
R E S E A R CH AR T I C L E

p75NTR regulates brain mononuclear cell function and
neuronal structure in Toxoplasma infection-induced
neuroinflammation

Henning Peter Düsedau1 | Jan Kleveman2 | Caio Andreeta Figueiredo1 | Aindrila Biswas1 |

Johannes Steffen1 | Stefanie Kliche3 | StefanHaak2 | Marta Zagrebelsky2 | Martin Korte2 |

Ildiko Rita Dunay1

1Otto-von-Guericke University Magdeburg,

Institute of Inflammation and

Neurodegeneration, Medical Faculty,

Magdeburg, Germany

2Division of Cellular Neurobiology, Zoological

Institute, TU Braunschweig, Braunschweig,

Germany

3Otto-von-Guericke University, Institute for

Molecular and Clinical Immunology, Medical

Faculty, Magdeburg, Germany

Correspondence

Ildiko Rita Dunay,

Otto-von-Guericke University Magdeburg,

Institute of Inflammation and

Neurodegeneration, Medical Faculty,

Magdeburg D-39120, Leipziger Str.

44, Germany.

Email: ildikodunay@gmail.com

Funding information

Deutsche Forschungsgemeinschaft, Grant/

Award Number: SFB854, TP25

Neurotrophins mediate neuronal growth, differentiation, and survival via tropomyosin recep-

tor kinase (Trk) or p75 neurotrophin receptor (p75NTR) signaling. The p75NTR is not exclu-

sively expressed by neurons but also by certain immune cells, implying a role for

neurotrophin signaling in the immune system. In this study, we investigated the effect of

p75NTR on innate immune cell behavior and on neuronal morphology upon chronic Toxo-

plasma gondii (T. gondii) infection-induced neuroinflammation. Characterization of the immune

cells in the periphery and central nervous system (CNS) revealed that innate immune cell sub-

sets in the brain upregulated p75NTR upon infection in wild-type mice. Although cell recruit-

ment and phagocytic capacity of p75NTRexonIV knockout (p75−/−) mice were not impaired, the

activation status of resident microglia and recruited myeloid cell subsets was altered. Impor-

tantly, recruited mononuclear cells in brains of infected p75−/− mice upregulated the produc-

tion of the cytokines interleukin (IL)-10, IL-6 as well as IL-1α. Protein levels of proBDNF,

known to negatively influence neuronal morphology by binding p75NTR, were highly increased

upon chronic infection in the brain of wild-type and p75−/− mice. Moreover, upon infection

the activated immune cells contributed to the proBDNF release. Notably, the

neuroinflammation-induced changes in spine density were rescued in the p75−/− mice. In

conclusion, these findings indicate that neurotrophin signaling via the p75NTR affects innate

immune cell behavior, thus, influencing the structural plasticity of neurons under inflammatory

conditions.
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1 | INTRODUCTION

Neuronal growth, differentiation, survival, and function are orchestrated

in the central nervous system (CNS) by neurotrophins—secreted proteins

involved in shaping neuronal connectivity and in repairing the CNS after

injury (Kaplan & Miller, 2000). Neurotrophins are initially synthesized as

pro-neurotrophins and then cleaved to produce mature proteins. The

family of mature neurotrophins includes nerve growth factor (NGF), brain
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derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), and

Neurotrophin-4/5 (NT-4/5). They signal through the tropomyosin recep-

tor kinase (Trk) receptors TrkA, TrkB, TrkC, and the p75 neurotrophin

receptor (p75NTR) being a member of the tumor necrosis factor (TNF)

receptor family. Neurotrophins are critical mediators of neuronal survival

(Chao, 2003). They regulate both the architecture and plasticity of

mature CNS neurons and are necessary for learning processes

(Zagrebelsky & Korte, 2014). Recently, also the role and function of neu-

rotrophin precursors have been explored with more detail suggesting

their important role in injury and disease (Ibáñez & Simi, 2012). Several

studies have described that pro-neurotrophins such as proBDNF bind to

a heterodimeric receptor complex of p75NTR and sortilin with high affin-

ity inducing cell death and reduced synaptic function (Lee, Kermani,

Teng, & Hempstead, 2001; Nykjaer, Willnow, & Petersen, 2005; Woo

et al., 2005; Yang et al., 2014). Notably, mature neurotrophins can also

influence the immune system, however, little is known about the specific

functions in this context. They have been shown to modulate monocyte

chemotaxis, to participate in tissue-healing mechanism, suppression of

nitric oxide release by microglia (Samah, Porcheray, & Gras, 2008) and to

enhance macrophage phagocytic activity (Hashimoto et al., 2005). BDNF

produced by microglia cells and T cells (Kruse, Cetin, Chan, Gold, & Lüh-

der, 2007) was able to modulate monocyte and macrophage function,

for example, by regulating their differentiation towards tissue macro-

phages. Vega et al. detected that NGF and BDNF influenced cytokine

expression in peripheral blood mononuclear cells (Vega, Garcia-Suarez,

Hannestad, Perez-Perez, & Germana, 2003). Furthermore, the condi-

tional depletion of hippocampal BDNF decreased the number of cortical

microglia (Braun, Kalinin, & Feinstein, 2017). In this context, p75NTR is of

special interest. It is expressed by neurons and also by certain types of

immune cells, thus, possibly mediating the interaction between cells of

the CNS and the innate immune system under pathological conditions

(Meeker & Williams, 2014). However, the role of p75NTR signaling in

neuro-immuno-interactions during neuroinflammation has still not been

fully elucidated.

The intracellular parasite Toxoplasma gondii (T. gondii) infects a

wide range of hosts worldwide (Hill, Chirukandoth, & Dubey, 2005;

Montoya & Liesenfeld, 2004; Munoz, Liesenfeld, & Heimesaat, 2011).

Being able to infect all nucleated cells, T. gondii spreads throughout

the host's body during the acute phase of infection. Eventually, the

parasites reach immune-privileged regions such as the CNS. During

the chronic phase of infection cysts are predominantly formed in

infected neurons enabling the parasites to persist lifelong within the

host (Dubey, 1998; Wilson & Hunter, 2004). Chronic infection with

T. gondii is followed by a Th1 type inflammatory response and cell

recruitment to the brain (Biswas et al., 2017; Blanchard, Dunay, &

Schlüter, 2015).

Basal neuroinflammation is associated with the latent infection

(Hermes et al., 2008). Behavioral changes were reported in T. gondii-

infected mice, however, the underlying mechanisms are not fully

understood (Parlog et al., 2014; Parlog, Schlüter, & Dunay, 2015;

Vyas, Kim, Giacomini, Boothroyd, & Sapolsky, 2007). Several factors

may be responsible for these alterations such as the specific neuroin-

flammatory milieu, changes in the neurotransmitter balance affecting

neuronal connectivity, or possibly the preference of cysts to specific

neuron subtypes. Over the past decades, chronic Toxoplasma

infection-induced neuroinflammation has been studied extensively

and can, therefore, be employed as a suitable model to investigate

immune cell dynamics in the CNS and the interaction between

immune cells and neurons.

In a previous study, our research group could highlight the dis-

tinct alterations in cortical and hippocampal neurons of mice chroni-

cally infected with T. gondii (Parlog et al., 2014) showing reduced

neuronal connectivity, decreased dendritic complexity, and changes

in the synaptic protein expression upon infection. Recently, we fur-

ther revealed the alterations in the synaptic protein composition

induced by chronic T. gondii infection (Lang et al., 2018). Moreover,

our group was able to show the crucial involvement in host defense

by recruited myeloid-derived mononuclear cell subsets to the brain

upon chronic toxoplasmosis in addition to tissue resident microglia

(Biswas et al., 2015; Möhle et al., 2016; Möhle, Parlog, Pahnke, &

Dunay, 2014).

In this study, we set out to investigate the impact of p75NTR sig-

naling on the function of immune cells during cerebral toxoplasmo-

sis and to elucidate the role of p75NTR in mediating the changes in

neuronal morphology upon Toxoplasma-induced neuroinflammation.

Flow cytometric analysis revealed the upregulation of p75NTR sur-

face expression by innate immune cells in the periphery and CNS of

wild-type (WT) mice. Although cell recruitment and phagocytic

capacity of p75NTRexonIV knockout (p75−/−) mice were not altered,

the activation status of innate immune cells was modified as indi-

cated by differences in their phenotypic properties. Accordingly,

cytokine production by recruited myeloid cells in brains of T. gondii-

infected p75−/− mice was changed as the anti-inflammatory IL-10

and proinflammatory IL-6 and IL-1α and were upregulated. Applying

Western blot analysis to whole brain lysate we could show a strong

increase of proBDNF protein levels in infected WT and p75−/− ani-

mals. Finally, changes in spine density were rescued in infected

p75−/− mice when compared to WT controls. Taken together, these

findings indicate that proBDNF-mediated signaling via the p75NTR

affects immune cell activation and neuronal morphology in the brain

upon inflammation.

2 | MATERIALS AND METHODS

2.1 | Animals

The experiments were performed using age-matched 2- to 4-month-

old female wild-type (WT), Thy1-eGFP-M transgenic (Feng et al.,

2000) or p75NTRexonIV knockout (p75−/−) C57BL/6 mice. The p75−/−

mice were generated in the laboratory of Prof. Georg Dechant

(University of Innsbruck, Austria) and were genotyped as previously

described (von Schack et al., 2001). C57BL/6 WT were obtained from

Janvier (Cedex, France). Thy1-eGFP-M transgenic mice and p75−/−

mice and littermate controls were obtained from animal facility at the

TU Braunschweig. All animal care was in accordance with institutional

guidelines. Food and water were available ad libitum and experiments

were performed in accordance to National Institutes of Health (NIH)

Guidelines for the Care and Use of Laboratory Animals with local gov-

ernment approval.
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2.2 | Infection

For the infection of mice with T. gondii, cysts of the type II strain

ME49 were first collected from brains of female NMRI mice infected

with T. gondii cysts 10–12 months earlier as described before (Möhle

et al., 2016). Each animal was infected with a dose of 2 cysts intraperi-

toneally while naive control animals were mock infected with sterile

Phosphate buffered saline (PBS). Mice were sacrificed 4 weeks post

infection (p.i.).

2.3 | Tissue preparation and analysis of neuronal
morphology

All mice were transcardially perfused with 4% Paraformaldehyde

(PFA), the brain was postfixed and the hemispheres were sliced at

300 μm (for reconstruction of the dendrites) or 150 μm (for spine

density analysis) with a vibratome (VT 1200S; Leica) and mounted

with an anti-fading mounting medium. To analyze dendritic architec-

ture, hippocampal CA1 neurons were imaged using a 20x (NA 0.8)

objective for acquiring z-stacks (step size 1 μm). Only isolated, not

overlapping eGFP expressing hippocampal CA1 neurons were chosen.

Morphological analysis was performed using Neurolucida®

(Microbrightfield Bioscience) to trace the dendritic tree and perform a

Sholl analysis of dendritic complexity (Sholl, 1953). To analyze den-

dritic spine density, z-stacks of mid-apical dendrites from hippocampal

CA1 and cortical layer V/VI pyramidal neurons were acquired using a

40x oil objective (NA 1.3) with z-steps of 0.5 μm. The number of

spines and the dendritic length was analyzed on three-dimensional

images using ImageJ software using the multipoint tool and the seg-

mented line respectively. The experimenter was blind to the genotype

and treatment throughout all phases of the experiment and analysis.

