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Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability
worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human
health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is
the most convenient treatment, it has been delimited due to scarcity of donors and the patient’s conditions. However, tissue-
engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper
is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly
for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially
from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be
focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured
in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue
engineering.

1. Introduction

Many recent studies have focused on cell therapies, scaffold
based and cell based, for cardiovascular diseases primarily
because these pathologies still rank among the top ten
leading causes of mortality and morbidity worldwide. Annu-
ally, thousands of people die due to myocardial infarction,
congestive heart failure, stroke, valvular heart diseases,
and vascular diseases. According to the recent report of
the American Heart Association, in 2008, an average of
one death occurred every 39 seconds accounting to more
than 2200 American deaths due to cardiovascular diseases
(CVD) each day, with greater rate among black than white
Americans [1]. Bearing in mind that the administration of
various drugs caused a number of chemical reactions in the
body and even led to autoimmune complications instead
of treating the primary disease, it is therefore noteworthy

that advancements on regenerative medicine and tissue
engineering are highly beneficial. Tissue engineering and
regenerative medicine do not only offer fast recovery but also
lessen the medical and economic burden among the patients
suffering from cardiovascular diseases.

At present, a vast of information and techniques on
biofabrication and stem cell biology have been established;
however, the effectiveness based on the clinical applications
of these techniques remains to be elucidated. This paper will
highlight the updates of regenerative medicine and tissue
engineering techniques which addressed cardiovascular dis-
eases. In particular, this will include the evolution of scaffold
and scaffold-free cell therapies for the blood vessel defects
as well as the various stem cells used for engineering blood
vessels. The updates on tissue engineering for heart valve
and the myocardium will be reviewed subsequent to this
paper.

mailto:jeongik@konkuk.ac.kr


2 Journal of Biomedicine and Biotechnology

2. History of Tissue Engineering for
Cardiovascular Tissues

It is globally known that in the developed countries, cardi-
ovascular diseases are the primary causes of mortality and
morbidity. Based on the review done by Zaragosa et al., both
genetic and environmental factors are associated with the
cardiac and vascular complications. Therefore, these com-
plex multifactorial pathologies are very difficult to prevent
[2]. Although prior papers emphasized that new drugs and
innovative devices have improved quality of life for patients
inflicted with cardiovascular diseases, they have not necessar-
ily reduced the mortality and morbidity rate [3]. Then, organ
transplantation provided a new therapeutic path. Transplan-
tation offers an immediate “cure” by replacing the damaged
tissues or organs with normally functional substitutes [4].
Since it is the preferred treatment for organ failure, there
is a growing need for transplantable human organs, either
autologous or from certain donors [5]. However, there are
two major lifelong obstacles that have restricted organ trans-
plantation, namely, the critical paucity of donors and the
high risk of graft rejection [6]. In fact, successful treatment
to cardiovascular diseases has been limited due to lack of
suitable autologous tissue to restore injured cardiac muscles
or to serve as vascular conduits to replace or bypass diseased
or occluded vessels. On the other hand, the immunosuppres-
sive agents bridged the mortality and morbidity of the organ
failure to the risk of infection, cancer, and cardiovascular
diseases [3, 4]. Hence, tissue engineering has been projected
as an alternative treatment to these problems by replacing the
damaged tissue or organ function with constructs which are
biofabricated based on the required tissue or organ features
[3]. In particular, cardiovascular tissue engineering is more
valuable and relevant compared to other fields of tissue engi-
neering mainly because it increases life expectancy, preserve,
the extremities, and caters a vast number of patients [7].

Tissue engineering is an interdisciplinary field that app-
lies the principles of engineering and life sciences towards
the development of functional substitutes for damaged tis-
sues. It is anchored on the fundamental concept of utilizing
the body’s natural biological response to tissue damage in
conjunction with engineering principles [8, 9]. In addition,
tissue engineering is designed to produce biomimetic con-
structs, which resemble normal tissues, to replace the damage
tissues. Moreover, the main objective of tissue engineering
is the restoration of function through the delivery of living
elements which become integrated in the patient [10].

Tissue engineering strategies have three basic compo-
nents: firstly, the cells or source which must express the
appropriate genes and maintain the appropriate phenotype
in order to preserve the specific function of the tissue [11],
secondly, the bioreactive agents or signals that induce cells
to function, and thirdly, the scaffolds that house the cells
and act as substitute for the damaged tissue [12]. The source
may either be embryonic stem cells (ESC) or adult stem cells
(ASC) in origin, the scaffolds may be categorized as synthetic,
biological, or composite, and the signals may include growth
factors/cytokines, adhesion factors, and bioreactors [13].
In many studies, the tissue engineering components have

been considered and explored focusing on single compo-
nent only (S component only- source, scaffold, or signal
only), or in combination (S-S components- Scaffold/Signal,
Scaffold/Source, and Signal/Source), or altogether (S-S-S-
Source, Scaffold, and Signal) (Figure 1).

