to be 

involved in the steatosis phenotype of the Tak1-deficient liver. These results lead us to 

explore new targets of TAK1.

TAK1 interacts with and phosphorylates SREBPs

We previously performed a series of yeast-two hybrid screenings using TAK1 protein as a 

bait.40, 41 Among the identified but not yet characterized binding partners of TAK1, we 

focused on SREBP2 as a potential target of TAK1, which could be involved in liver steatosis 

in the Tak1-deficient liver. The N-terminal region of mouse SREBP2 amino acid residues 

positioned between 114 and 395 was isolated as a binding region of TAK1, which is well 

conserved among SREPB1a, SREBP1c and SREBP2 (45% identical) (Fig. 2A). The TAK1 

binding region of SREBP was mapped between the transactivation domain and the cleavage 

sites of SREBP, and included the entire region of bHLH-ZF domain, which covers most 

parts of the mature SREBPs (Fig. 2A). Thus, we examined whether mature forms of 

SREPB1a, SREBP1c and SREBP2 interact with TAK1 using the overexpression system in 

human embryonic kidney 293 cells. Exogenously expressed TAK1 was efficiently pulled 

down by immunoprecipitation against SREBPs (Fig. 2B, top panel), whereas endogenous 

TAK1 was moderately precipitated (2nd panel). Endogenous TAK1 may be pre-occupied 

with endogenous TAK1 binding partners including SREBPs, which might cause the less 

efficient co-precipitation of endogenous TAK1 with exogenously expressed SREBPs. 

Reciprocally, all matured forms of SREBP isoforms were pulled down with TAK1 (Fig. 2C), 

although SREBP2 co-precipitated TAK1 with a lesser efficiency compared to SREBP1a and 

SREBP1c. To examine the interaction between TAK1 and SREBPs under the physiological 

settings, we also conducted co-immunoprecipitation analysis using proteins from a human 

Morioka et al. Page 4

Oncogene. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HCC cell line, HepG2, and the mouse liver. Endogenous full-length SREBPs were co-

precipitated with TAK1 (Fig. 2D and supplementary Fig. S5,). These results suggest that 

TAK1 interacts with SREBP in cells, and raise the possibility that TAK1 participates in 

modulation of SREBPs. Because TAK1 is a protein kinase, TAK1 potentially modulates 

SREBPs through phosphorylation. To test whether TAK1 phosphorylates SREBPs, we 

conducted an in vitro kinase assay. Activated TAK1 was prepared from HEK293 cells 

overexpressing the catalytic domain of TAK1 (TAK1ΔC) together with TAK1-binding 

protein 1 (TAB1), which is an activating subunit of TAK1.42 Bacterially purified 

recombinant GST-SREBP1a (mature form) was incubated with the TAK1-TAB1. SREBP1a 

was phosphorylated when incubated with activated TAK1, which was reduced in the 

presence of a selective inhibitor of TAK1, 5Z-7-Oxozeaenol (5Z) (Fig. 2E). Thus, TAK1 is a 

potential modulator of SREBPs through binding to and phosphorylating SREBPs.

TAK1 inhibits SREBPs

We next examined whether TAK1 modulates activity of SREBPs. We co-expressed TAK1 or 

the kinase-negative form of TAK1(K63W) together with mature forms of SREBPs. We 

found that the protein levels of all SREBP isoforms were greatly increased by co-expression 

of catalytically active TAK1 (Fig. 3A), while kinase-dead TAK1, TAK1(K63W), did not 

alter the expression levels of SREBPs (Fig. 3B). The transfection efficiencies monitored by 

co-transfected a constitutively expressed reporter were comparable in all samples, indicating 

that increased amounts of SREBPs were not due to a higher transfection efficiency (Fig. 3A, 

bottom graph). An earlier study demonstrates that inhibition of the transcriptional activity of 

SREBP blocks proteasome-dependent degradation of SREBP,6 which is one of the feedback 

regulations to maintain the homeostatic level of SREBP activity. Thus, catalytically active 