2.4 | Immunohistochemistry

After fixation by perfusion, as above, the hippocampi were dissected,

postfixed in 4% PFA and subsequently cryoprotected. The hippocampi

were cryo-sectioned at 30 μm and after a blocking and permeabiliza-

tion step the sections were incubated overnight with anti-Iba1 pri-

mary antibodies (dilution of 1:1,000; Synaptic Systems, #234003),

then with a Cy3-conjugated goat anti-rabbit IgG (1:500, Dianova) and

mounted using an anti-fading mounting medium. For analyzing

changes in microglia density z-stacks of 3 to 5 regions of interest

(ROIs) per mouse were imaged using a 20x objective (NA 0.8) at a z-

step of 1 μm. The number of microglia was counted using the multi-

point tool of ImageJ and is expressed as number of cells per mm3 of

tissue. For analyzing the enwrapping of microglia around neuronal cell

bodies, confocal images of at least 10 randomly selected eGFP-

expressing CA1 pyramidal neurons were analyzed with a BX61WI

FluoView 1000 (FV1000) Olympus confocal microscope. Stacks were

acquired using a 40x oil objective (NA 1.3), z-steps of 1 μm. The neu-

ron profile as well as the length of Iba1 positive microglia processes

contacting the neuronal cell body were measured using the freehand

tool from ImageJ for each z-plane and summed to obtain one value of

overlap per each neuron (expressed in % of the neuronal perimeter).

2.5 | Cell isolation

Blood of mice was collected and prepared as described before (Biswas

et al., 2015). Brains were collected from mice previously perfused

intra-cardially with sterile PBS. Obtained samples were homogenized

in a buffer containing HBSS (Gibco), 1M HEPES (pH 7.3, Thermo

Fisher) and 45% glucose before sieving through a 70 μm cell strainer.

The homogenate was fractioned on a discontinuous 30–70% Percoll

gradient (GE Healthcare) and collected cells were washed in PBS and

used subsequently for further experiments. To isolate peripheral

immune cells, spleens of mice were passed through a 40 μm cell

strainer followed by a lysis of erythrocytes in RBC lysis Buffer

(eBioscience). Cells were pelleted and stored in −80 �C until

further use.

2.6 | Flow cytometric analysis

For flow cytometric analysis of cell phenotypes, isolated cells were

first incubated with Zombie NIR™ or Zombie Violet™ fixable dye

(Biolegend) for live/dead discrimination and with anti-FcγIII/II recep-

tor antibody (clone 93) to prevent unspecific binding of antibodies.

Cells were further stained with fluorochrome-conjugated antibodies

against cell surface markers in FACS buffer containing 2% fetal bovine

serum and 0.1% sodium azide. CD45 (30-F11), CD11b (M1/70), Ly6C

(HK1.4), MHCII I-A/I-E (M5/114.15.2), CD4 (GK1.5), CD8 (53–6.7),

CD11c (N418), CD80 (16-10A1), and F4/80 (BM8) were all purchased

from eBioscience. Ly6G (1A8), CD3 (17A2), and CD25 (3C7) were

purchased from Biolegend and p75NTR (MLR2) was bought from

Thermo Fisher. Fluorescence Minus One (FMO) controls were used to

determine the level of autofluorescence.

For flow cytometric analysis of intracellular cytokines and pro-

teins, single cell suspensions of brains from infected animals were re-

stimulated with 0.21 μg/μl Toxoplasma lysate antigen in a 96-well

plate (5 × 105 cell/well) for 6 hr. After 2 hr of incubation, Brefeldin A

(10 μg/ml, GolgiPlug, BD Biosciences) and Monensin (10 μg/ml Golgi-

Stop, BD Biosciences) were added. Thereafter, cells were incubated

with ZOMBIE NIR™ or Violet™ fixable dye and anti-FcγIII/II receptor

antibody. Next, surface staining was performed on the cells with anti-

bodies for CD45 (30-F11), CD11b (M1/70), Ly6C (HK1.4), Ly6G

(1A8), CD3 (17A2), CD4 (GK1.5), CD8 (53–6.7), in FACS buffer. Cells

were fixed in 4% paraformaldehyde and then permeabilized using Per-

meabilization Buffer (Biolegend). Intracellular cytokines and proteins

were stained with fluorochrome-conjugated antibodies: IL-1α (ALF-

161), IL-1β (NJTEN3), IL-6 (MP5-20F3), IL-10 (JES5-16E3), IL-12

(C17.8), purchased from eBiosciences); iNOS (BD Biosciences,

610330) in Permeabilization Buffer. Matched isotype controls were

used to assess the level of unspecific binding.

A minimum of 100,000 cells were acquired using the BD FACS

Canto II and Thermo Fisher Attune NxT flow cytometer. Obtained

data were analyzed using FlowJo software (Version 10 Tree Star).

2.7 | Ex vivo phagocytosis assay

Isolated cells from brains of infected mice were transferred into wells

of a 96-well plate (4 × 105 cells/well) and incubated at 37 �C for 1 hr.

Negative controls were set up by treatment of cells with cytochalasin D
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(Sigma) for 30 min before FITC-fluorescent, carboxylated latex beads

were added (d = 1 μm, Fluospheres, Thermo Fisher). Next, cells were

washed twice and stained for flow cytometric analysis. Phagocytosis of

beads by each cell population was determined using the BD FACS

Canto II flow cytometer and obtained data were analyzed using FlowJo

software (Version 10 Tree Star).

2.8 | In vitro migration assay

Isolated blood cells were washed in RPMI (Gibco) medium containing

10 mM HEPES (Sigma) and 0.1% bovine serum albumin (pH 7.4)

before being transferred into a Transwell insert (3 × 105cells/well,

Costar Corning) previously coated with recombinant human Fc-tagged

murine VCAM (5 μg/ml, R&D systems) in PBS. The inserts were then

placed on a 24-well plate filled with RPMI medium (10 mM HEPES,

0.1% BSA, pH 7.4), with or without stimulation of mCCL2 (20 ng/ml,

R&D systems). After 2 hr incubation at 37 �C and 5% CO2, cells were

isolated from the lower compartment and counted under a light

microscope.

2.9 | Western blot analysis

For Western blot analysis, proteins were either isolated from whole

mouse brains or spleenocytes obtained previously. In the case of

brain samples, collected tissue was immediately snap frozen in liquid

nitrogen and stored in −80 �C until further preparation. In all cases,

samples were lysed on ice in RIPA lysis buffer containing protease

inhibitors, 50 mM Tris/HCl (pH 7.4); 150 mM NaCl; 1% IGEPAL CA-

630; 0.25% Na-deoxycholate; 1 mM NaF. Proteins were separated

by SDS-polyacrylamide gel electrophoresis (12.5%) and transferred

to nitrocellulose. Membranes were incubated overnight at 4 �C in a

1:500 dilution of anti-BDNF antibody (abcam, #203573) or 1:000

dilution of anti-NFG antibody (abcam, #52918), respectively. As a

loading control the same membrane was incubated with a 1:1,000

dilution of anti-β-Tubulin-III antibody (Sigma, #T8660) or, for

immune cells derived from spleens, with GAPDH 1:1,000 (Cell sig-

naling, #2118S). Bound antibodies were revealed using enhanced

chemiluminescence assay and densitometric analysis of blots was

performed using ImageJ with Fiji distribution (Schindelin

et al., 2012).

2.10 | Statistics

Data from flow cytometry, RT-PCR and Western blot analysis were

analyzed by Mann–Whitney test for two groups or one-way and two-

way ANOVA for several groups followed by Tukey's post hoc HSD test

with GraphPad Prism 6 (San Diego, CA). The Sholl analysis data were

analyzed applying a two-tailed Student's t test point by point. Total

complexity and spine density were compared between groups using a

one-way ANOVA followed by a post hoc Tukey's HSD test. In all cases,

results were presented as mean � standard error of the mean (SEM)

and were considered significant, with p < .05.

3 | RESULTS

3.1 | Infection with T. gondii upregulates p75NTR on
innate immune cells in the brain

The first aim of this study was to investigate the level of p75NTR sur-

face expression on innate immune cells in steady state and upon

inflammation. Therefore, we analyzed isolated cells from the blood

and brain of naive and T. gondii-infected C57BL/6 WT mice by flow

cytometry. In the blood of noninfected mice, we already observed a

large number of Ly6Chi monocytes (71.5 � 6.5%) and Ly6Clow macro-

phages (73.1 � 0.6%) expressing p75NTR whereas Ly6Cint blood

monocytes expressed the neurotrophin receptor to a lesser extent

(39.4 � 2.0%; Figure 1c). Upon infection, the cellular expression of

p75NTR by mononuclear cells in the blood was increased on all subsets

(Ly6Chi monocytes: 71.5 � 6.5% vs. 83.7 � 0.7%; p < .14 / Ly6Cint

blood monocytes: 39.4 � 2.0% vs. 51.6 � 3.4%; p < .07 / Ly6Clow

macrophages: 73.1 � 0.6% vs. 83.1 � 1.6%; p < .04). Next, we ana-

lyzed immune cells isolated from the brains of noninfected and

T. gondii-infected WT mice (Figure 1d, d’). Considering the low number

of recruited myeloid cells with approximately 1% of living single cells

in the CNS under steady state condition (data not shown) the corre-

sponding flow cytometric histograms are not representative

(Figure 1d). In control brains a small proportion of microglia cells

expressed p75NTR (21.4 � 1.3%). Upon infection, the amount of

microglia and recruited myeloid cells expressing p75NTR increased

(microglia: 21.4 � 1.3% vs. 94.2 � 1.2%; p < .04 / myeloid cells:

37.3 � 5.3% vs. 85.0 � 1.3%; p < .04). Among the myeloid cell sub-

sets, Ly6Chi monocytes and Ly6Cint brain DCs displayed similar sur-

face expression of the neurotrophin receptor (Ly6Chi monocytes:

20.3 � 12.8% vs. 86.8 � 1.2%; p < .04 / Ly6Cint brain DCs:

47.9 � 11.4% vs. 87.1 � 1.0%; p < .04) and the subset of Ly6Clow

macrophages increased their p75NTR surface expression the greatest

(47.4 � 2.8% vs. 94.7 � 1.3%; p < .04) but the receptor was not

detected on recruited lymphocytes (1.8 � 0.6% vs. 6.2 � 0.8%;

p < .04). When comparing the median fluorescence intensity (MFI) of

the p75NTR expression level between microglia and recruited myeloid

cells in the CNS we could show that expression of p75NTR was similar

between peripheral innate immune cells and brain resident immune

cells (Figure 1e). Taken together, our results indicate the upregulation

of p75NTR by innate immune cells in the blood and CNS upon T. gondii

infection.