Currently, the evolution of bottom-up and top-down
approaches (Figure 2) in tissue engineering has been con-
tinuously investigated by many groups as the most promising
tissue engineering approaches. The bottom-up approach
usually employs implantation of precultured cells and syn-
thetic scaffold complexes into the defect area. The cells
or source, generally isolated from host target tissues, are
expanded in vitro and preseeded into the scaffold to provide
a porous three-dimensional structure that accommodate the
seeded cells and form extracellular matrix. [9, 14–17]. Sub-
sequently multiple methods such as cell aggregation, micro-
fabrication, cell sheeting, and cell printing are utilized in gen-
erating modular tissues. They are then assembled through
random assembly, stacking of cell sheets, or directed assem-
bly into engineered tissues with specific microarchitectural
features. Thereafter, the engineered tissue is transplanted into
the defected area. Therefore, this approach allow, scientists to
finely transform the nanostructure of materials by balancing
polymer degradation rates with the extracellular matrix
(ECM) production and cellular infiltration which caused
the increased cell binding sequences, enzymatic cleavage
sites, and tethering of chemoattractant molecules [17–20].
Conversely, in the top-down approach, there are two ways to
manufacture the engineered tissue: (1) cells and biomaterial
scaffolds are combined and cultured until the cells fill the
support structure to create an engineered tissue [17] or
(2) the acellular scaffolds, incorporated with biomolecules,
are delivered immediately after injury. The biomolecules are
released from scaffolds in a controlled manner, and they may
recruit the progenitor cells in injured area and promote their
proliferation and differentiation and eventually repair the
injured tissues [9, 14–16].

3. Blood Vessel Structure,
Functions, and Cell Sources

Blood vessels extend throughout the body and mediate
gas exchange, nutrient and waste transport, and immune
defense. The blood vessels consist of endothelial cells that
are in contact with the blood, vascular smooth muscle
cells that cover the endothelial cells as well as form the
middle layer, and the fibroblasts and matrix that form the
vessels’ outer layer. Based on the earlier evaluation, cells
of the blood vessels perform different functions in relation
to cardiovascular physiology (Figure 3) [21–29]. Altogether,
these layers of cells play a role in repairing, remodeling,
and maintaining the blood vessels following an injury. All
these cell types have been involved not only in cardiovascular
pathology but also in therapy. In a recent review, Chen et al.
pointed out that human blood vessel-derived stem cells
are utilized as sources for tissue repair and regeneration
for various cardiac and muscular diseases. The myogenic
endothelial cells are involved in muscular regeneration and
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Figure 1: Tissue engineering triad of cells or source, signals (provided chemically by growth factors/cytokines or physically by a bioreactor),
and the scaffold which acts as a template for tissue formation allowing the cells to migrate, adhere, and produce tissue. These components
make up the Triple S (Source, Scaffold, and Signal) of tissue engineering. Any combination of these triad components has been considered in
various studies in cell therapy which accounts for SS (Scaffold/Signal, Scaffold/Source, and Signal/Source). Finally, these three components
(Source, Scaffold, and Signal or SSS) have also been considered altogether in some research projects.
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Figure 2: Bottom-up and Top-down approaches to tissue engineering. In the bottom-up approach there are multiple methods for creating
modular tissues, which are then assembled into engineered tissues with specific microarchitectural features. In the top-down approach, cells
and biomaterial scaffolds are combined and cultured until the cells fill the support structure to create an engineered tissue. Nichol, J. W. and
Khademhosseini, A. 2009, Page 10 Soft Matter. Reproduced by permission of The Royal Society of Chemistry.

cardiac repair particularly in acute myocardial infarction; the
pericytes, on the other hand, contribute to the regeneration
of dystrophic skeletal muscles, while the adventitial cell
participates in vascular remodeling and regeneration of the
surrounding tissues [28, 30, 31].

Blood vessel diseases such as atherosclerosis and arteritis
[30, 32], Chronic Venous Insufficiency (CVI) [33], and
thrombosis remain as major vascular problems globally.
Hence, the increasing morbidity of cardiovascular diseases
in the modern society has made it crucial to develop blood
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Figure 3: Main Tunicae of the blood vessels. Outer Tunica Adventitia, middle Tunica Media, and inner Tunica Intima, their corresponding
cell composition and functions.

vessel substitutes especially for those small diameter vessels
(less than 6 mm) for the replacement of diseased coronary
and below the knee vessels. Current therapies for such
diseases include surgical replacement with autologous vessels
or synthetic materials [34, 35].