TAK1 may inhibit SREBP activity. Indeed, we found that transcriptional activity of SREBPs 

monitored by a sterol regulatory element (SRE)-driven reporter expression was greatly 

diminished (Fig. 3C). By contrast, expression of catalytically inactive TAK1 highly 

increased transcriptional activity of all SREBPs (Fig. 3D). TAK1(K63W) is known to act as 

a dominant negative inhibitor by preventing autophosphorylation of TAK1.42, 43 Thus, 

endogenous TAK1 is likely to play an inhibitory role in SREBP activation. These results 

demonstrate that TAK1 binds to and inhibits mature SREBPs, and this regulation depends on 

its kinase activity. To obtain mechanistic insights into TAK1 regulation of SREBPs, we 

tested the possibility that TAK1 inhibits nuclear localization of mature SREBPs. HEK293 

cells expressing the mature form of SREBP1a with and without TAK1 were fractionated into 

the nuclear and non-nuclear cytoplasmic fractions, and the localization of SREBP was 

analyzed by immunoblotting (supplementary Fig. S6A). We note here that, since TAK1 

highly upregulates the amounts of SREBPs as shown in Fig. 3A, the vector amounts used for 

expression of SREBP with and without TAK1 co-expression were adjusted to achieve the 

similar expression levels of SREBP between samples. The mature form of SREBP1a was 

mostly localized to the nucleus, and overexpression of TAK1 did not alter the SREBP 

localization (supplementary Fig. S6A). We also examined the localization of SREBP2 in 

wild-type and Tak1LKO liver. SREBP2 was predominantly localized to the nucleus, and we 

found no observable alteration in the localization of SREPB2 by Tak1 deficiency 

(supplementary Fig. S6B). These results indicate that TAK1 inhibits transcriptional activity 

of SREBPs not by blocking their nuclear localization.
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TAK1 is a regulator of SREBP

To investigate whether TAK1 modulates SREBP in the physiological settings, we examined 

whether downregulation of Tak1 alters endogenous SREBP activity. We lowered the TAK1 

protein level by utilizing three independent siRNAs targeted against TAK1 mRNA, and 

transcriptional activity of endogenous SREBP was examined in 293 cells. The knockdown 

of TAK1 reduced the TAK1 protein ranging from moderately to effectively (Fig. 4A). Under 

the normal culture condition, SREBP activity was found to be low and was not detectably 

altered by knockdown of TAK1 (Fig. 4B). However, when endogenous SREBP was 

activated by depleting cellular cholesterol using methyl-β-cyclodextrin, SREBP activity was 

augmented at higher levels in TAK1-knockdown cells compared to control cells (Fig. 4B). 

This suggests that endogenous TAK1 inhibits SREBP. To further examine whether TAK1 

modulates SREBP in hepatocytes, the human HCC cell line, HepG2, was utilized. TAK1 

was knocked down using an shRNA targeted against TAK1 (Fig. 4C, right panels), and 

transcriptional activity of exogenously expressed SREBPs was monitored by the reporter 

assay. Ablation of TAK1 was found to upregulate SREBP activity in HepG2 cells (Fig. 4C). 

These data demonstrate that endogenous TAK1 suppresses SREBP activity.

TAK1 suppresses SREBP in the liver

Taking the fact that the liver is the central tissue of lipid synthesis, our results above 

prompted us to connect between TAK1 regulation of SREBP and Tak1 deficiency-induced 

hepatic steatosis. We examined whether impaired TAK1-dependent SREBP suppression is 

associated with steatosis in the Tak1-deficient liver. We first examined endogenous liver 

SREBP activity by monitoring the specific binding ability to the sterol regulatory element 

consensus sequence (electron mobility shift assay). The SREBP DNA binding activity was 

increased in Tak1LKO liver compared to control littermate livers (Fig. 5A lanes 1–6). 