3.2 | Knockout of p75NTR does not affect cell
recruitment during T. gondii infection

To elucidate the effect of p75NTR on the behavior of immune cells we

utilized p75NTRexonIV knockout (p75−/−) mice. Due to the strong

expression of the neurotrophin receptor on peripheral blood mononu-

clear cells we first aimed to analyze the potential effect of p75NTR on

immune cell trafficking. Thus, we infected p75−/− and WT mice with

T. gondii and analyzed the composition of immune cells in the hippo-

campus and cortex by flow cytometry (Figure 2a–c). When compared

to WT animals, no difference was observed in the composition of

brain resident microglia cells in cortex (WT: 22.5 � 2.3% vs. p75−/−:
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FIGURE 1 Flow cytometric analysis of p75NTR surface expression on immune cells upon infection with T. gondii. Cells were isolated from blood

and brains of noninfected and T. gondii-infected mice then analyzed by flow cytometry. (a, a0) Representative gating strategy for myeloid cells

from blood of animals infected with T. gondii. Cells were selected based on the forward-scatter/side-scatter plot (FSC/SSC), dead cells were
excluded and only single cells were selected for further analysis (not shown). (a) Neutrophil granulocytes (CD11b+Ly6G+) in the blood were
excluded (upper gate) and monocytes remained as CD11b+Ly6G− cells (lower gate). (a’) Monocytes were further divided with respect to the
surface expression of Ly6C into CD11b+Ly6Chi inflammatory monocytes (upper gate), CD11b+Ly6Cint blood monocytes (middle gate) and
CD11b+Ly6Clow resident macrophages (bottom gate). (b, b0) Representative gating strategy for immune cells isolated from the brain of animals
infected with T. gondii. After FSC/SSC gating, dead cells were excluded and only single cells were selected for further analysis (not shown).
(b) Based on the expression of CD45 and CD11b, CD45+CD11blo lymphocytes (upper left gate), CD45+CD11bhi myeloid cells (upper right gate)
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20.8 � 1.9%; p < .98) or hippocampus (WT: 32.5 � 4.4% vs. p75−/−:

32.0 � 2.8%; p < .99) of p75−/− mice. Further, the knockout of

p75NTR did not result in an altered recruitment of myeloid cells from

the periphery to the cortex (WT: 13.7 � 0.8% vs. p75−/−:

10.7 � 1.0%; p < .59) or hippocampus (WT: 17.8 � 1.5% vs. p75−/−:

14.8 � 2.7%; p < .6) of infected mice. In accordance to these findings,

no differences were found in the composition of lymphocytes in cor-

tex (WT: 34.8 � 3.6% vs. p75−/−: 39.3 � 2.0%; p < .66) or hippocam-

pus (WT: 37.3 � 3.5% vs. p75−/−: 44.0 � 0.8%; p < .34). Next, we

addressed whether p75NTR knockout affects the migratory response

of immune cells. Therefore, an in vitro migration assay was employed

with isolated leukocytes from WT and p75−/− mice and compared the

total number of migrated cells with or without stimulation by the che-

mokine CCL2 (Figure 2d). In unstimulated samples, no differences in

the migration of immune cells from WT (0.22 × 104 cells/ml � 0.037

× 104 cells/ml) or p75−/− mice (0.23 × 104 cells/ml � 0.018 × 104

cells/ml; p < .99) were detected. Upon administration of CCL2, the

total number of migrated cells strongly increased for both groups,

however, no alterations were observed between WT (0.72 × 104

cells/ml � 0.034 × 104 cells/ml) and knockout animals (0.72 × 104

cells/ml � 0.021 × 104 cells/ml; p < .99). In summary, knockout of

the p75NTR did not have an impact on the recruitment of immune cells

to the CNS and did not lead to differences in the migratory response

of leukocytes.

3.3 | Phenotypic characterization of innate immune
cells in the CNS of p75−/− mice upon T. gondii-induced
neuroinflammation

Although no change was detected in the composition of immune cells

in the brains of p75−/− mice, we characterized phenotype and activa-

tion status of the cell subsets upon T. gondii-induced neuroinflamma-

tion. Flow cytometric analysis was performed to assess the expression

level of distinct surface markers by immune cell subsets isolated from

infected brains of WT and p75−/− mice. When compared to WT, brain

resident microglia from p75−/− animals showed a significantly reduced

MFI for Major Histocompatibility complex (MHC) class II surface

expression (p < .02), CD11c (p < .01) and co-stimulatory CD80

(p < .03), as indicated in Figure 3a–d. The histograms show that the

subsets expressing the indicated markers were similar between the

experimental groups for MHC class II (WT: 95.8 � 0.5% vs. p75−/−:

98.6 � 0.5%; p < .09) and CD11c (WT: 89.9 � 2.9% vs. p75−/−:

91.4 � 1.1%; p < .86). Yet CD80 was found to be expressed by fewer

cells in p75−/− samples (WT: 94.5 � 0.4% vs. p75−/−: 88.6 � 1.2%;

p < .02; Figure 3a’–d’). In contrast to microglia, Ly6Chi monocytes

showed no differences between p75−/− and WT animals with respect

to MFI values or expressing cell fractions for the surface markers

MHC II, CD11c, F4/80, and CD80 (Figure 3e–h’). As we reported pre-

viously, peripheral Ly6Chi inflammatory monocytes enter the paren-

chyma and differentiate into Ly6Cint brain dendritic cells (DCs) and

FIGURE 2 Immune cell recruitment to cortex and hippocampus of WT and p75−/− mice upon infection with T. gondii and in vitro leukocytes

migration (a–c) the composition of immune cells isolated from cortices and hippocampi of T. gondii-infected WT and p75−/− mice was determined

by flow cytometric analysis. Cell populations were gated as described in Figure 1b,b0 and bar charts display the fraction of each population as
frequency of living single cells (�SEM). (d) The migratory response of leukocytes from T. gondii-infected WT and p75−/− mice was assessed
in vitro by a transwell migration assay. Isolated cells were either stimulated with the chemokine CCL2 or were left unstimulated. Bar charts
represent the mean of total cell count (�SEM) in the compartment below the membrane. Differences between groups were analyzed by two-way
ANOVA with post hoc Tukey's HSD test

and CD45intCD11bint microglia (lower right gate) were identified. Next, neutrophil granulocytes were excluded from the myeloid cell population
by their expression of CD11b and Ly6G (not shown). (b0) Myeloid cells were further divided into CD11b+Ly6Chi inflammatory monocytes (upper
gate), CD11b+Ly6Cint monocyte-derived DCs (middle gate) and CD11b+Ly6Clow monocyte-derived macrophages (bottom gate; Biswas et al.,
2015). The lymphocyte population was subdivided into CD3+CD4+ T cells and CD3+CD8+ T cells (data not shown). Surface expression of p75NTR

was analyzed on blood cells (c) and brain cells (d) of noninfected mice and on blood cells (c0) and brain cells (d’) of animals infected with T. gondii.
Cell populations were selected as described above and histograms show the representative expression level of p75NTR by the cell population in
comparison to the corresponding FMO control. Bars mark cells positively expressing p75NTR and numbers above bars represent the percentage of
cells (�SEM) in the respective population. (e) Flow cytometric analysis of p75NTR surface expression on cells isolated from brains of naive and
T. gondii-infected mice. Cell populations were selected as described above and bar charts display the median fluorescence intensity (MFI; �SEM).
Differences between groups were analyzed by one-way ANOVA with post hoc Tukey's HSD test (*p < .05; ***p < .001; ****p < .0001)
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Ly6Clow macrophages (Biswas et al., 2015). Interestingly, Ly6Cint brain

DCs in p75−/− animals displayed a significant reduction in the MFI of

CD11c (p < .002) although the fraction of expressing cells was not

changed (WT: 83.9 � 0.1% vs. p75−/−: 78.0 � 1.4%; p < .1;

Figure 4c). In accordance to this, knockout of p75NTR also resulted in

a diminished MFI for CD11c (p < .03) and F4/80 (p < .001) surface

expression levels on Ly6Clow macrophages (Figure 4e–h’) but not in

cells positively expressing the respective surface receptors (CD11c:

FIGURE 3 Phenotypic analysis of activated microglia and Ly6Chi monocytes from brains of T. gondii-infected WT and p75−/− mice. The surface

expression of activation markers on cells isolated from infected brains of WT and p75−/− mice was determined by flow cytometric analysis. Cell
populations were selected as described in Figure 1b, b0. (a–h) Histograms show the representative expression level of the surface marker by cells
(WT mice tinted, p75−/− mice without tint) in comparison to the corresponding FMO control and bars mark cells positively expressing the surface
marker. Numbers above bars represent the percentage of cells (�SEM) in the respective population. (a0–h0) Bar charts display the MFI (�SEM) for
the specific surface marker. Differences between groups were analyzed by Mann–Whitney test (*p < .05, ** p < .01)
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WT: 97.5 � 0.3% vs. p75−/−: 92.7 � 1.0%; p < .1 / F4/80: WT:

97.9 � 0.4% vs. p75−/−: 86.6 � 0.7%; p < .24). We further investi-

gated the CD4+ and CD8+ T cell lymphocyte populations and quanti-

fied their activation status in infected brains of WT and p75−/−

animals by flow cytometric analysis (Supporting Information 1A–C0).

The frequencies of CD4+ T cells (WT: 50.8 � 1.2% vs. p75−/−:

52.0 � 2.3%; p < .74) and CD8+ T cells (WT: 46.4 � 1.3% vs. p75−/−:

45.1 � 2.2%; p < .86) in T. gondii-infected brains were not differing

FIGURE 4 Phenotypic analysis of activated Ly6Cint brain DCs and Ly6Clow macrophages from brains of T. gondii-infected WT and p75−/− mice.

The surface expression of activation markers on cells isolated from infected brains of WT and p75−/− mice was determined by flow cytometric
analysis. Cell populations were selected as described in Figure 1b, b0. (a–h) Histograms show the representative expression level of the surface
marker by cells (WT mice tinted, p75−/− mice without tint) in comparison to the corresponding FMO control and bars mark cells positively
expressing the surface marker. Numbers above bars represent the percentage of cells (�SEM) in the respective population. (a0–h0) Bar charts
display the MFI (�SEM) for the specific surface marker. Differences between groups were analyzed by Mann–Whitney test (* p < .05, ** p < .01,
*** p < .001)
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between p75−/− and WT mice. Interestingly, significantly less CD4+

T cells in p75−/− mice were expressing the IL-2 receptor alpha chain

CD25 (WT: 13.6 � 0.2% vs. p75−/−: 11.4 � 0.1%; p < .03) which also

resulted in a significantly lower MFI (p < .03). CD8+ T cells of both

experimental groups expressed CD25 equally (WT: 12.2 � 1.2%

vs. p75−/−: 9.9 � 0.8%; p < .34) and did not show significant differ-

ences in MFI. In conclusion, the phenotypic analysis of brain resident

and recruited peripheral immune cells during cerebral toxoplasmosis

revealed several differences between p75−/− and WT animals imply-

ing a modified activation of the immune cells in knockout animals.

3.4 | Knockout of p75NTR has no effect on
phagocytic capacity but alters intracellular cytokine
production by innate immune cells

To further examine whether the function of immune cells in p75−/−

mice could also be affected, an ex vivo phagocytosis assay was per-

formed. For that reason, resident, and recruited immune cells from

infected brains were isolated and subsequently incubated with FITC-

fluorescent latex beads. The MFI of each population in the FITC

detection channel was determined by flow cytometry and results

were compared between WT and p75−/− mice (Figure 5a). The results

reveal, that phagocytic activity of microglia or recruited myeloid cell

populations in p75−/− mice and WT cells was not distinct.