Although autologous vessels remain the standard for
small grafts, many patients have a limited vessel suitable
for use because of vascular disease, amputation, or previous
harvest [36]. Despite a clear clinical need for a functional
arterial graft, success has been limited to arterial replace-
ments of large-caliber vessels such as the thoracic and
abdominal aorta, arch vessels, iliac, and common femoral
arteries; however, small-caliber arterial substitutes, which
account for a majority of the demand, have generally proved
inadequate largely because of acute thrombogenicity of the
graft, anastomotic intimal hyperplasia, aneurysm formation,
infection, and progression of artherosclerotic disease [37].
From this time, tissue engineering is the promising approach
to address the shortcomings of such treatment [36, 37].

Although advances in vascular tissue engineering have
had limited clinical application because of the cell’s limited
replicative capacity, loss of telomerase activity of adult
somatic cells, and the long-term production of the biological
construct [38, 39], many investigators have further explored
techniques with the objective of fabricating biomimetic
tissue-engineered blood vessels (TEBV). Creating an engi-
neered blood vessel substitute requires the incorporation of
both smooth muscles and endothelial cells into the tubular
scaffold so as to establish an architecture like that of a
native blood vessel [40]. The first production of completely
biological tissue-engineered blood vessels, composed of

intima, media, and an adventitia, using cultured mature
smooth muscle cells and endothelial cells in bovine collagen
gels was pioneered by Weinberg and Bell [41] and this
rapidly expanded the number of studies akin to blood vessel
diseases. It is now well known that the smooth muscle layer
of the blood vessel plays an important role in maintaining
homeostasis of blood vessels [42]. Additionally, vascular
smooth muscle cells do not only play important roles in
the physiological function of the blood vessels but also in
their remodeling under pathological conditions [31]. Thus,
generating functional smooth muscle layer is a prerequisite
for successful blood vessel construction through tissue
engineering approach. Smooth muscle cells and endothelial
cells were the early sources broadly utilized to construct
vascular implants [42, 43]. Nevertheless, due to the limited
proliferation ability and loss of contractile phenotype of
mature-differentiated smooth muscle cells (SMCs), various
alternative sources of cells have been explored for the pro-
duction of blood vessel replacements. Their corresponding
characteristics, some of these were previously described, [42]
are summarized in Table 1.

4. Scaffolds for Blood Vessels

To date, despite numerous scaffolds that have been manufac-
tured through varied forms of tissue engineering techniques,
the construction of an entirely biomimetic blood vessels is
still underway. To achieve a successful clinical application
of tissue-engineered blood vessels, the biofabrication of
vascular grafts necessitates a vigorous yet time-efficient
biotechnological process [39]. Several tissue engineering
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Table 1: Stem cells for tissue engineering of blood vessel, their advantages and disadvantages.

Cells Advantages Disadvantages References

Mesenchymal Stem Cells
(MSCs)

(i) self-renewal capacity
(ii) long-term viability
(iii) pluripotent

(i) low frequencies of existence
(ii) time-consuming expansion
(iii) harvesting complications

[44]

ASCs (adipose-derived
stem cells)

(i) superior multi-differentiation potential
(ii) easily acquired with minimally invasive

technique
(iii) have lower donor-site morbidity
(iv) abundant and practical
(v) rapid in vitro expansion
(vi) multipotency is independent of the

donor’s age
(vii) secrete several angiogenesis-related
factors and therefore induce angiogenesis

(i) susceptible to apoptosis during isolation
(ii) cell expansion requires growth factors

[45–51]

Embryonic stem cells
(ESCs)

(i) pluripotent
(ii) may differentiate to SMC

(i) low induction efficiency
(ii) low smooth muscle cell (SMC) purity

[43, 52]

Endothelial progenitor
cells (EPCs)

(i) have exponential proliferation rate
(ii) involved in hemostasis, angiogenesis,
and arterial injury and endothelium repair
(iii) can be evaluated in vivo in Baboon

model
(iv) promote neovascularization in ischemic

tissue, coating of vascular grafts, seeding
hybrid grafts

(v) can be harvested prenatally and
noninvasively

(i) unknown in vivo EPC differentiation and
migration signals and homing to the sites
of injured endothelium or extravascular
area

(ii) EPCs from high risk cardiovascular
patients have higher rates of in vitro
senescence

[53–62]

Bone marrow cells
(BMCs)

(i) readily accessible autologous cell source
(ii) BMC aspiration is less invasive and

associated with much lower morbidity at
the donor sites

(iii) have the potential to regenerate vascular
tissues

(iv) improve patency in tissue-engineered
small-diameter vascular grafts

(i) may induce calcification and thrombus
formation

[63, 64]

Human artery-derived
fibroblast (HAFs)

(i) promotes enhanced ECM formation and
maturation

[39]

Human umbilical cord
vein endothelial cells
(HUVEC)

(i) important in endothelialization after
transplantation

(ii) prevent platelet adhesion
(iii) largely and routinely cultured from a

readily available supply of discarded
tissue

(iv) have reproducible and enhanced
angiogenesis capacity (in vitro)