Consistent with the increased SREBP activity, SREBP target genes including Fasn, Scd1, 

Mvk1 and glucose-6-phosphate dehydrogenase (G6pd) were upregulated in the Tak1-

deficient liver (Fig. 5B). SREBP is known to be self-regulated, and SREBP gene (Srebf) 
expression showed a trend of increase in Tak1-deficient liver (Supplementary Fig. S7). To 

investigate whether increased SREBP activity is causally associated with steatosis in the 

Tak1-deficient liver, we treated Tak1LKO mice with an inhibitor of SREBP, fatostatin, which 

binds to SCAP and inhibits translocation of SREBP from the endoplasmic reticulum to the 

Golgi apparatus.44 Treatment of fatostatin in Tak1LKO mice reduced the levels of blood 

triglyceride and cholesterol (Fig. 5C and 5D). These results suggest that TAK1 regulation of 

SREBP is critical to prevent hepatic steatosis. Finally, we ask whether the hepatic steatosis 

by activated SREBP is causally associated with HCC in Tak1LKO mice. We examined the 

level of HCC marker, H19, expression in the fatostatin treated mouse livers. We found that 

the reduced SREBP activity by fatostatin was correlated with the lower expression levels of 

the HCC marker (see Fig. 5A, bottom numbers, lanes 7 and 8), which suggest a potential 

causal association between activation of SREBP and HCC in Tak1LKO mice.

DISCUSSION

SREBP is the master regulator of lipogenesis, and plays an indispensable role to maintain 

the proper levels of cellular lipids including triglycerides and sterols though the highly 
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sophisticated proteolytic processing mechanism.1 SREBP is also modulated upon growth 

stimulation, in which growth factor-PI3K-mTOR pathway upregulates SREBP activity 

through promoting nuclear localization of SREBP.8–12 Activated SREBP provides 

triglycerides and sterols to build new cell membranes. In the current study, we show that 

TAK1 inhibits mature SREBP, and impairment of this regulation induces hepatic steatosis. 

TAK1 is the inflammatory signaling intermediate, and is activated when cells are exposed to 

danger signals including inflammatory cytokines and microorganisms.18 Inflammation and 

lipid homeostasis is closely associated.45 Chronically inflamed conditions induce lipolysis in 

the adipose tissue and upregulate lipid biogenesis in the liver.46, 47 We show here that 

ablation of TAK1 disrupts normal lipid homeostasis by increasing SREBP activity. The liver 

is at the front line to constantly deal with exogenous stressors such as moieties from 

microorganisms and chemicals, many of which are inflammatory stimuli and activators of 

TAK1. Thus, hepatic TAK1 is likely to be constantly activated by these stressors, which may 

be one of the critical mechanisms by which normal liver limits their lipogenesis.

In the current study, we identified SREBPs as novel binding partners of TAK1, and 

demonstrate that TAK1 inhibits SREBP activity. Although the detailed molecular 

mechanism is still elusive, our study shows several interesting aspects in TAK1 regulation of 

SREBP. Conventionally, maturation (processing) and subsequent nuclear localization of 

SREBP are the keys to SREBP activation.1 However, we found that SREBP nuclear 

localization is not affected by either activation or ablation of TAK1 (supplementary Fig. S6). 

In contrast, we observed increased ability of SREBP to bind sterol-responsive element DNA 

sequence in the Tak1-deficient liver (Fig. 5A), suggesting that TAK1 modulates SREBP 

DNA binding. We also demonstrate that TAK1 can phosphorylate SREBP using an in vitro 
kinase assay. Furthermore, we found that endogenous TAK1 binds to full-length SREBP. 

Collectively, one possible scenario of TAK1 regulation of SREBP is that TAK1 binds to and 

phosphorylates ER- or Golgi-localized full-length SREBP in the cytoplasm, which does not 

prevent SREBP maturation or translocation into the nucleus, but the TAK1 modulated 

(phosphorylated) SREBPs possess diminished transcriptional activity due to their reduced 

ability of DNA binding. Alternatively or additionally, TAK1 modulation may block 

transcriptional activity of SREBP by modulating interaction between SREBPs and 

transcriptional co-factors such as CBP and p300.48, 49 Further investigations to determine 

the mechanism for TAK1 regulation of SREBP will enhance our understanding in the 

molecular link between inflammation and lipogenesis.