Next, the morphological activation of microglia was assessed by

analyzing their structural alterations and density. Under steady state

conditions, in both WT and p75−/− mice the microglia in the CA1

region of the hippocampus showed the ramified morphology, typical

for resting cells (Figure 5b above). Upon T. gondii infection, microglia

transformed their morphology to an activated amoeboid form with

hypertrophic processes that tightly wrap around the cell bodies and

main dendrites of eGFP-positive CA1 pyramidal neurons (Figure 5b

below and 5b’). We further quantified the overlay between Iba1+

microglial processes and the perimeter of eGFP expressing pyramidal

neurons and observed a significant increase upon T. gondii infection

(Figure 5c; WT: p < .001; p75−/−: p < .001). The increase in microglia/

neuron overlap was not significantly different in p75−/− when com-

pared to WT infected mice (Figure 5c). Finally, microglia density was

quantified and showed an equally significant increase in the number

of Iba1+ microglia cells in the CA1 region of p75−/− and WT infected

mice (Figure 5d; WT p < .001; p75−/− p < .001). Taken together, the

results show a strong activation of microglia upon T. gondii infection

that does not significantly differ between WT and p75−/− mice.

In the next step, we focused on the flow cytometric analysis of

cytokine expression by immune cell populations in brains of T. gondii-

infected animals. Upon in vitro re-stimulation with Toxoplasma lysate

antigen (TLA) the production of IL-1α, IL-6, and IL-10 by microglia

from WT and p75−/− mice did not differ (Figure 6a–d’). Interestingly, a

significantly higher percentage of Ly6Chi monocytes from p75−/− ani-

mals expressed IL-1α when compared to WT samples (WT:

32.1 � 1.8% vs. p75−/−: 48.7 � 3.1%; p < .0001) despite MFI values

being similar (p < .2; Figure 6e, e’). Moreover, p75NTR knockout

resulted in an increased MFI of IL-10 (p < .03) but not in a higher

number of Ly6Chi monocytes expressing this cytokine (WT:

0.5 � 0.2% vs. p75−/−: 1.2 � 0.2%; p < .99; Figure 6h, h’). Similarly,

analysis of Ly6Cint brain DCs reported significantly higher fluores-

cence intensities for IL-10 (p < .03) and also IL-6 (p < .03) in infected

p75−/− animals while the frequency of secreting cells did not differ

(Figure 7a–d’). We also discovered an increased percentage of Ly6Clow

macrophages from p75−/− mice secreting IL-1α (WT: 26.3 � 1.7%

vs. p75−/−: 38.6 � 3.2%, p < .0004), resulting in significantly higher

median fluorescence (p < .03). In addition, significantly elevated MFIs

were also detected for IL-6 (p < .03) and IL-10 (p < .3) when com-

pared to WT samples while positively expressing cell fractions were

not altered (Figure 7e–h’). Levels of IL-12 and inducible nitric oxide

synthase (iNOS) in microglia and recruited mononuclear cells were

analyzed upon T. gondii infection (Supporting Information 2A-H0).

Here no differences were observed in MFI values or cells positively

producing these proteins. To address the question whether the

altered cytokine milieu in infected brains of p75−/− mice would affect

the survival of cells, we performed an apoptosis assay via flow cyto-

metry (Supporting Information 3A, B). While the frequencies of living

cells and apoptotic cells did not differ between WT and p75−/− ani-

mals, necrotic cells were significantly reduced in KO mice (p < .03).

In summary, we found that knockout of p75NTR leads to a higher

secretion of proinflammatory mediators and anti-inflammatory IL-10

by myeloid cell populations but had no effect on brain resident

microglia.

3.5 | Chronic infection with T. gondii increases
proBDNF levels in WT and p75−/− mice

Previously, we reported that infection with T. gondii induces changes

in the morphology of noninfected neurons and also leads to modified

brain connectivity in rodents (Parlog et al., 2014) possibly explaining

the behavioral changes observed in infected rats (Berdoy, Webster, &

Macdonald, 2000). With regards to this, related studies have reported

a link between changes in neurotrophin levels and the progression of

neurodegenerative diseases such as schizophrenia and Alzheimer's

disease (Capsoni, Brandi, Arisi, D'Onofrio, & Cattaneo, 2011; Green,

Matheson, Shepherd, Weickert, & Carr, 2011). To obtain more infor-

mation about possible changes in neurotrophin expression levels

within the CNS of WT and p75−/− mice upon the infection with

T. gondii we performed Western blot analysis. Isolated proteins from

brain lysate of noninfected and infected WT and p75−/− mice were

analyzed for NGF, BDNF, and proBDNF levels (Figure 8a–d). Neither

infection with T. gondii nor knockout of p75NTR was found to have an

effect on NGF or BDNF levels which remained at baseline (NGF: WT

control vs. WT inf.: p < .99; p75−/− control vs. p75−/− inf.: p < .74 /

BDNF: WT control vs. WT inf.: p < .75; p75−/− control vs. p75−/− inf.:

p < .99; Figure 8b, c). Remarkably, proBDNF which was detectable in

small quantities in control WT and p75−/− mice increased strongly

upon T. gondii infection (WT control vs. WT inf.: p < .0001; p75−/−

control vs. p75−/− inf.: p < .0001; Figure 8d). Assuming that this

observed upregulation of proBDNF was possibly facilitated by the

recruited immune cell populations due to T. gondii infection, we set

out to confirm our hypothesis. To this end, peripheral immune cells

were isolated from spleens of control and infected WT mice and

proBDNF expression was analyzed by Western blot (Figure 8e, f).

While protein levels of the proneurotrophin were detectable at lower
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FIGURE 5 Ex vivo phagocytosis assay of immune cells isolated from brains of WT and p75−/− mice infected with T. gondii. (a) The phagocytic

capability of immune cells isolated from T. gondii-infected brains of WT and p75−/− mice was assessed ex vivo by a phagocytosis assay. Isolated
cells were incubated together with FITC-fluorescent latex beads and analyzed by flow cytometry. Cell populations were selected as described
above and Bar charts display the MFI (�SEM) in the FITC detection channel. Differences between groups were analyzed by Mann–Whitney test.
(b) The images above show a typical resting Iba1+ microglia (red) under control conditions for hippocampal CA1 region of WT (left) and p75−/−

mice (right). Below are typical images of activated Iba1+ microglia (red) upon chronic T. gondii infection for hippocampal CA1 region of WT (left)
and p75−/− mice (right). In green are eGFP-labeled CA1 pyramidal neurons. Scale bars are 50 μm. (b0) The images show a higher magnification
(scale bar is 10 μm) of eGFP+ CA1 pyramidal cell bodies and Iba1+ microglia processes under control conditions (above) and chronic T. gondii
infection (below) for WT (left) and p75−/− mice (right). (c) Bar charts show the quantification for the overlay (in %) between Iba1+ microglia
processes and eGFP expressing cell bodies for WT and p75−/− mice under control conditions and upon chronic T. gondii infection. (d) Bar charts
show the quantification for Iba1+ microglia density for WT and p75−/− mice under control conditions and chronic T. gondii infection. Differences
between groups were analyzed by Student's T-test. All values are shown as mean � SEM (*** p < .001)
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FIGURE 6 Flow cytometric analysis of intracellular cytokines in microglia and Ly6Chi monocytes from brains of T. gondii-infected WT and p75−/−

mice. Isolated cells from brains of T. gondii-infected WT and p75−/− mice were re-stimulated with Toxoplasma lysate antigen in vitro and
intracellular proteins were stained for flow cytometric analysis. Cell populations were selected as described above. (a–h) Histograms show the
representative intracellular expression level of the molecules by cells (WT mice tinted, p75−/− mice without tint) in comparison to the
corresponding isotype control. Bars mark cells positive for the particular protein and numbers above bars show the percentage of cells (�SEM) in
the respective population. (a0–h0) Bar charts display the MFI (�SEM) for the respective fluorochrome-conjugated antibody for the particular
protein. Differences between groups were analyzed by Mann–Whitney test (*p < .05)
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FIGURE 7 Flow cytometric analysis of intracellular cytokines in Ly6Cint brain DCs and Ly6Clow macrophages from brains of T. gondii-infected WT

and p75−/− mice. Isolated cells from brains of T. gondii-infected WT and p75−/− mice were re-stimulated with Toxoplasma lysate antigen in vitro
and intracellular proteins were stained for flow cytometric analysis. Cell populations were selected as described above. (a–h) Histograms show the
representative intracellular expression level of the molecules by cells (WT mice tinted, p75−/− mice without tint) in comparison to the
corresponding isotype control. Bars mark cells positive for the particular protein and numbers above bars show the percentage of cells (�SEM) in
the respective population. (a0–h0) Bar charts display the MFI (�SEM) for the respective fluorochrome-conjugated antibody for the particular
protein. Differences between groups were analyzed by Mann–Whitney test (*p < .05)
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quantities in control mice, T. gondii infection significantly increased

the levels of proBDNF (WT control vs. WT inf.: p < .03) supporting

our previous findings in brain homogenate. Taken together we could

show that protein levels of NGF and BDNF were neither affected by

p75NTR KO nor by T. gondii infection. In contrast, proBDNF levels

were found highly increased in the brain and periphery of

infected mice.

3.6 | Role of p75NTR in mediating the effect of a
chronic T. gondii infection on dendritic architecture

Chronic infection with T. gondii was shown to result in a significant

reduction in neuronal morphology and connectivity both in the cortex

and hippocampus of C57BL/6 mice (Parlog et al., 2014). Interestingly,

the p75NTR was reported to specifically mediate negative structural

changes at pyramidal neurons (Zagrebelsky et al., 2005) and its

expression levels are modulated upon neuroinflammation (Meeker &

Williams, 2014). Thus, we addressed whether knocking out p75NTR

might rescue neuronal morphology upon T. gondii infection. While at a

qualitative level dendritic complexity of CA1 pyramidal neurons is

clearly reduced in WT mice upon chronic T. gondii infection

(Figure 9a), no obvious differences in dendritic architecture can be

observed in infected p75−/− mice (Figure 9a’). Further, Sholl analysis

was applied to quantify dendritic complexity relative to the distance

from the cell body. When comparing control (open circles) and

infected WT mice (black circles) a significantly lower dendritic com-

plexity along the entire length of both the apical (Figure 9b; F

(1,38) = 4.677 p < .05) but not the basal (Figure 9c) dendritic trees

was detected upon T. gondii infection. When p75−/− mice were ana-

lyzed no significant difference in dendritic complexity could be

observed along the entire length of the apical dendrite (Figure 9b’)

upon T. gondii infection (black circles) compared to noninfected

p75−/− mice (open circles). On the contrary, dendritic complexity for

the basal dendrites of CA1 pyramidal neurons of p75−/− mice was sig-

nificantly lower in the proximal part (Figure 9c’; F(1. 52) = 4.283

p < .05) during infection (black circles). The analysis of total dendritic

complexity confirmed the observations above and showed a slight

decrease in WT mice upon T. gondii infection for the apical but not for

the basal dendrites (Figure 9b”, c00; Table 1). Interestingly, total den-

dritic complexity was not significantly decreased for both apical and

basal dendrites of infected p75−/− mice when compared to controls

(Figure 9b”, c00; Table 1). Taken together these results confirm previ-

ous findings showing a significant loss in neuronal complexity in WT

mice upon T. gondii infection and indicate that deletion of p75NTR pre-

vents the T. gondii-induced changes in dendritic architecture of CA1

pyramidal neurons. Next, we compared dendritic spine density

changes in WT and p75−/− cortical and hippocampal pyramidal neu-

rons upon T. gondii infection. Both for CA1 and for Layer V/VI pyrami-

dal neurons, dendritic spine density was significantly reduced during

infection in WT mice (Figure 9d–e’; CA1 apical dendrites p < .05; CA1

basal p < .01; LV/VI apical p < .01; LV/VI basal p < .001). In p75−/−

mice, dendritic spine density upon T. gondii infection was only slightly,

but not significantly lower than in noninfected mice for both compart-

ments of CA1 pyramidal neurons and for the basal dendrites of Layer

V/VI pyramidal neurons (Figure 9d–e’; Table 1). The only exceptions

were the LV/VI apical dendrites showing a significantly lower spine

FIGURE 8 Western blot analysis of neurotrophins protein levels in brains of T. gondii-infected WT and p75−/− mice and from isolated immune

cells. (a–d) Western blot analysis of NGF, BDNF and proBDNF in whole-brain lysate from control and infected mice, alongside β-Tubulin-III
loading controls. Bar charts indicate densitometric analysis of blots, expressed as mean (�SEM). Differences between groups were analyzed using
a one-way ANOVA with post-hoc Tukey's HSD test. (e, f) Western blot analysis of proBDNF in isolated immune cells from control and T. gondii-
infected WT mice with GAPDH loading controls. Bar charts indicate densitometric analysis of blots, expressed as mean (�SEM). Differences
between groups were analyzed by Mann-Whitney test. (* p < 0.05, * * * * p < 0.0001)
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density than controls upon infection (Figure 9e; p < .05). For the CA1

basal dendrites dendritic spine density was significantly higher for

infected p75−/− mice versus infected WT mice (Figure 9d'; Table 1;

CA1 basal p < .05). Thus, deletion of p75NTR results in a complete res-

cue of the decrease in dendritic spine density induced by T. gondii

infection for the CA1 pyramidal neurons and a partial one for Layer

V/VI pyramidal neurons.