(i) time-consuming isolation
(ii) cell culture includes risk of infection and

requires exogenous growth factor
(iii) low proliferative capacity

[39, 65, 66]

strategies have emerged to address biological flaws at the
blood-material interface of the synthetic scaffolds, hence,
paving the way to vascular cell seeding and design of bio-
active polymers for in situ regeneration. Moreover, advances
in biomaterial design have been directed towards the genera-
tion of suitable materials that does not only mimic the native
vascular tissue’s mechanical properties but also promote cell
growth, inhibit thrombogenicity, and facilitate extracellular
matrix production [18]. In addition, an important charac-
teristic of artificial scaffolds in advanced biomaterial vessel
substitutes is not just the tolerance of the cells but the
capacity to mimic the natural ECM in order to regulate

extent and strength of cell adhesion, growth activity, cell
differentiation, and maturation to the desired phenotype
[84–86]. The extracellular matrix proteins such as collagen,
elastin, fibronectin, vitronectin, and laminins which mediate
cell-material adhesion have been thoroughly assessed in an
earlier review [31].

Materials for vascular replacements should be biomi-
metic in such a way that they should be resistant not only
to thrombosis, but also to inflammation, and neointimal
proliferation, and for all intents and purposes, they should
resemble the native vessels [3, 31]. For these reasons,
it is necessary to investigate the physical, chemical, and
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Table 2: Representative studies on scaffold-based tissue-engineered blood vessels.

Publication
year

Scaffold Source/signal Reported results Type of study References

1999

Tubular
biodegradable
polyglycolic acid
(PGA) scaffolds

SMC and ECs from
bovine aorta/pulsatile
perfusion system in
a bioreactor with
supplemented medium

(1) the gross appearance of the vessels was
identical to that of native arteries

(2) SMCs migrated inward to envelop PGA
fragments in the vessel wall, resulting in
a smooth luminal surface onto which
bovine aortic endothelial cells were
easily seeded

(3) the bioreactor system increased the
vessel wall thickness and suture retention
strengths, as well as influenced the
vessel’s contraction

(4) four weeks after implantation,
autologous explants showed highly
organized structure and minimal
inflammation

in vitro
in vivo in
swine model

[67]

2000
Microvessels with
fibronectin-collagen
3D gels

Umbilical vein
endothelial cells
(HUVEC)/Bcl-2

(1) human umbilical-vein EC (HUVEC)
within mixed fibronectin-collagen 3D
gels induced tube formation

(2) remarkable inosculation of these
preformed (HUVEC and gel) networks
with the circulatory system of SCD mice

(3) overexpression of Bcl-2 in HUVEC
resulted to the formation of perfused
vascular structures invested by mouse
pericyte and smooth-muscle cells that
remodel into mature vessels

in vitro
in vivo in
severe
combined
immunodefi-
cient
(SCID)/mice

[65]

2004

Polyglycolic
acid-poly-L-lactic
acid (PGA-PLLA)
scaffolds

EPC from human
umbilical cord were
used to generate
EPC-derived EC

(1) EPC-derived EC can be expanded
in vitro and preserved endothelial
phenotype after seeding

(2) EPC-derived EC seeded with human
smooth muscle cells form microvessels
on porous PGA-PLLA scaffolds

(3) functional microvessels were evident
7–10 days after implantation into mice

in vitro
in vivo in
nude mice

[55]

2005
Collagen/elastin
tubular scaffolds

SMC under pulsatile
flow condition

(1) SMCs were uniformly distributed
throughout EDC/NHS crosslinked
collagen/elastin construct

(2) collagen fibers were oriented to
circumferential direction

in vitro [68]

2005
Sandwich chitosan
tubular scaffold

Rabbit Smooth muscle
cells by employing
industrial knitting
process and
thermally-induced
phase-separation
techniques

(1) chitosan scaffold showed proper swelling
property and high suture retention

(2) burst strength of the scaffold is
4000 mmHg

(3) scaffold degraded after 2 months
(4) SMCs were well grown and distributed

in the scaffold

in vitro [69]

2007
Poly(glycerol
sebacate) (PGS) films
and scaffolds

Baboon endothelial
progenitor cells
(BaEPCs) and
baboon smooth
muscle cells (BaSMCs)

(1) BaSMCs were distributed throughout
the scaffolds and synthesized ECM

(2) BaSMC-seeded constructs provided
suitable surfaces for BaEPC adhesion

(3) cells maintained their specific
phenotypes

in vitro [70]

2008
PGA (polyglycolic
acid) fiber mesh

SMC/pulsatile
stimulation from
a Bioreactor

(1) elastic vessel wall was formed after 8
weeks of dynamic engineering.