Hepatic steatosis is a common liver disorder, which is induced by excess alcohol 

consumption, hepatitis viruses and metabolic syndromes. The mechanisms for development 

of hepatic steatosis are not yet entirely clear, but are clearly associated with elevated and 

chronic exposures to stressors. As protein kinase signaling pathways are generally regulated 

by negative feedback loops mediated by activation or induction of protein phosphatases,50 

TAK1 signaling is normally negatively regulated by sustained stimulation.51, 52 Thus, 

chronic exposures to stressors may not chronically activate but rather impair TAK1 

signaling. Given that ablation of TAK1 causes hepatic steatosis, one possible mechanism for 

hepatic steatosis is impaired TAK1 signaling under chronically stressed conditions, which 

warrants further investigations of potential causal relationships among chronic stress, TAK1 

activity and hepatic steatosis.
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Hepatic steatosis is recognized as a liver lesion, which could lead to cirrhosis, fibrosis and 

ultimately HCC. These pathogenic processes from steatosis to HCC normally take a 

considerable time in humans, and excess lipogenesis alone by overexpression of mature 

SREBP1c does not result in HCC in the mouse model.53–55 Hyper-activation of PI3K-

mTOR pathway by liver-specific deletion of PTEN effectively induces steatosis through 

activation of SREBP but develops HCC very slowly, which takes more than 9 months in the 

mouse model.56 These suggest that not only activation of SREBP but also some additional 

aberrations are likely to be required for effective development of HCC. Tak1-deficient liver 

develops steatosis, fibrosis and HCC within 2 months,23, 24 which is exceptionally effective; 

even more effective compared to the HCC models induced by transgenic expression of 

oncogenes such as K-Ras and β-catenin.57 Thus, it is unlikely that steatosis alone is the 

cause of HCC in Tak1-deficient liver. Constantly occurring cell death induces inflammation, 

which is associated with genetic instability and quick development of HCC.58 Tak1 
deficiency induces TNFα-dependent cell death in the liver.23, 25 Combination of steatosis 

and chronic injury due to constantly occurring cell death may be the cause of HCC in Tak1-

deficient liver. However, while ablation of TNFα signaling could rescue hepatocyte death in 

Tak1-deficient liver, it did not abolish HCC development (see Fig. 1A). Thus, TNFα-

induced cell death facilitates but is not causally associated with HCC. It is noteworthy that a 

non-coding RNA H19 is highly expressed in Tak1-deficient liver even at 4–5 weeks of age 

when HCC is not yet clearly observed. Importantly, the level of H19 is only moderately 

reduced by deletion of Tnfr1, suggesting that H19 expression is not the result of cell death. 

H19 is considered as a marker of cell de-differentiation, which is known to be associated 

with tumor metastasis.32, 33, 59 Thus, TAK1 may be involved in regulatory processes of 

hepatocyte differentiation. Nonetheless, TAK1-deficiency induced HCC is unique, which 

develops quickly but still shares key features of human HCC including steatosis and fibrosis, 

and warrants future studies.

MATERIALS AND METHODS

Mice and cell culture

Tak1-floxed (Tak1flox/flox) mouse was previously described.60 Alb.Cre transgenic and 

Tnfr1−/− C57BL/6 mice were obtained from the Jackson Laboratories.61, 62 All strains used 

were backcrossed at least 7 times to C57BL/6. Both male and female mice were used. 

Inhibition of SREBP was achieved by intraperitoneal (ip) injection of fatostatin (Millipore) 

(10 mg/kg mouse weight per day) for 30 consecutive days. All animal experiments were 

conducted with the approval of the North Carolina State University Institutional Animal 

Care and Use Committee. All efforts were made to minimize animal suffering. Human 

embryonic kidney (HEK) 293 and HepG2 cells were cultured in DMEM with 10% bovine 

growth serum (Hyclone) and penicillin-streptomycin at 37°C in 5% CO2.