4 | DISCUSSION

We recently detected significant alterations in dendritic complexity

and dendritic spine density in CNS principal neurons upon cerebral

toxoplasmosis (Parlog et al., 2014). In addition, Western blot analysis

revealed decreased levels of the presynaptic protein Synatophysin

and the postsynaptic protein PSD-95 indicating a significant modifica-

tion of brain connectivity upon T. gondii infection (Parlog et al., 2014).

Moreover, our results indicate distinct modifications in the synaptic

protein composition (Lang et al., 2018). We previously reported that

the chronic infection causes activation of resident microglia and

recruitment of mononuclear immune cell subsets to the CNS (Biswas

et al., 2015, 2017; Möhle et al., 2016). Thus, we hypothesized that

activated immune cells possibly interact with neurons upon infection

and modify their morphology and function. However, the molecular

and cellular mechanisms mediating such interaction remained unex-

plored (Parlog et al., 2015). Neurotrophin signaling has been shown to

modulate the immune system activity at different levels (Minnone, de

Benedetti, & Bracci-Laudiero, 2017; Vega et al., 2003). Therefore, we

investigated the role of p75NTR signaling in modulating neuronal archi-

tecture and immune cell function in the CNS. We showed that p75NTR

influences immune cell activation, function, and cytokine production

possibly contributing to the rescue of neuronal structure. Moreover,

we revealed that infection-induced decrease in dendritic complexity

observed upon T. gondii infection could be rescued by p75NTR

knockout.

In addition to neurons, the expression of p75NTR was also

detected on a variety of immune cells such as B cells and peripheral

mononuclear blood cells (Morgan, Thorpe, Marchetti, & Perez-Polo,

1989). Based on those previous observations, we aimed at investigat-

ing whether p75NTR expression is altered on peripheral blood mono-

nuclear cell subsets during T. gondii infection. Our results already

showed a prominent expression of p75NTR on mononuclear cells in

the blood of control mice under steady state conditions. Infection

with T. gondii led to an increased receptor expression that was found

on Ly6Chi inflammatory monocytes and Ly6Clow resident macro-

phages. These results are in line with results by Choi and Friedman

(2009) who reported an increase of p75NTR expression in astrocytes

and neurons as a response to high levels of IL-1β and TNF. Notewor-

thy, these cytokines have also been shown to be important mediators

in the course of T. gondii infection (Chang, Grau, & Pechère, 1990;

Dimier & Bout, 1993; Schlüter et al., 1999; Yap, Scharton-Kersten,

Charest, & Sher, 1998).

Next, we examined p75NTR expression by resident and recruited

immune cells in the CNS upon infection-induced neuroinflammation.

While lymphocytes did not express this receptor, resident microglia

cells and myeloid-derived mononuclear cell subsets upregulated

p75NTR. Importantly, Ly6Clow macrophages revealed the most

FIGURE 9 Role of p75NTR in mediating the effect of a T. gondii infection on dendritic architecture. (a, a0) Typical camera lucida reconstructions

for the apical and basal dendrites of WT and p75−/− CA1 pyramidal neurons under control conditions and of infected mice with T. gondii. Scale
bars are 100 μm. (b, b0) The graphs show the Sholl analysis for the apical dendrites of CA1 hippocampal pyramidal neurons of WT and p75−/−

CA1 pyramidal neurons under control conditions (open circles) and upon T. gondii infection (black circles). (b00) The graph shows total dendritic
complexity for the apical dendrites of CA1 hippocampal pyramidal neurons of WT and p75−/− CA1 pyramidal neurons under control conditions
and upon T. gondii infection. (c, c0) The graphs show the Sholl analysis for the basal dendrites of CA1 hippocampal pyramidal neurons of WT and
p75−/− CA1 pyramidal neurons under control conditions (open circles) and upon T. gondii infection (black circles). (c00) The graph shows total
dendritic complexity for the basal dendrites of CA1 hippocampal pyramidal neurons of WT and p75−/− CA1 pyramidal neurons under control
conditions and upon T. gondii infection. (d, d0) The graphs show dendritic spine density for the apical and basal dendrites of WT and p75−/− CA1
pyramidal neurons under control conditions and upon T. gondii infection. (e, e0) The graphs show dendritic spine density for the apical and basal
dendrites of WT and p75−/− layer V/VI pyramidal neurons under control conditions and upon T. gondii infection. Total complexity and spine
density were compared between groups using a one-way ANOVA with post hoc Tukey's HSD test. All values are shown as mean � SEM (* p < .05;
**p < .01; *** p < .001)

TABLE 1 Statistical values for total dendritic spine density in

different brain areas and different neuronal subregions

Values for total dendritic complexity (Figure 9b00,c00; apical)
Mice Control T. gondii infection

WT 31; 157.7 � 6.21 9; 132.1 � 4.20

p75−/− 38; 146.1 � 4.07 15; 153.3 � 7.79

Values for total dendritic complexity (Figure 9b00,c00; basal)

Mice Control T. gondii infection

WT 29; 136.8 � 5.06 7; 142.3 � 11.70

p75−/− 41; 156.9 � 3.86 13; 138.5 � 10.13

Values for total dendritic spine density apical CA1 (Figure 9d)

Mice Control T. gondii infection

WT 14; 2.23 � 0.05 3; 1.90 � 0.07

p75−/− 5; 2.32 � 0.09 4; 2.15 � 0.05

Values for total dendritic spine density basal CA1 (Figure 9d’)

Mice Control T. gondii infection

WT 12; 2.09 � 0.04 3; 1.79 � 0.05

p75−/− 5; 2.28 � 0.06 4; 2.07 � 0.06

Values for total dendritic spine density apical L V/VI (Figure 9e)

Mice Control T. gondii infection

WT 14; 1.36 � 0.05 3; 0.88 � 0.02

p75−/− 5; 1.60 � 0.03 4; 1.19 � 0.08

Values for total dendritic spine density basal L V/VI (Figure 9e’)

Mice Control T. gondii infection

WT 13;1.34 � 0.05 3; 0.82 � 0.01

p75−/− 5; 1.34 � 0.06 4; 1.10 � 0.07
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prominent upregulation of p75NTR suggesting a potential effect on

their function.

Previously we have described the crucial involvement of recruited

peripheral myeloid cells in host defense against T. gondii infection

(Dunay et al., 2008). In the murine model of cerebral toxoplasmosis

we found that Ly6Chi inflammatory monocytes were recruited from

the blood to the brain in a CCL2-dependent manner to exert

anti-parasitic activities (Biswas et al., 2015). First, recruited Ly6Chi

inflammatory monocytes produced proinflammatory mediators such

as IL-1α, IL-6, and inducible nitric oxide synthase (iNOS) but were also

able to secrete regulatory IL-10. Second, Ly6Chi inflammatory mono-

cytes further differentiated into Ly6Cint brain DCs and Ly6Clow macro-

phages upon arrival in the CNS and, thus, contributed to antigen

presentation and to parasite control.

Due to the high p75NTR expression on Ly6Chi inflammatory

monocytes in the blood, we investigated whether knockout of p75NTR

would affect the recruitment of monocytes to the CNS upon T. gondii

infection. Previous in vitro studies have reported beneficial effects of

NGF-associated neurotrophin signaling on macrophage chemotaxis

(Kobayashi & Mizisin, 2001; Samah et al., 2008) but in contrast, animal

models of experimental autoimmune encephalomyelitis demonstrated

a reduced CNS infiltration of blood monocytes caused by NGF over-

expression (Flügel et al., 2001). Here, we did not detect significant dif-

ferences in the frequencies of myeloid cells in cortex or hippocampus

of p75−/− mice. Furthermore, the in vitro migratory response of leuko-

cytes towards CCL2 stimulation was not changed. The observed dif-

ferences can possibly be explained by the difference in the model of

neuroinflammation and by the circumstance that NGF protein levels

were not affected by KO of p75NTR. Recent findings by Lee

et al. (2016) reported reduction in CNS trafficking of inflammatory

monocytes after applying a p75NTR blocking antagonist. However, this

study only tested the effects of the p75NTR antagonist on other mem-

bers of the TNF receptor family with cysteine-rich domains. Thus,

they did not exclude interactions of this antagonist with other extra-

cellular receptors which may be an explanation for the altered cell

recruitment and activation (Delbary-Gossart et al., 2016).

Early studies revealed that neurotrophin signaling affects several

functions of immune cells such as inhibition of MHC class II expres-

sion, phagocytosis and proliferation (Elkabes, DiCicco-Bloom, & Black,

1996; Neumann, Misgeld, Matsumuro, & Wekerle, 1998). As the

immune cell activation status reflects their functional properties, we

characterized the phenotype of immune cells in the brains of p75−/−

mice upon Toxoplasma-induced neuroinflammation. Here, we found

that brain resident microglia and subsets of recruited peripheral mye-

loid cells in knockout mice displayed lower levels of MHC class II,

CD11c, F4/80, and CD80 surface receptors implying an altered acti-

vation and function. Therefore, we analyzed the phagocytic capacity

of these immune cells but did not find differences when compared to

WT animals. Besides phagocytosis, the production of inflammatory

mediators is another functional aspect of the cellular immune

response toward inflammation. Accordingly, we analyzed cytokine

production by microglia and recruited peripheral mononuclear cell

subsets. Although p75NTR knockout did not affect microglia cells,

myeloid cell subsets secreted increased amounts of proinflammatory

IL-1α, IL-6, and regulatory IL-10. So far, few studies have reported

about the effects of neurotrophins on the release of immunological

mediators by immune cells and even less is known about the role of

the p75NTR in this context. (Barouch et al., 2001) observed the secre-

tion of nitric oxide by macrophages in an NGF-dependent activation

of mitogen-activated protein kinases. In our experiments, we did not

find alterations in the production of iNOS suggesting that the

reported nitric oxide release could be rather a result of TrkA- instead

of p75NTR-mediated signal transduction (Frossard, Freund, & Adven-

ier, 2004; Stephens et al., 1994; Xie, Tisi, Yeo, & Longo, 2000).