(2) histological examination showed
well-orientated smooth muscle cells and
collagenous fibers

in vitro [71]
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Table 2: Continued.

Publication
year

Scaffold Source/signal Reported results Type of study References

2009

3D collagen/fibro-
nectin gels
supported by
a nonwoven,
degradable PGA
(polyglycolic acid)
matrix

HUVECs, EC and SMC

(1) after transplantation PGA-supported gels,
Bcl-2-HUVEC retained the ability to form
microvessels invested by mouse SMC.

(2) grafts containing both Bcl-2-HUVEC and
HASMC displayed greater numbers of smooth
muscle actinin expressing cells associated with
human EC-lined arteriole-like microvessels

(3) SMC can accelerate, stabilize, and promote
remodeling of tissue engineered microvessels

(4) EC-SMC coengraftment and cotransplantation
in PGA-supported protein gels may have
broader application for perfusing bioengineered
tissues

in vitro
in vivo in
severe
combined
immune-
deficient
(SCID)/mice

[72]

2010
PGA (polyglycolic
acid) unwoven
mesh

SMC derived from
hASCs/pulsatile
stimulation from
a Bioreactor, TGF-β1,
BMP-4

(1) hASCs acquired SMC phenotype with SMC-
related markers expression

(2) under pulsatile stimulation, hASCs can be
SMC cell source with biomechanical strength
matchable to the native vessels

in vitro [42]

2012
Macroporous
nanofibrous
scaffold

ESCs stimulated with
retinoic acid with LacZ
genetic labeling under
SMC alpha promoter

(1) RA enhanced SMC gene expression while
inhibiting pluripotency of ESC

(2) implanted cells in mice maintained LacZ
staining within the construct without teratoma
formation

(3) ESC-promising source of SMC for therapeutic
vascular engineering and disease model
application

in vitro
in vivo in
nude mice

[43]

2012

Biotubular scaffold
composed of
polyglycolide
knitted fiber, and
an L-lactide and
ε-caprolactone
copolymer sponge
crosslinked to
Amniotic Fluid

Amniotic Fluid

(1) well-formed vasculature without stenosis or
thrombosis, and calcification

(2) cell-free vasculature with good quality and
adaptation in shape

(3) applicable to pediatric surgery
(4) the use of Amniotic Fluid shortened EBV

fabrication

in vitro
in vivo in the
inferior vena
cava of
Canines

[73]

2012

Tissue engineered
blood vessel from
amniotic
membrane

Amniotic membrane
(AM) as the natural
membrane, endothelial
cells/physiological shear
stress (SS)

(1) shear stress application maintained the intact
monolayer of EC in the vessel’s lumen

(2) endothelial cells (ECs) are aligned in long axis
parallel to the blood flow

(3) shear stress also increased PECAM-1 and
E-cadherin and integrin αγβ3 expressions

(4) amniotic fluid tube reduced the TEBV
fabrication through sheet-based engineering

in vitro [74]

2012

Tubular hydrogels
of circumferentially
aligned peptide
amphiphile
nanofibers

SMCs by applying low
shear stress and ionic
crosslinking

(1) arterial cell scaffolds encapsulates and orient
vascular cells

(2) direct cell organization without external
stimulation or gel compaction

in vitro [75]

biological properties and modifications of materials to
further understand the molecular mechanism of the cell-
material interaction [31]. The lack of endothelial cells
on the luminal surface of the artificial grafts contributes
to synthetic graft thrombogenicity and promotes intimal
proliferation within the graft. Endothelial cell (EC) seeding
on the synthetic grafts has been attempted to mitigate
these problems. Herring et al. [87] were among the first

to perform endothelial cell (EC) isolation and their subse-
quent transplantation into vascular graft. Current researches
indicate the significance of such process in vascular tissue
engineering. The polymer surfaces which have been formerly
investigated for endothelial attachment, proliferation, and
function had been listed in an earlier review [3]. On the
other hand, the synthetic polymers for reconstructing blood
vessels for clinical practice which are based on polyethylene
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Table 3: Representative studies on cell-based tissue-engineered blood vessels.

Publication
year

Construct Source Technique applied Reported results Type of study References

1998

Completely
biological
tissue-
engineered
human blood
vessel

SMCs, human
fibroblasts,
endothelial cells

(i) cell culture in a
medium with
ascorbic acid

(ii) layered SMCs placed
in a tubular support
to form the media,
wrapped with a sheet
of fibroblasts to form
the adventitia

(iii) after maturation,
tubular support was
removed and
sequentially seeded
with endothelial cells
in the lumen to form
the intima

(1) TEBV displayed well-defined
three-layered organization,
with numerous ECM proteins
including elastin

(2) SMCs reexpressed desmin
(3) endothelium expressed von

Willebrand factor,
incorporated acetylated LDL,
produced PGI, and inhibited
platelet adhesion