Antibodies, reagents, plasmids and siRNAs

Anti-TAK1 antibody was described previously.63 Anti-SREBP1 (2A4) (Santa Cruz 

Biotechnology), anti-SREBP2 (ab30682) (Abcam), anti-AMPK (Cell Signaling 

Technology), anti-phospho-AMPK (Thr172) (40H9) (Cell Signaling Technology), anti-

JNK1/2 (sc571) (Santa Cruz Biotechnology), anti-phospho-JNK (Thr183/Tyr185) (Cell 
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Signaling Technology), anti-phpspho-p38 (Thr180/Tyr182) (D3F4) (Cell Signaling 

Technology), anti-p38 (N-20) (Santa Cruz Biotechnology), anti-p65 NF-κB (C20) (Santa 

Cruz Biotechnology), anti-phospho-p65 (Ser276) (Cell Signaling Technology), anti-β-actin 

(AC15) (Sigma), anti-lamin B (Ab-1) (Millipore), anti-lactate dehydrogenase (AB1222) 

(Millipore), anti-HA (HA.11) (Covance) and anti-FLAG (Sigma, M2) were used. The 

reagents used were methyl-β-cyclodextrin (Sigma), lipopolysaccharide (LPS) (Sigma, from 

Salmonella minnesota) and Oil-red-O (Sigma). DsRed-tagged TAK1 expression vector and 

other TAK1 expression plasmids were described previously 25. FALG-tagged SREBP 

expression vectors were from Addgene.64 To generate GST-tagged SREBP1a expression 

plasmid, FLAG-SREBP1a was subcloned into a pGEX vector (GE Healthcare). SRE-driven 

luciferase reporter (SRE-luciferase) and control EF1α promoter-driven renilla luciferase 

(EF1a-renilla luciferase) constructs were used for the transcription reporter assay.65, 66 A 

retrovirus vector expressing shRNA targeted against TAK1 (the same targeted sequence as 

TAK1 siRNA#1 described below) was described previously.67 TAK1 and non-targeting 

control siRNAs were obtained from Sigma (TAK1 siRNA#1, 5'-

GAGAUCGACUACAAGGAGA-3'; TAK1 siRNA#2, 5'-

GGCAAAGCAACAGAGUGAAUCUGGA-3'; TAK1 siRNA#3, 5’-

GAGUGCUGACAUGUCUGAAAUAGAA-3' and Non-targeting siRNA, 5’-

UUCUCCGAACGUGUCACGU-3').

Immunoblotting

Whole cell extracts were prepared using an extraction buffer containing 20 mM HEPES (pH 

7.4), 150 mM NaCl, 12.5 mM β-glycerophosphate, 1.5 mM MgCl2, 2 mM EGTA, 10mM 

NaF, 2 mM DTT, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 20 μM aprotinin, 

and 0.5% Triton X-100. Cell extracts were resolved on SDS-PAGE and transferred to 

Hypond-P membranes (GE Healthcare). The membranes were immunoblotted with various 

antibodies, and the bound antibodies were visualized with horseradish peroxidase-

conjugated antibodies against rabbit or mouse IgG using the ECL Western blotting system 

(GE Healthcare).

Immunoprecipitation

HEK293 cells were transfected with plasmids using the standard calcium phosphate method. 

Cell lysates were prepared in extraction buffer described above. DsRed-tagged TAK1, 

FLAG-tagged SREBP were immunoprecipitated with anti-TAK1 or anti-FLAG antibodies 

for overnight. The resulting immune complexes were washed with extraction buffer three 

times. Samples were resolved on SDS-PAGE and exposed to autoradiographic films.

Subcellular fractionation

Nuclear Extract Kit (Active Motif) was used for cytoplasmic and nuclear fractionation. 