The proinflammatory cytokine IL-1 was shown in many studies to

be involved in memory processes, specifically those related to hippo-

campal functioning (Goshen & Yirmiya, 2007). Although most of the

evidence gathered so far indicates that the effects of IL-1 on CNS

neurons are detrimental, recent evidence suggests that under some

circumstances IL-1 may actually be required for the normal physiologi-

cal regulation of hippocampal function (Avital et al., 2003). Indeed,

impairment of IL-1 signaling results in a reduced size of dendritic

spines on hippocampal pyramidal neurons (Goshen & Yirmiya, 2009).

Also, application of IL-10 to hippocampal neurons has been shown to

induce synapse formation (Lim et al., 2013). Taken together, the

increase we observed in the secretion of IL-1α and IL-10 in p75−/−

mice might at least in part contribute to the rescuing of neuronal

structure upon T. gondii infection.

The multifunctional cytokine IL-6 was reported to be a promotor

and inhibitor of inflammation (Scheller, Chalaris, Schmidt-Arras, &

Rose-John, 2011; Tilg, Dinarello, & Mier, 1997; Xing et al., 1998) and

has been associated with a variety of neurodegenerative disorders

including Alzheimer's and Parkinson disease (Dobbs et al., 1999;

Wood et al., 1993). IL-6 was also found to induce neuroprotection

and prevent neuron and oligodendrocyte degradation (Chucair-Elliott

et al., 2014; Pizzi et al., 2004), thus contributing to its multifunctional

aspects. Accordingly, our data showed an increased secretion of IL-6

by Ly6Cint brain DCs and Ly6Clow macrophages, supporting these pre-

vious findings.

BDNF signaling has been shown to positively modulate dendritic

and spine architecture in cortical and hippocampal neurons as well as

structural plasticity both in vitro and in vivo (Kellner et al., 2014;

Rauskolb et al., 2010; Zagrebelsky & Korte, 2014). We performed

Western blot analysis of brain homogenates to compare BDNF pro-

tein levels. Here, we found that BDNF levels remained unaltered upon

infection for both WT and p75−/− mice. Interestingly, the precursor

protein proBDNF was strongly increased upon infection. Particularly,

signaling of proBDNF via the p75NTR has been shown to promote

spine pruning and to negatively affect dendritic spine density and syn-

aptic plasticity (Orefice, Shih, Xu, Waterhouse, & Xu, 2016; Qiao, An,

Xu, & Ma, 2017; Yang et al., 2014). In addition, our data imply that

activated immune cells contribute to proBDNF production upon

infection-induced inflammation since previous studies also observed

the secretion of proBDNF by peripheral macrophages under certain

inflammatory conditions (Luo et al., 2016; Wong et al., 2010). Thus,

activated resident or recruited immune cells entering the CNS from

the periphery during neuroinflammation possibly contribute to the

elevated proBDNF levels in the CNS. Our results suggest that the res-

cue of the Toxoplasma infection-induced alterations of neuronal archi-

tecture observed in p75−/− animals may be due to the absence of
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proBDNF-mediated signaling in neurons in combination with the

altered immune response. Yet, it is not clear whether other cell types

are also involved in this observed rescue of neuronal morphology. A

study published by Cragnolini, Huang, Gokina, and Friedman (2009)

demonstrated that astrocytes are capable of expressing p75NTR upon

seizures. Unfortunately, this study only addressed the impact of NGF

on p75NTR signaling, leaving the effect of proneurotrophins on astro-

cyte activation unraveled. Accordingly, as for mature neurotrophins,

only little is known about the final role of proneurotrophins in immune

cell activation. Of note, two studies conducted on peripheral macro-

phages pointed out that proneurotrophins are able to alter the migra-

tory behavior and phenotype of these cells (Williams, Killebrew, Clary,

Seawell, & Meeker, 2015; Wong et al., 2010). Although the altered

phenotype of immune cells in p75−/− mice could be caused by the lack

of proneurotrophin signaling, it remains unclear why cytokine expres-

sion was different in recruited myeloid cells but not in microglia. In

addition, the question arises whether the high levels of proBDNF in

infected peripheral immune cells can also mediate the activation of

myeloid cells before entering the CNS. To this end, further experi-

ments need to be carried out addressing the effect of mature neuro-

trophins and their precursor forms on immune cell activation in the

brain and periphery during steady state and upon inflammatory

conditions.

Taken together, our data provide evidence that neurotrophin sig-

naling via the p75NTR alters innate immune cell behavior and contrib-

utes to function and structural rearrangements in the neuronal network

upon chronic Toxoplasma infection-induced neuroinflammation.

ACKNOWLEDGMENTS

We thank Petra Grüneberg und Dr. Abidat Schneider for their excel-

lent technical assistance. This work was supported by the DFG

(SFB854, TP25) to I.R.D. and M.K.

ORCID

Ildiko Rita Dunay https://orcid.org/0000-0002-9900-8605

REFERENCES

Avital, A., Goshen, I., Kamsler, A., Segal, M., Iverfeldt, K., Richter-
Levin, G., & Yirmiya, R. (2003). Impaired interleukin-1 signaling is asso-
ciated with deficits in hippocampal memory processes and neural plas-
ticity. Hippocampus, 13(7), 826–834. https://doi.org/10.1002/hipo.
10135

Barouch, R., Kazimirsky, G., Appel, E., & Brodie, C. (2001). Nerve growth
factor regulates TNF-alpha production in mouse macrophages via
MAP kinase activation. Journal of Leukocyte Biology, 69(6), 1019–1026.

Berdoy, M., Webster, J. P., & Macdonald, D. W. (2000). Fatal attraction in
rats infected with toxoplasma gondii. Proceedings. Biological Sciences,
267(1452), 1591–1594. https://doi.org/10.1098/rspb.2000.1182

Biswas, A., Bruder, D., Wolf, S. A., Jeron, A., Mack, M.,
Heimesaat, M. M., & Dunay, I. R. (2015). Ly6C(high) monocytes control
cerebral toxoplasmosis. Journal of Immunology (Baltimore, Md. : 1950),
194(7), 3223–3235. https://doi.org/10.4049/jimmunol.1402037

Biswas, A., French, T., Düsedau, H. P., Mueller, N., Riek-Burchardt, M.,
Dudeck, A., … Dunay, I. R. (2017). Behavior of neutrophil granulocytes
during toxoplasma gondii infection in the central nervous system. Fron-
tiers in Cellular and Infection Microbiology, 7, 259. https://doi.org/10.
3389/fcimb.2017.00259

Blanchard, N., Dunay, I. R., & Schlüter, D. (2015). Persistence of toxo-
plasma gondii in the central nervous system: A fine-tuned balance
between the parasite, the brain and the immune system. Parasite
Immunology, 37(3), 150–158. https://doi.org/10.1111/pim.12173

Braun, D. J., Kalinin, S., & Feinstein, D. L. (2017). Conditional depletion of
hippocampal brain-derived neurotrophic factor exacerbates neuropa-
thology in a mouse model of Alzheimer's disease. ASN Neuro, 9(2),
1759091417696161. https://doi.org/10.1177/1759091417696161

Capsoni, S., Brandi, R., Arisi, I., D'Onofrio, M., & Cattaneo, A. (2011). A dual
mechanism linking NGF/proNGF imbalance and early inflammation to
Alzheimer's disease neurodegeneration in the AD11 anti-NGF mouse
model. CNS & Neurological Disorders - Drug Targets, 10(5), 635–647.
https://doi.org/10.2174/187152711796235032

Chang, H. R., Grau, G. E., & Pechère, J. C. (1990). Role of TNF and IL-1 in
infections with toxoplasma gondii. Immunology, 69(1), 33–37.

Chao, M. V. (2003). Neurotrophins and their receptors: A convergence
point for many signalling pathways. Nature Reviews Neuroscience, 4(4),
299–309. https://doi.org/10.1038/nrn1078

Choi, S., & Friedman, W. J. (2009). Inflammatory cytokines IL-1β and TNF-
α regulate p75NTR expression in CNS neurons and astrocytes by dis-
tinct cell-type-specific signalling mechanisms. ASN Neuro, 1(2),
AN20090009. https://doi.org/10.1042/AN20090009

Chucair-Elliott, A. J., Conrady, C., Zheng, M., Kroll, C. M., Lane, T. E., &
Carr, D. J. J. (2014). Microglia-induced IL-6 protects against neuronal
loss following HSV-1 infection of neural progenitor cells. Glia, 62(9),
1418–1434. https://doi.org/10.1002/glia.22689

Cragnolini, A. B., Huang, Y., Gokina, P., & Friedman, W. J. (2009). Nerve
growth factor attenuates proliferation of astrocytes via the p75 neuro-
trophin receptor. Glia, 57(13), 1386–1392. https://doi.org/10.1002/
glia.20857

Delbary-Gossart, S., Lee, S., Baroni, M., Lamarche, I., Arnone, M.,
Canolle, B., … Beattie, M. S. (2016). A novel inhibitor of
p75-neurotrophin receptor improves functional outcomes in two
models of traumatic brain injury. Brain: A Journal of Neurology, 139(Pt
6), 1762–1782. https://doi.org/10.1093/brain/aww074

Dimier, I. H., & Bout, D. T. (1993). Co-operation of interleukin-1 beta and
tumour necrosis factor-alpha in the activation of human umbilical vein
endothelial cells to inhibit toxoplasma gondii replication. Immunology,
79(2), 336–338.

Dobbs, R. J., Charlett, A., Purkiss, A. G., Dobbs, S. M., Weller, C., &
Peterson, D. W. (1999). Association of circulating TNF-α and IL-6 with
ageing and parkinsonism. Acta Neurologica Scandinavica, 100(1),
34–41. https://doi.org/10.1111/j.1600-0404.1999.tb00721.x

Dubey, J. P. (1998). Advances in the life cycle of toxoplasma gondii. Inter-
national Journal for Parasitology, 28(7), 1019–1024. https://doi.org/10.
1016/S0020-7519(98)00023-X

Dunay, I. R., Damatta, R. A., Fux, B., Presti, R., Greco, S., Colonna, M., &
Sibley, L. D. (2008). Gr1(+) inflammatory monocytes are required for
mucosal resistance to the pathogen toxoplasma gondii. Immunity,
29(2), 306–317. https://doi.org/10.1016/j.immuni.2008.05.019

Elkabes, S., DiCicco-Bloom, E. M., & Black, I. B. (1996). Brain microglia/ma-
crophages express neurotrophins that selectively regulate microglial
proliferation and function. The Journal of Neuroscience, 16(8),
2508–2521.

Feng, G., Mellor, R. H., Bernstein, M., Keller-Peck, C., Nguyen, Q. T.,
Wallace, M., … Sanes, J. R. (2000). Imaging Neuronal Subsets in Trans-
genic Mice Expressing Multiple Spectral Variants of GFP. Neuron, 28,
41–51. https://doi.org/10.1016/S0896-6273(00)00084-2

Flügel, A., Matsumuro, K., Neumann, H., Klinkert, W. E. F., Birnbacher, R.,
Lassmann, H., … Wekerle, H. (2001). Anti-inflammatory activity of
nerve growth factor in experimental autoimmune encephalomyelitis:
Inhibition of monocyte transendothelial migration. European Journal of
Immunology, 31(1), 11–22. https://doi.org/10.1002/1521-4141
(200101)31:1<11::AID-IMMU11>3.0.CO;2-G

Frossard, N., Freund, V., & Advenier, C. (2004). Nerve growth factor and
its receptors in asthma and inflammation. European Journal of Pharma-
cology, 500(1–3), 453–465. https://doi.org/10.1016/j.ejphar.2004.
07.044

Goshen, I., & Yirmiya, R. (2007). The role of pro-inflammatory cytokines in
memory processes and neural plasticity. Psychoneuro, 4, 337–378.