(4) the grafting in canine model
demonstrated good handling
and saturability characteristics

in vitro
in vivo

in canine
model

[76]

2000

Tissue-
engineered
blood vessel
from smooth
muscles

SMCs
(i) cell culture in a

medium with serum
and ascorbic acid

(1) TEBV composed of
endothelium, media, and
adventitia and resembling
human artery was produced

(2) serum stimulates cell
differentiation and growth and
increases cell viability

(3) ascorbic acid induced cohesive
cellular sheet organization

in vitro
in vivo

in bovine
model

[77, 78]

2001
Small-diameter
neovessels

EPCs

(i) decellularization of
porcine iliac vessels

(ii) EPCs were isolated
noninvasively from
peripheral blood of
sheep, expanded
ex vivo

(1) endothelial progenitor
cell-seeded grafts remained
patent for 130 days

(2) nonseeded grafts occluded
within 15 days.

(3) explanted grafts exhibited
vascular contractile and
relaxation activity similar to
native arteries

in vitro
in vivo

in sheep
model

[59]

2005
Small-diameter
vessel

BMCs

(i) induction of BMC
differentiation into
SMCs in vitro

(ii) decellularization of
canine artery

(iii) transplantation of
grafts in canine
carotid artery

(1) vascular grafts seeded with
BMCs remained patent for up
to 8 weeks

(2) vascular grafts showed
regeneration of the 3 vascular
layers

(3) the first autologous vessel
derived from BMCs

(4) occlusion due to Thrombus
formation was evident

in vitro
in vivo in

canine model
[63]

2006 Human TEBV

adult human
fibroblasts
extracted from
skin biopsies

(i) sheet-based tissue
engineering after
vast cell expansion

(ii) fibroblasts were
cultured in
conditions that
promote ECM
production

(1) TEBV exhibited properties
similar to human blood vessels,
without exogenous scaffolding

(2) autologous TEBVs are
antithrombogenic and
mechanically stable for 8
months in vivo

(3) well-established vasa vasorum,
vasa media, and intima

(4) the TEBV was manufactured
exclusively from patient’s own
cells, completely biological and
clinically relevant

in vitro
in vivo

in primate
model (rat
and mice)

[79]
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Table 3: Continued.

Publication
year

Construct Source Technique applied Reported results Type of study References

2009

Scaffold-free
small-
diameter
vascular
construct

SMCs and
fibroblasts

(i) bioprinting using
vascular smooth
muscle cells and
fibroblasts

(1) vascular cells which were
aggregated into distinct units
(spheroids and cylinders) were
printed layer-by-layer and molded
using agarose rods as templates

(2) engineered vessels were fabricated
with distinct shapes and
hierarchical trees that combine
tubes with distinct diameter

(3) quick and scalable technique

in vitro [80]

2009
Scaffold-free
arterial
mimetics

Human
aortic
Endothe-
lial cells
and
smooth
muscle
cells

(i) ECs and SMCs were
co-cultured in
platform that mimic
either healthy or
diseased blood vessels

(ii) incorporation of
transforming growth
factor (TGF-β) and
heparin in culture
media to upregulate
SMC differentiation
markers (α-SMA and
calponin)

(1) seeding of near confluent ECs on
the scaffold induced increased
α-smooth muscle actinin (α-SMA)
and calponin Expression

(2) pretreatment of TGF-β and
heparin to SMC enhanced α-SMA
and calponin levels

(3) EC-SMC co-culture model can
mimic either healthy or diseased
blood vessels and may be useful in
cardio-vascular therapeutics

in vitro
[81]

2010

Self-
assembled
microtissue
vessel
building
blocks

Human
artery-
derived
fibroblasts
and
HUVECs

(i) pulsatile and
circumferential
mechanical
stimulation in a
bioreactor composed
of pulsatile pump,
self-assembly device,
and medium reservoir

(1) significant ECM formation and
maturation by the self-assembled
microtissues

(2) microtissues displayed
prevascularization capacity and can
be used as building blocks in
generating small TEBV

(3) accumulation of vessel-like tissues
occurred within 14 days under
static and flow stimulation

(4) no thrombosis and vessel
occlusions

in vitro [39]

2011
Implantable
human
arterial grafts

Human
dermal
fibroblasts

(i) fibroblasts seeding on
fibrin gel

(ii) direct injection of
cell/fibrinogen
suspension into glass
mandrel tubular molds

(iii) two weeks static
culture system

(iv) nine weeks multigraft
pulsed flow-stretch
culture system in a
bioreactor

(v) noninvasive strength
monitoring

(1) cells cultured in pulsed-flow
bioreactor produced more collagen
and with higher burst pressures

(2) the tissue suture retention force
was suitable for implantation in rat
model and in ovine model using
poly(lactic acid) sewing rings

in vitro
in vivo in rat

and ovine model
[82]