Briefly, cells were lysed in an ice-cold hypotonic buffer, and the lysates were centrifuged 

and separated into the supernatant (the cytoplasmic fraction including organelles) and the 

pellets. Nuclear proteins were extracted form the nuclei-containing pellet.
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In vitro kinase assay

HEK293 cells were transfected with expression vectors for HA-tagged catalytic domain of 

TAK1 (TAK1ΔC) together with TAB1 using the standard calcium phosphate method. Cell 

lysates were prepared in the extraction buffer described above. HA-TAK1ΔC-TAB1 complex 

was immunoprecipitated with anti-HA antibody for 2 h at 4°C. TAK1 was pre-activated by 

incubation in a kinase buffer (10 mM Hepes, pH 7.4, 1 mM DTT, and 5 mM MgCl2) with 1 

mM ATP for 30 min at 30°C and washed once with the kinase butter. The TAK1ΔC protein 

and bacterially purified GST-tagged mature form of SREBP1a were mixed and incubated in 

the kinase buffer supplemented with 200 μM ATP and 5 μCi γ-[32P]ATP for 30 min at 30°C. 

Samples were resolved on SDS-PAGE. Proteins were visualized by coomassie brilliant blue 

staining and the gel was exposed to autoradiographic films.

Quantitative real time PCR Analysis

Total RNA was isolated from the liver using an RNeasy kit (Qiagen) and transcribed into 

cDNA using MultiScribe™ reverse transcriptase (Life Technologies). Expression levels of 

Tak1, Srebp and SREBP target genes were determined by quantitative real time PCR (qPCR) 

and normalized to the level of Gapdh. The following primers were used:

Srebp1a-forward, 5'-GGCCGAGATGTGCGAACT-3'; Srebp1a-reverse, 5’-

TTGTTGATGAGCTGGAGCATGT-3’;

Srebp1c-forward, 5'-GGAGCCATGGATTGCACATT-3'; Srebp1c-reverse, 5’-

GGCCCGGGAAGTCACTGT-3’;

Srebf2-forward, 5'-GGATCCTCCCAAAGAAGGAG-3'; Srebf2-reverse, 5’-

TTCCTCAGAACGCCAGACTT-3’;

Scd1-forward, 5'-CTGACCTGAAAGCCGAGAAG-3'; Scd1-reverse, 5’-

GCGTTGAGCACCAGAGTGTA-3’;

Fasn-forward, 5'-AAGGCTGGGCTCTATGGATT-3'; Fasn-reverse, 5’-

GGAGTGAGGCTGGGTTGATA-3’;

vk1-forward, 5'-GGGACGATGTCTTCCTTGAA-3'; Mvk1-reverse, 5’-

GAACTTGGTCAGCCTGCTTC-3’;

G6pd-forward, 5'-CCTACCATCTGGTGGCTGTT-3'; G6pd-reverse, 5’-

TGGCTTTAAAGAAGGGCTCA-3’;

Tak1 exon 2-forward 5’-AGGTTGTCGGAAGAGGAGCT-3’; Tak1 exon 2-

reverse 5’-CTCCACAATGAAAGCCTTCC-3’; and

Gapdh-forward, 5'-GAAGGTCGCTGTGAACGGA-3'; Gapdh-reverse, 5'-

GTTAGTGGGGTCTCGCTCCT-3'.

Measurement of plasma Triglyceride and Cholesterol level

Peripheral blood was collected from the facial vein into 1.5 ml tube containing 1 μl of 0.5 M 

EDTA and centrifuged at 1000g for 10 min. Supernatant was kept as plasma. Plasma 

triglyceride and cholesterol amount was determined by triglyceride measurement kit (Wako) 
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and cholesterol measurement kit (Life Technologies), respectively. The assay was conducted 

according to the manufactured protocols.

Oil-Red-O staining

Oil-Red-O staining was conducted on frozen section. Briefly, freshly cut frozen sections 

were dried using hair-dryer for 30 min. Sections were then fixed with 4% paraformaldehyde 

followed by wash with H2O. After the rinse with 60% isopropanol, sections were incubated 

in Oil-Red-O solution (5 mg/ml in 60% isopropanol) for 15 min. Samples were washed with 

60% isopropanol and were counter stained with Hematoxylin.

