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Coupling killing to neutralization: combined therapy
with ceftriaxone/Pep19-2.5 counteracts sepsis in
rabbits

Sergio Bárcena-Varela1, Guillermo Martínez-de-Tejada1, Lukas Martin2, Tobias Schuerholz3,
Ana Gloria Gil-Royo4, Satoshi Fukuoka5, Torsten Goldmann6,7,8, Daniel Droemann8,9, Wilmar Correa10,
Thomas Gutsmann10, Klaus Brandenburg10 and Lena Heinbockel10

Sepsis, which is induced by severe bacterial infections, is a major cause of death worldwide, and therapies combating the

disease are urgently needed. Because many drugs have failed in clinical trials despite their efficacy in mouse models, the

development of reliable animal models of sepsis is in great demand. Several studies have suggested that rabbits reflect sepsis-

related symptoms more accurately than mice. In this study, we evaluated a rabbit model of acute sepsis caused by the

intravenous inoculation of Salmonella enterica. The model reproduces numerous symptoms characteristic of human sepsis

including hyperlactatemia, hyperglycemia, leukopenia, hypothermia and the hyperproduction of several pro-inflammatory

cytokines. Hence, it was chosen to investigate the proposed ability of Pep19-2.5—an anti-endotoxic peptide with high affinity to

lipopolysaccharide and lipoprotein—to attenuate sepsis-associated pathologies in combination with an antibiotic (ceftriaxone).

We demonstrate that a combination of Pep19-2.5 and ceftriaxone administered intravenously to the rabbits (1) kills bacteria

and eliminates bacteremia 30 min post challenge; (2) inhibits Toll-like receptor 4 agonists in serum 90 min post challenge;

(3) reduces serum levels of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α); and (4) reverts to

hypothermia and gives rise to temperature values indistinguishable from basal levels 330 min post challenge. The two

components of the combination displayed synergism in some of these activities, and Pep19-2.5 notably counteracted the

endotoxin-inducing potential of ceftriaxone. Thus, the combination therapy of Pep19-2.5 and ceftriaxone holds promise as

a candidate for human sepsis therapy.
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INTRODUCTION

Sepsis is one of the leading causes of death in intensive care
units worldwide, with mortality rates ranging from 10% to over
40% depending on the clinical associations.1 Triggered by an
infection and characterized by an inflammatory state affecting
the patient’s whole body, sepsis accounts for 300–1000 cases per
100 000 persons in the United States.2 Thus, the urgency for an
effective therapy against sepsis cannot be overemphasized.

The established animal models of sepsis differ in their
response to the triggering factor of inflammation and

consequently in their reaction to medications. This may partly
explain the failure of multiple clinical trials investigating drug
strategies for sepsis therapy during recent years. Moreover, the
difficulties encountered are likely due to major differences in
immune system functioning between animal species and
humans.3 Animal sepsis models widely vary and include
intraperitoneal (i.p.)/intravenous (i.v.) injection of lipopolysac-
charide (LPS) or dead bacteria (endotoxemia), inoculation of
live bacteria or specific surgeries such as cecal ligation and
puncture, colon ascendens stent peritonitis and polymicrobial
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peritoneal contamination and infection.4 Although surgical
models are known to reflect more accurately the clinical
scenario, they usually require a long-term evaluation, and
their mortality rates vary depending on surgical efficiency.
On the other side, non-surgical models (for example, inocula-
tion of cells or antigens into the animal) are widely used
for acute sepsis evaluation, being highly controlled and less
laborious than models relying on the animal microbiota as the
infectious agent.5

Furthermore, most tested therapies aim at killing the bacteria
or modulating the immune response. Yet, these treatments do
not address the major underlying cause of sepsis—that is, the
release of toxins (pathogenicity factors) by the bacteria.6 Thus,
besides the standard supportive intensive care treatment, no
satisfactory specific therapeutic option exists to date. Current
therapies with antibiotics aim at killing bacteria, but this
frequently leads to the release of the pathogenicity factors,
hence aggravating the patient’s inflammatory response.7

Considering the rapid increase in multiresistant strains and
the lack of newly approved antibiotics, the situation of the most
severely ill patients in intensive care units becomes more and
more threatening.