DÜSEDAU ET AL. 209

https://orcid.org/0000-0002-9900-8605
https://orcid.org/0000-0002-9900-8605
https://doi.org/10.1002/hipo.10135
https://doi.org/10.1002/hipo.10135
https://doi.org/10.1098/rspb.2000.1182
https://doi.org/10.4049/jimmunol.1402037
https://doi.org/10.3389/fcimb.2017.00259
https://doi.org/10.3389/fcimb.2017.00259
https://doi.org/10.1111/pim.12173
https://doi.org/10.1177/1759091417696161
https://doi.org/10.2174/187152711796235032
https://doi.org/10.1038/nrn1078
https://doi.org/10.1042/AN20090009
https://doi.org/10.1002/glia.22689
https://doi.org/10.1002/glia.20857
https://doi.org/10.1002/glia.20857
https://doi.org/10.1093/brain/aww074
https://doi.org/10.1111/j.1600-0404.1999.tb00721.x
https://doi.org/10.1016/S0020-7519(98)00023-X
https://doi.org/10.1016/S0020-7519(98)00023-X
https://doi.org/10.1016/j.immuni.2008.05.019
https://doi.org/10.1016/S0896-6273(00)00084-2
https://doi.org/10.1002/1521-4141(200101)31:1&lt;11::AID-IMMU11&gt;3.0.CO;2-G
https://doi.org/10.1002/1521-4141(200101)31:1&lt;11::AID-IMMU11&gt;3.0.CO;2-G
https://doi.org/10.1016/j.ejphar.2004.07.044
https://doi.org/10.1016/j.ejphar.2004.07.044


Goshen, I., & Yirmiya, R. (2009). Interleukin-1 (IL-1): A central regulator of
stress responses. Frontiers in Neuroendocrinology, 30(1), 30–45. https://
doi.org/10.1016/j.yfrne.2008.10.001

Green, M. J., Matheson, S. L., Shepherd, A., Weickert, C. S., & Carr, V. J.
(2011). Brain-derived neurotrophic factor levels in schizophrenia: A
systematic review with meta-analysis. Molecular Psychiatry, 16(9),
960–972. https://doi.org/10.1038/mp.2010.88

Hashimoto, M., Nitta, A., Fukumitsu, H., Nomoto, H., Shen, L., &
Furukawa, S. (2005). Involvement of glial cell line-derived neurotrophic
factor in activation processes of rodent macrophages. Journal of Neuro-
science Research, 79(4), 476–487. https://doi.org/10.1002/jnr.20368

Hermes, G., Ajioka, J. W., Kelly, K. A., Mui, E., Roberts, F., Kasza, K., …
McLeod, R. (2008). Neurological and behavioral abnormalities, ventric-
ular dilatation, altered cellular functions, inflammation, and neuronal
injury in brains of mice due to common, persistent, parasitic infection.
Journal of Neuroinflammation, 5, 48. https://doi.org/10.1186/1742-
2094-5-48

Hill, D. E., Chirukandoth, S., & Dubey, J. P. (2005). Biology and epidemiol-
ogy of toxoplasma gondii in man and animals. Animal Health Research
Reviews, 6(01), 41–61. https://doi.org/10.1079/AHR2005100

Ibáñez, C. F., & Simi, A. (2012). p75 neurotrophin receptor signaling in ner-
vous system injury and degeneration: Paradox and opportunity. Trends
in Neurosciences, 35(7), 431–440. https://doi.org/10.1016/j.tins.2012.
03.007

Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in
the nervous system. Current Opinion in Neurobiology, 10(3), 381–391.
https://doi.org/10.1016/S0959-4388(00)00092-1

Kellner, Y., Gödecke, N., Dierkes, T., Thieme, N., Zagrebelsky, M., &
Korte, M. (2014). The BDNF effects on dendritic spines of mature hip-
pocampal neurons depend on neuronal activity. Frontiers in Synaptic
Neuroscience, 6, 5. https://doi.org/10.3389/fnsyn.2014.00005

Kobayashi, H., & Mizisin, A. P. (2001). Nerve growth factor and
neurotrophin-3 promote chemotaxis of mouse macrophages in vitro.
Neuroscience Letters, 305(3), 157–160. https://doi.org/10.1016/
S0304-3940(01)01854-7

Kruse, N., Cetin, S., Chan, A., Gold, R., & Lühder, F. (2007). Differential
expression of BDNF mRNA splice variants in mouse brain and immune
cells. Journal of Neuroimmunology, 182(1–2), 13–21. https://doi.org/
10.1016/j.jneuroim.2006.09.001

Lang, D., Schott, B. H., van Ham, M., Morton, L., Kulikovskaja, L., Herrera-
Molina, R., … Dunay, I. R. (2018). Chronic toxoplasma infection is
associated with distinct alterations in the synaptic protein composition.
Journal of Neuroinflammation, 15(1), 438. https://doi.org/10.1186/
s12974-018-1242-1doi:10.1186/s12974-018-1242-1

Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of
cell survival by secreted proneurotrophins. Science, 294(5548),
1945–1948. https://doi.org/10.1126/science.1065057

Lee, S., Mattingly, A., Lin, A., Sacramento, J., Mannent, L., Castel, M.-N., …
Beattie, M. S. (2016). A novel antagonist of p75NTR reduces peripheral
expansion and CNS trafficking of pro-inflammatory monocytes and
spares function after traumatic brain injury. Journal of Neuroinflamma-
tion, 13(1), 88. https://doi.org/10.1186/s12974-016-0544-4

Lim, S.-H., Park, E., You, B., Jung, Y., Park, A.-R., Park, S. G., & Lee, J.-R.
(2013). Neuronal synapse formation induced by microglia and interleu-
kin 10. PLoS One, 8(11), e81218. https://doi.org/10.1371/journal.
pone.0081218

Luo, C., Zhong, X.-L., Zhou, F. H., Li, J.-Y., Zhou, P., Xu, J.-M., … Dai, R.-P.
(2016). Peripheral brain derived neurotrophic factor precursor regu-
lates pain as an inflammatory mediator. Scientific Reports, 6, 27171.
https://doi.org/10.1038/srep27171

Meeker, R., & Williams, K. (2014). Dynamic nature of the p75 neurotrophin
receptor in response to injury and disease. Journal of Neuroimmune Pharma-
cology, 9(5), 615–628. https://doi.org/10.1007/s11481-014-9566-9

Minnone, G., de Benedetti, F., & Bracci-Laudiero, L. (2017). NGF and its
receptors in the regulation of inflammatory response. International
Journal of Molecular Sciences, 18(5), 1028. https://doi.org/10.3390/
ijms18051028

Möhle, L., Israel, N., Paarmann, K., Krohn, M., Pietkiewicz, S., Müller, A., …
Dunay, I. R. (2016). Chronic toxoplasma gondii infection enhances
β-amyloid phagocytosis and clearance by recruited monocytes. Acta

Neuropathologica Communications, 4, 25. https://doi.org/10.1186/
s40478-016-0293-8

Möhle, L., Parlog, A., Pahnke, J., & Dunay, I. R. (2014). Spinal cord pathol-
ogy in chronic experimental toxoplasma gondii infection. European
Journal of Microbiology & Immunology, 4(1), 65–75. https://doi.org/10.
1556/EuJMI.4.2014.1.6doi:10.1556/EuJMI.4.2014.1.6

Montoya, J. G., & Liesenfeld, O. (2004). Toxoplasmosis. Lancet,
363, 1965e1976.

Morgan, B., Thorpe, L. W., Marchetti, D., & Perez-Polo, J. R. (1989).
Expression of nerve growth factor receptors by human peripheral
blood mononuclear cells. Journal of Neuroscience Research, 23(1),
41–45. https://doi.org/10.1002/jnr.490230106

Munoz, M., Liesenfeld, O., & Heimesaat, M. M. (2011). Immunology of
toxoplasma gondii. Immunological Reviews, 240(1), 269–285. https://
doi.org/10.1111/j.1600-065X.2010.00992.x

Neumann, H., Misgeld, T., Matsumuro, K., & Wekerle, H. (1998). Neurotro-
phins inhibit major histocompatibility class II inducibility of microglia:
Involvement of the p75 neurotrophin receptor. Proceedings of the
National Academy of Sciences of the United States of America, 95(10),
5779–5784.

Nykjaer, A., Willnow, T. E., & Petersen, C. M. (2005). p75NTR--live or let
die. Current Opinion in Neurobiology, 15(1), 49–57. https://doi.org/10.
1016/j.conb.2005.01.004

Orefice, L. L., Shih, C.-C., Xu, H., Waterhouse, E. G., & Xu, B. (2016). Con-
trol of spine maturation and pruning through proBDNF synthesized
and released in dendrites. Molecular and Cellular Neurosciences, 71,
66–79. https://doi.org/10.1016/j.mcn.2015.12.010

Parlog, A., Harsan, L.-A., Zagrebelsky, M., Weller, M., von Elverfeldt, D.,
Mawrin, C., … Dunay, I. R. (2014). Chronic murine toxoplasmosis is
defined by subtle changes in neuronal connectivity. Disease Models &
Mechanisms, 7(4), 459–469. https://doi.org/10.1242/dmm.014183

Parlog, A., Schlüter, D., & Dunay, I. R. (2015). Toxoplasma gondii-induced
neuronal alterations. Parasite Immunology, 37(3), 159–170. https://doi.
org/10.1111/pim.12157

Pizzi, M., Sarnico, I., Boroni, F., Benarese, M., Dreano, M., Garotta, G., …
Spano, P. (2004). Prevention of neuron and oligodendrocyte degenera-
tion by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in
organotypic hippocampal slices. Molecular and Cellular Neurosciences,
25(2), 301–311. https://doi.org/10.1016/j.mcn.2003.10.022

Qiao, H., An, S.-C., Xu, C., & Ma, X.-M. (2017). Role of proBDNF and
BDNF in dendritic spine plasticity and depressive-like behaviors
induced by an animal model of depression. Brain Research, 1663,
29–37. https://doi.org/10.1016/j.brainres.2017.02.020

Rauskolb, S., Zagrebelsky, M., Dreznjak, A., Deogracias, R., Matsumoto, T.,
Wiese, S., … Barde, Y.-A. (2010). Global deprivation of brain-derived
neurotrophic factor in the CNS reveals an area-specific requirement
for dendritic growth. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 30(5), 1739–1749. https://doi.org/10.
1523/JNEUROSCI.5100-09.2010

Samah, B., Porcheray, F., & Gras, G. (2008). Neurotrophins modulate
monocyte chemotaxis without affecting macrophage function. Clinical
and Experimental Immunology, 151(3), 476–486. https://doi.org/10.
1111/j.1365-2249.2007.03578.x

Schack, D. v., Casademunt, E., Schweigreiter, R., Meyer, M., Bibel, M., &
Dechant, G. (2001). Complete ablation of the neurotrophin receptor
p75NTR causes defects both in the nervous and the vascular system.
Nature Neuroscience, 4, 977–978. https://doi.org/10.1038/nn730

Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The
pro- and anti-inflammatory properties of the cytokine interleukin-6.
Biochimica et Biophysica Acta, 1813(5), 878–888. https://doi.org/10.
1016/j.bbamcr.2011.01.034