Electrophoresis mobility shift assay (EMSA)

Oligonucleotides for NF-κB (5′-AGTTGAGGGGACTTTCCCAGG-3′) was purchased 

from Promega. Oligonucleotides for sterol regulatory element (SRE), wild type (5’-

TTTGAAAATCACCCCACTGCAAACTCC-3’) and mutant (5’-

TTTGAAAGTCAAACCGTTGCAAACTCC-3’) sterol regulatory element (SRE) were 

synthesized.68, 69 The binding reaction contained 32P radiolabeled oligonucleotide probe, 10 

μg of cell extracts, 4% glycerol, 1mM MgCl2, 0.5mM EDTA, 0.5 mM DTT, 50 mM NaCl, 

10 mM Tris-HCl (pH 7.5), 500 ng of poly (dI-dC) (GE Healthcare), and 10 μg of bovine 

serum albumin to a final concentration of 15 μl. The reaction mixture were incubated at 

25oC for 30 min, separated by 5% (w/v) polyacrylamide gel, and visualized by 

autoradiography. The NF-κB band was confirmed by super-shift using anti-p65 NF-κB. 

Since antibodies against SREBPs are not suitable for super-shift of mouse SREBP, the 

SREBP band was confirmed by a completion with wild type and mutant SRE.

Immunohistochemistry

Immunohistochemistry was performed on formalin-fixed liver sections using anti-SREBP2 

(Abcom). The bound antibodies were visualized with biotin-conjugated secondary antibody 

to rabbit IgG using the ABC/DAB reagents according to the manufacturer's protocol (Vector 

Laboratories). Sections incubated with non-immunized IgG are served as controls. Images 

were acquired on an upright microscope (BX41; Olympus). Scale bars, 20 μm.

Statistics

Results are shown as the mean ± standard error or standard deviation as indicated. No 

statistical methods were used to predetermine sample size. Statistical significance was 

determined using a two-tailed unpaired Student’s t test or one-way ANOVA (Tukey's post 

hoc test).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deletion of Tnfr1 does not prevent tumorigenesis or steatosis in the Tak1-deficient liver
(A) The liver was isolated from Tak1LKO (LKO) or control no-Cre (WT) littermate in the 

background of Tnfr1−/− or Tnfr1+/− mice at 6 weeks of age, and RNA was analyzed by the 

quantitative real time PCR. All data points and means ± SEM of H19, Afp and Rex3 mRNA 

levels relative to Gapdh are shown. *, p < 0.05; **, p < 0.01; NS, not significant (two-tailed 

unpaired Student’s t test). (B, C) Blood was collected from the facial vein of the same mice 

as described (A), and the levels of plasma triglyceride and cholesterol were determined. All 

data points and means ± SEM are shown. *, p < 0.05; ***, p < 0.001, NS, not significant 

(one-way ANOVA).
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Figure 2. TAK1 interacts with SREBP
(A) Structure of SREBPs. The region of TAK1 binding domain isolated from the yeast two-

hybrid screening is denoted by encompassing amino acid residues of SREBP2. (B, C) 

HEK293 cells were transfected with expression vectors for HA- (B) or DsRed- (C) tagged 

TAK1 and FLAG-tagged mature forms of SREBPs (N-terminal region), and proteins from 

cell lysates were immuneprecipitated by anti-FALG (B) or anti-TAK1 (C) as well as non-

immunized control IgG. Immunoprecipitates were analyzed by immunoblotting. The 

amounts of input proteins are also shown in bottom two panels. Shorter (B, top panel) and 

longer (B, second panel) exposures are shown to visualize less efficiently co-precipitated 

HA-TAK1 (3rd lane) and endogenous TAK1 (D) Cytoplasmic fractions including 

cytoplasmic organelle fractions from the mouse liver were immunoprecipitated by anti-

TAK1 or control IgG. Immunoprecipitates were analyzed by immunoblotting. Each lane 