2012

Small-
diameter
tissue-
engineered
vascular graft
(TEVG)

Marrow-
derived
mesenchy-
mal stem
cells
(MSCs)

(i) cell sheet engineering
(ii) cell sheeting rolling

around a mandrel
(iii) graft transplantation

(1) adhesion assay revealed that MSCs
share similar EC’s antiplatelet
adhesion property

(2) cell sheet layers fully fused in vitro
(3) four weeks after transplantation,

TEVG exhibited endothelialization
and similar structure of native vessels

(4) the fabricated biological TEVGs are
useful for revascularization in
humans and may reduce
complication with foreign materials

in vitro
in vivo in rabbit

model
[83]
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terephthalate (PET) or polytetrafluoroethylene (PTFE) had
been previously reviewed [31]. Furthermore, blood vessel
stem cells have been studied in combination with recent
and alternative types of scaffolds/polymers. Parallel to this,
in scaffold-based blood vessel engineering, bioreactors and
pulsatile flow systems, designed by many scientists, have
been found to progress the mechanical property of the
engineered blood vessels by augmenting the deposition and
remodeling of extracellular matrix as well as the maturation
and differentiation of self-assembled microtissues [38, 39,
67, 68, 76]. Bioreactors, which were originally designed for
industrial use, have high degree of reproducibility, control,
and automation for specific experimental bioprocesses and
these have been the reasons for their transfer to large-
scale applications including vascular tissue engineering. The
bioreactors allow scientists to manipulate the environment
and the parameters such as pH, temperature, pressure,
nutrient supply, and waste removal in order mimic the in vivo
physiological condition and allow biological or biochemical
processes to occur and subsequently develop the desired
tissue [88].

Taken together, the formation of a microvasculature
within a tissue-engineered organ or tissue will depend on
multiple factors: the biochemical environment, EC type, the
micro-architecture presented by the scaffold material, and
mechanical signals [89, 90]. Due to the goal of develop-
ing biomimetic blood vessel scaffolds, many groups have
designed such biomaterials. The representative studies on the
different blood vessel scaffolds are depicted in Table 2. The
polymers used in scaffold fabrication for tissue engineered
blood vessels started from polyglycolic (PGA) to varied
types such as polyglycolic acid-poly-L-lactic acid (PGA-
PLLA), Collagen/Elastin, chitosan, Poly (glycerol sebacate)
(PGS), and very recently polyglycolide knitted fiber, and
an L-lactide and ε-caprolactone copolymer sponge cross-
linked to amniotic fluid. Furthermore, amniotic membranes
have been used as scaffolds which signify that scaffold-
based tissue-engineered blood vessels can be fabricated from
autologous cells at a reduced manufacturing period.

5. Scaffold-Free Techniques for Blood Vessels

The chronic inflammation, thrombosis, rejection, and poor
mechanical properties of allogeneic or xenogeneic and
synthetic vessels have impaired their clinical applications
[79]. In addition, due to the failure cell to cell interaction
and the assembly and alignment of ECM components,
and the complex host response to scaffolds, the scaffold-
free techniques had recently emerged [80]. In scaffold-free
tissue engineering approach, the fabrication of the tissue
construct is anchored in the crucial capability of the cells
to manufacture their own extracellular matrix [39]. In 1998,
the first scaffold-free tissue-engineered human blood vessel
was established by L’ Heureux and has been replicated for
further preclinical evaluation using rat and mice models in
2006 [76, 79]. Years later, groups of scientists reported a
fully biological self-assembly approaches by implementing
rapid prototyping bioprinting method and stimulation via

bioreactors for scaffold-free small diameter vascular recon-
struction [39, 80].

Similar to scaffold-based technique, in tissue engineering
for scaffold-free blood vessels, the bioreactors were also
used to provide specific biochemical and physical signals
to regulate cell differentiation, ECM production, and tissue
assembly by using chemical, mechanical, or electromagnetic
stimulation techniques to produce de novo tissue with
properties comparable to the damaged or desired tissues
[91, 92]. There are many types of launched bioreactors
however, in engineering the vascular tissues, designs of
various bioreactors have been based on the expansion and
recoil properties of blood vessels, and so the combinations
of stress, strain, and perfusion stimulation in biomimetic
bioreactors have successfully developed vascular tissues [92].

In case of cell senescence problem, lifespan extension via
telomerase expression in vascular cells (smooth muscle cells
and endothelial cells) from elderly patients has been found as
an effective strategy for engineering autologous blood vessels
and eventually provides bypass conduit for atherosclerotic
diseases [38]. Human telomerase, composed of an RNA
component and a reverse transcriptase (hTERT), maintains
the telomere length at the ends of the chromosomes [93].
Absence of hTERT expression in mature somatic cells
induces lack of telomerase activity thus its ectopic expression
has been shown to restore telomerase activity, arrest telomere
shortening and senescence in some cells [94]. While high
cell population is essential in cell-based vessel biofabrication
and the expansion process is lengthy, cell-based therapies
are more promising in terms of efficacy despite the fact
that they are more complex and costly than scaffold-based
techniques [7]. Therefore, many researches have focused on
this approach and the representative studies are presented in
Table 3. Among the well-studied scaffold-free techniques are
the coculture system, sheet-based engineering, decellulariza-
tion, direct cell injection, bioprinting, and biofabrication in
a bioreactor system.