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,
Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for
biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.
org/10.1038/nmeth.2019

Schlüter, D., Deckert-Schlüter, M., Lorenz, E., Meyer, T., Röllinghoff, M., &
Bogdan, C. (1999). Inhibition of inducible nitric oxide synthase exacer-
bates chronic cerebral toxoplasmosis in toxoplasma gondii-susceptible
C57BL/6 mice but does not reactivate the latent disease in T. gondii-
resistant BALB/c mice. The Journal of Immunology, 162(6), 3512–3518.
Retrieved from. http://www.jimmunol.org/content/162/6/3512.short

210 DÜSEDAU ET AL.

https://doi.org/10.1016/j.yfrne.2008.10.001
https://doi.org/10.1016/j.yfrne.2008.10.001
https://doi.org/10.1038/mp.2010.88
https://doi.org/10.1002/jnr.20368
https://doi.org/10.1186/1742-2094-5-48
https://doi.org/10.1186/1742-2094-5-48
https://doi.org/10.1079/AHR2005100
https://doi.org/10.1016/j.tins.2012.03.007
https://doi.org/10.1016/j.tins.2012.03.007
https://doi.org/10.1016/S0959-4388(00)00092-1
https://doi.org/10.3389/fnsyn.2014.00005
https://doi.org/10.1016/S0304-3940(01)01854-7
https://doi.org/10.1016/S0304-3940(01)01854-7
https://doi.org/10.1016/j.jneuroim.2006.09.001
https://doi.org/10.1016/j.jneuroim.2006.09.001
https://doi.org/10.1186/s12974-018-1242-1
https://doi.org/10.1186/s12974-018-1242-1
info:doi/10.1186/s12974-018-1242-1
https://doi.org/10.1126/science.1065057
https://doi.org/10.1186/s12974-016-0544-4
https://doi.org/10.1371/journal.pone.0081218
https://doi.org/10.1371/journal.pone.0081218
https://doi.org/10.1038/srep27171
https://doi.org/10.1007/s11481-014-9566-9
https://doi.org/10.3390/ijms18051028
https://doi.org/10.3390/ijms18051028
https://doi.org/10.1186/s40478-016-0293-8
https://doi.org/10.1186/s40478-016-0293-8
https://doi.org/10.1556/EuJMI.4.2014.1.6
https://doi.org/10.1556/EuJMI.4.2014.1.6
info:doi/10.1556/EuJMI.4.2014.1.6
https://doi.org/10.1002/jnr.490230106
https://doi.org/10.1111/j.1600-065X.2010.00992.x
https://doi.org/10.1111/j.1600-065X.2010.00992.x
https://doi.org/10.1016/j.conb.2005.01.004
https://doi.org/10.1016/j.conb.2005.01.004
https://doi.org/10.1016/j.mcn.2015.12.010
https://doi.org/10.1242/dmm.014183
https://doi.org/10.1111/pim.12157
https://doi.org/10.1111/pim.12157
https://doi.org/10.1016/j.mcn.2003.10.022
https://doi.org/10.1016/j.brainres.2017.02.020
https://doi.org/10.1523/JNEUROSCI.5100-09.2010
https://doi.org/10.1523/JNEUROSCI.5100-09.2010
https://doi.org/10.1111/j.1365-2249.2007.03578.x
https://doi.org/10.1111/j.1365-2249.2007.03578.x
https://doi.org/10.1038/nn730
https://doi.org/10.1016/j.bbamcr.2011.01.034
https://doi.org/10.1016/j.bbamcr.2011.01.034
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.jimmunol.org/content/162/6/3512.short


Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and
motor cortices of the cat. Journal of Anatomy, 87, 387–406.

Stephens, R. M., Loeb, D. M., Copeland, T. D., Pawson, T., Greene, L. A., &
Kaplan, D. R. (1994). Trk receptors use redundant signal transduction
pathways involving SHC and PLC-γ1 to mediate NGF responses. Neu-
ron, 12(3), 691–705 https://doi.org/10.1016/0896-6273(94)90223-2

Tilg, H., Dinarello, C. A., & Mier, J. W. (1997). IL-6 and APPs: Anti-
inflammatory and immunosuppressive mediators. Immunology Today,
18(9), 428–432. https://doi.org/10.1016/S0167-5699(97)01103-1

Vega, J. A., Garcia-Suarez, O., Hannestad, J., Perez-Perez, M., &
Germana, A. (2003). Neurotrophins and the immune system. Journal of
Anatomy, 203(1), 1–19. https://doi.org/10.1046/j.1469-7580.2003.
00203.x

Vyas, A., Kim, S.-K., Giacomini, N., Boothroyd, J. C., & Sapolsky, R. M.
(2007). Behavioral changes induced by toxoplasma infection of rodents
are highly specific to aversion of cat odors. Proceedings of the National
Academy of Sciences of the United States of America, 104(15),
6442–6447. https://doi.org/10.1073/pnas.0608310104

Williams, K. S., Killebrew, D. A., Clary, G. P., Seawell, J. A., & Meeker, R. B.
(2015). Differential regulation of macrophage phenotype by mature
and pro-nerve growth factor. Journal of Neuroimmunology, 285, 76–93.
https://doi.org/10.1016/j.jneuroim.2015.05.016

Wilson, E. H., & Hunter, C. A. (2004). The role of astrocytes in the immu-
nopathogenesis of toxoplasmic encephalitis. International Journal for
Parasitology, 34(5), 543–548. https://doi.org/10.1016/j.ijpara.2003.
12.010

Wong, I., Liao, H., Bai, X., Zaknic, A., Zhong, J., Guan, Y., … Zhou, X.-F.
(2010). ProBDNF inhibits infiltration of ED1+ macrophages after spinal
cord injury. Brain, Behavior, and Immunity, 24(4), 585–597. https://doi.
org/10.1016/j.bbi.2010.01.001

Woo, N. H., Teng, H. K., Siao, C.-J., Chiaruttini, C., Pang, P. T., Milner, T. A.,
… Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippo-
campal long-term depression. Nature Neuroscience, 8(8), 1069–1077.
https://doi.org/10.1038/nn1510

Wood, J. A., Wood, P. L., Ryan, R., Graff-Radford, N. R., Pilapil, C.,
Robitaille, Y., & Quirion, R. (1993). Cytokine indices in Alzheimer's tem-
poral cortex: No changes in mature IL-1β or IL-1RA but increases in
the associated acute phase proteins IL-6, α2-macroglobulin and C-
reactive protein. Brain Research, 629(2), 245–252. https://doi.org/10.
1016/0006-8993(93)91327-O

Xie, Y., Tisi, M. A., Yeo, T. T., & Longo, F. M. (2000). Nerve growth factor (NGF)
loop 4dimericmimetics activate ERK andAKTand promoteNGF-like neuro-
trophic effects. Journal of Biological Chemistry, 275(38), 29868–29874.
https://doi.org/10.1074/jbc.M005071200doi:10.1074/jbc.M005071200

Xing, Z., Gauldie, J., Cox, G., Baumann, H., Jordana, M., Lei, X. F., &
Achong, M. K. (1998). IL-6 is an antiinflammatory cytokine required for
controlling local or systemic acute inflammatory responses. The Journal of
Clinical Investigation, 101(2), 311–320. https://doi.org/10.1172/JCI1368

Yang, J., Harte-Hargrove, L. C., Siao, C.-J., Marinic, T., Clarke, R., Ma, Q., …
Hempstead, B. L. (2014). proBDNF negatively regulates neuronal remo-
deling, synaptic transmission, and synaptic plasticity in hippocampus. Cell
Reports, 7(3), 796–806. https://doi.org/10.1016/j.celrep.2014.03.040

Yap, G. S., Scharton-Kersten, T., Charest, H., & Sher, A. (1998). Decreased
resistance of TNF receptor p55- and p75-deficient mice to chronic
toxoplasmosis despite Normal activation of inducible nitric oxide
synthase in vivo. The Journal of Immunology, 160(3), 1340–1345.

Zagrebelsky, M., Holz, A., Dechant, G., Barde, Y.-A., Bonhoeffer, T., &
Korte, M. (2005). The p75 neurotrophin receptor negatively modulates
dendrite complexity and spine density in hippocampal neurons. The Jour-
nal of Neuroscience : the Official Journal of the Society for Neuroscience,
25, 9989–9999. https://doi.org/10.1523/JNEUROSCI.2492-05.2005

Zagrebelsky, M., & Korte, M. (2014). Form follows function: BDNF and its
involvement in sculpting the function and structure of synapses. Neuro-
pharmacology, 76(Pt C), 628–638. https://doi.org/10.1016/j.neuropharm.
2013.05.029

SUPPORTING INFORMATION

Additional supporting information may be found online in the Sup-

porting Information section at the end of the article.

How to cite this article: Düsedau HP, Kleveman J,

Figueiredo CA, et al. p75NTR regulates brain mononuclear cell

function and neuronal structure in Toxoplasma infection-

induced neuroinflammation. Glia. 2019;67:193–211. https://

doi.org/10.1002/glia.23553

DÜSEDAU ET AL. 211

https://doi.org/10.1016/0896-6273(94)90223-2
https://doi.org/10.1016/S0167-5699(97)01103-1
https://doi.org/10.1046/j.1469-7580.2003.00203.x
https://doi.org/10.1046/j.1469-7580.2003.00203.x
https://doi.org/10.1073/pnas.0608310104
https://doi.org/10.1016/j.jneuroim.2015.05.016
https://doi.org/10.1016/j.ijpara.2003.12.010
https://doi.org/10.1016/j.ijpara.2003.12.010
https://doi.org/10.1016/j.bbi.2010.01.001
https://doi.org/10.1016/j.bbi.2010.01.001
https://doi.org/10.1038/nn1510
https://doi.org/10.1016/0006-8993(93)91327-O
https://doi.org/10.1016/0006-8993(93)91327-O
https://doi.org/10.1074/jbc.M005071200
info:doi/10.1074/jbc.M005071200
https://doi.org/10.1172/JCI1368
https://doi.org/10.1016/j.celrep.2014.03.040
https://doi.org/10.1523/JNEUROSCI.2492-05.2005
https://doi.org/10.1016/j.neuropharm.2013.05.029
https://doi.org/10.1016/j.neuropharm.2013.05.029
https://doi.org/10.1002/glia.23553
https://doi.org/10.1002/glia.23553

	 p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Animals
	2.2  Infection
	2.3  Tissue preparation and analysis of neuronal morphology
	2.4  Immunohistochemistry
	2.5  Cell isolation
	2.6  Flow cytometric analysis
	2.7  Ex vivo phagocytosis assay
	2.8  In vitro migration assay
	2.9  Western blot analysis
	2.10  Statistics

	3  RESULTS
	3.1  Infection with T. gondii upregulates p75NTR on innate immune cells in the brain
	3.2  Knockout of p75NTR does not affect cell recruitment during T. gondii infection
	3.3  Phenotypic characterization of innate immune cells in the CNS of p75-/- mice upon T. gondii-induced neuroinflammation
	3.4  Knockout of p75NTR has no effect on phagocytic capacity but alters intracellular cytokine production by innate immune ...
	3.5  Chronic infection with T. gondii increases proBDNF levels in WT and p75-/- mice
	3.6  Role of p75NTR in mediating the effect of a chronic T. gondii infection on dendritic architecture

	4  DISCUSSION
	4  ACKNOWLEDGMENTS
	  REFERENCES