(lane 1 and 2) represents a sample from an individual mouse. (E) HEK293 cells were 
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transfected with expression vectors for HA-tagged catalytic domain of TAK1 (TAK1ΔC) 

together with TAB1. HA-TAK1ΔC was purified from protein extracts by 

immunoprecipitation, and incubated with bacterially purified GST-tagged mature SREBP1a 

in the presence (+) or absence (−) of 5Z-7oxozeaenol (5Z) (500 nM). Phosphorylation of the 

proteins was detected by autoradiography. The protein amounts are shown by coomassie 

brilliant blue (CBB) staining.
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Figure 3. TAK1 inhibits transcription activity of SREBP
HEK293 cells were transfected with the SREBP reporter (SRE-luciferase) and expression 

vectors for TAK1 (DsRed-TAK1) (A and C) or a kinase-dead form of TAK1 [TAK1(K63W)] 

(B and D) and mature forms of SREBP together with a constitutive promoter-driven renilla 

luciferase reporter. (A, B) The levels of transfected SREBPs and TAK1 were analyzed by 

immunoblotting. (C) SREBP-dependent transcriptional activity was determined by 

luciferase activity. Relative SREBP activity normalized to the protein levels of transfected 

SREBPs are shown. Means ± SD. n = 3; ***, p<0.001 (two-tailed unpaired Student’s t test). 

(D) SREBP-dependent transcriptional activity normalized to renilla luciferase activity is 

shown. Means ± SD ; n = 3; ***, p < 0.001 (one-way ANOVA).
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Figure 4. Ablation of TAK1 augments SREBP activity
(A, B) HEK293 cells were treated with three independent siRNAs targeted against TAK1, 

and SRE-luciferase and control EF1α-renilla luciferase vectors were subsequently 

transfected at one-day post siRNA introduction. Cells were left untreated or treated with 

methyl-β-cyclodextrin 6 h before the cell harvesting. Proteins were analyzed by 

immunoblotting (A). Luciferase activity is normalized to renilla luciferase activity (B). 

Means ±SD; n = 3; ***, p < 0.001 (one-way ANOVA). (C) A vector expressing small 

hairpin RNA targeted against TAK1 was transfected into HepG2 cells. Cells were 

subsequently transfected with the expression vectors for mature SREBPs and the same 
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reporters used in (A, B). Proteins were analyzed by immunoblotting to determine the protein 

level of TAK1 (right panes). The level of TAK1 was not altered by the 2nd transfections. 

Luciferase activity is normalized to renilla luciferase activity. Means ±SD; n = 3; **, p <0 .

01; ***, p < 0.001 (two-tailed unpaired Student’s t test).

Morioka et al. Page 21

Oncogene. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Deletion of Tak1 upregulates SREBP in the liver
(A) 4–6 weeks old control (Tak1flox/flox no-Cre) and Tak1LKO mice were treated with or 

without fatostatin for 30 days. Liver extracts were analyzed by electron mobility shift assay 

(EMSA). 100 fold excess cold wild type (WT) or mutant (MT) oligonucleotides described in 

Materials and Methods were added to the reaction mixture to examine the specific binding 

of the band (lane 9 and 10). Lanes indicated by a symbol # used the protein extract from the 

same mouse. The relative mRNA levels of H19 relative to the levels of Gapdh are shown in 

the bottom of the panels. (B) Livers were isolated from 5–6 month old control (Tak1flox/flox 

no-Cre) and Tak1LKO mice, and the mRNA levels of SREBP target genes were analyzed. 

Means ± SEM; n = 3; *, p < 0.05; **, p < 0.01; ***, p < 0.001 (two-tailed unpaired 

Student’s t test). (C, D) Blood was collected from the control (Tak1flox/flox no-Cre) and 

Tak1LKO mice used in the experiment shown in (A). Blood triglyceride and cholesterol were 

determined. All data points are shown in the box and whisker plots: median and distribution 

of 50% of values are shown in the box: whiskers indicate distribution of minimum and 
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maximum values. Asterisks indicate means. Control (Tak1flox/flox no-Cre), n = 7; Tak1LKO, 

n = 7; Tak1LKO fatostatin treated, n = 8; *, p < 0.05; ***, p < 0.001 (one-way ANOVA).
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