6. Conclusion and Future Directions

At present, the previously established treatments for cardio-
vascular disorders, such as organ transplantation, surgical
reconstruction, usage of mechanical and synthetic devices, or
administration of metabolic products, although promising
are still yet constraints and complication-free [3]. Hence, the
developments in vitro and in vivo generation of biomimetic
constructs for specific target organ or tissue are more
suitable for regeneration of damaged cardiovascular organs
[95]. Albeit the points of view of Demirbag et al. [12]
on the benefits and drawbacks of the applications scaffold
and scaffold-free approaches over each other are indeed
noteworthy. Due to the uniqueness of cells, tissues, and
nature of cardiovascular defects, these approaches should be
considered complementary instead of being competing com-
ponents of vascular tissue engineering [12]. The treatment
for blood vessel defects (Figure 4) would always depend on
the pathological condition of the patient. If the patient has
no limitations for transplantation, then autologous blood
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Scaffold techniques Scaffold-free techniques

• Coculture system
• Decellularization
• Cell sheet engineering
• Rapid prototyping
• Fluid shear stress via 

bioreactor
• Bioprinting
• Microtissue self-assembly 

through pulsatile 
bioreactos

• Acellularization
• Nanopatterned collagen I  
film scaffolding
• Knitted chitosan tube 
scaffold formation
• PU scaffold construction
• Nonwoven poly 
(carbonate) urethane 
grafting

Patient’s pathological condition

Autologous blood 

vessel transplantation

Blood vessel 

tissue engineering 

Tissue engineered 

blood vessels 

(TEBV)

Limited clinical 
application in humans 

Effective biomimetic  
blood vessel

Clinical 
application

Reassessment     
and 

modification

Figure 4: Trends in blood vessel tissue engineering.The patient’s condition is the main basis for treatment of blood vessel defects. Autologous
blood vessel transplantation is still the standard treatment. Conversely, tissue-engineered blood vessels (TEBV), fabricated either via scaffold
or scaffold-free techniques, are the alternative sources of treatment.

vessels may be directly utilized for treatment. Otherwise,
especially in the cases congenital defects, tissue-engineered
blood vessels manufactured, either scaffold based or cell
based, may be considered as the alternative treatment. The
current blood vessel constructs still have their corresponding
limitations, therefore, further reassessment and modification
have to be conducted. However, once a biomimetic blood
vessel is produced, then transplantation can be the conve-
nient treatment for blood vessel defects most especially in
the infants whose transplantable large blood vessels are not
yet ready for harvest.

In the future, further combination of techniques may be
considered in the production and design of cardiovascular-
engineered tissues for the blood vessels. For instance, the
High-Density Suspension System (HDSS) initiated by Lee
et al. [96] for constructing spherical spheroids composed
of cartilage and synovium cells was found to be an
effective and efficient culture system, then the spheroids
were successfully implanted and able to heal the bone
defects of the knee in rabbit model. Such technique may
be applied for expanding stem cells for the cardiovascular
diseases especially if the construct has to be composed of
a mixture of cells such as myofibroblast, smooth muscles,

EPCs, and many others for blood vessel defects. Hence, this
strategy may enhance the existing coculture system applied
in the construction of engineered blood vessels. However,
it would be better if researchers will be able to design a
completely scaffold-free product since it is more beneficial
in a sense that complications can be prevented and might
promote greater life expectancy of the individuals affected
with vascular diseases. It will remain a challenge to devise
blood vessel engineered tissue until completely biomimetic
construct is produced. Furthermore, since angiogenesis is
essential in almost all types of organ remodeling and tissue
engineering, it is indeed a crucial step for the complex
organ reconstruction [77]. Hence, it is also interesting to
explore the importance and the interrelationships of the
vascularization signaling pathways in designing biomaterials.
Perhaps, along the process of biofabrication, certain growth
factors and other signaling molecules may be incorporated
while regulating their release into the scaffold or scaffold-free
construct in order to enhance blood vessel reconstruction
on the injured site. The designs of the bioreactors may
be further improved to hasten vascular tissue construction
through their efficient and effective stimulation and by
combining them with automated cell tissue culture systems
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to reduce time-consuming expansion period which primarily
delimit the clinical application of the current vascular grafts
especially in cases of emergencies. This may be the future
mechanism in vascular tissue engineering.
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