One approach alternative to conventional antibiotic-based
therapy entails the use of antimicrobial peptides (AMPs). Until
now, there are only a limited number of approved AMP drugs
available, although daptomycin8 (against skin and skin
structure infections) and colistin (against multiresistant
Gram-negative bacteria) are two relevant agents. Thus, the
recent development of a synthetic anti-LPS peptide, Pep19-2.5
(Aspidasept), appears promising also for a broader
application.9 Recently, it has been demonstrated that this
compound has high affinity not only for Gram-negative LPS
but also for Gram-positive lipoprotein (LP) in various in vitro
and in vivo mouse experiments.10 Pep19-2.5 has also been
shown to be protective in a murine model of septicemia as
well as in cecal ligation and puncture-challenge, causing
a considerable decrease in inflammation that correlated with
a survival benefit of the animals.10,11 Mouse models have
drawbacks with regard to the situation in human sepsis patients
and should therefore be complemented with studies in more
relevant animals (rabbits or pigs) after initial testing in the
practical model.12 One of the most prominent differences
between mouse and man is the relative insensitivity of mice
with respect to the induction of inflammation, particularly
when LPS is used as an inducer. In fact, along with LPS,
animals must be co-administered with galactosamine to
sensitize them to endotoxin and cause a pro-inflammatory
response similar to that of humans.13,14 The dose (LD50) values
of LPS inducing severe illness and hypotension in mice and rats
are 1000- to 10 000-fold higher, respectively, than in humans.15

By contrast, rabbits are considerably more responsive to LPS,
and results from preclinical studies in this non-rodent species
are expected to better predict the results of clinical trials.16

The aim of this study was to use a novel rabbit model
of sepsis to evaluate the tolerability and therapeutic efficacy
of a drug combination that was previously shown to be

protective in mice. In this model, bacteremia was induced
in the animals by injecting live cells of Gram-negative
(Salmonella) bacteria. The combined treatment of the antibiotic
ceftriaxone to kill the bacteria and Pep19-2.5 to neutralize
released LPS was evaluated. The data showed that this
combination is able to drastically reduce the strong inflamma-
tion as evidenced by a drop in the levels of interleukin 6 (IL-6)
and tumor-necrosis-factor α (TNFα). Endotoxin detection in
the blood of the animals showed that this decrease in cytokine
concentrations is directly correlated with a marked reduction of
the detectable LPS concentration in serum. Essentially,
we demonstrate that Pep19-2.5 and ceftriaxone work in
conjunction to kill bacteria and reduce inflammation.

MATERIALS AND METHODS

Bacterial strains and culture conditions
Salmonella enterica serovar Minnesota (SF1114, smooth form) was
grown in tryptic soy broth (TSB; Difco Laboratories, Detroit,
MI, USA) at 37 °C with orbital shaking. For inoculum preparation,
an overnight liquid culture was centrifuged (4000 g, 5 min), and the
pellet was suspended in sterile saline and adjusted to OD600nm= 1.0,
approximately corresponding to 3.7× 109 colony-forming units
(CFUs) per ml. For viable cell counting, aliquots were plated onto
TSB agar and were incubated for 24 h.

Peptide synthesis
The synthesis and purification of Pep19-2.5 (Lot 1053821) was
previously described,17 and the batch used in the present work
was produced under GMP conditions by BACHEM (Bubendorf;
Switzerland). The purity was 495%, and the amino-acid sequence
of this 20′mer is GCKKYRRFRWKFKGKFWFWG, containing
a C-terminal amidation.

Animal experiments
All experiments were approved by the Animal Ethical Committee of
the University of Navarra (protocol number: 182-12). Care and
handling of the animals were in accordance with the ICH and OECD
guidelines. Male New Zealand rabbits (2–2.5 kg in weight; Granja
San Bernardo S.I., Tulebras, Spain) were housed under standard
conditions with free access to food and water. The animals were
granted a 7-day acclimatization period prior to experimentation, and
they were food fasted 12–14 h before inoculation. Each day, three
animals were challenged, treated and killed. The inoculum consisted of
1 ml of sterile saline approximately containing 3.7 × 109 CFU of S.
enterica serovar Minnesota (Supplementary Figure S1). Animals (n= 6
per experimental group) were intravenously (i.v.) inoculated by the
marginal ear vein. Treatments were administered i.v. with a total
volume of 2 ml immediately after the inoculum by the marginal ear
and consisted of ceftriaxone (15 mg kg− 1; Sigma-Aldrich, Madrid,
Spain) dissolved in saline and/or Pep19-2.5 (5 mg kg− 1) dissolved in
saline. A group of animals was left untreated and received only vehicle.
Blood samples were extracted from the marginal ear vein at
different time points post challenge (0, 2, 30, 90 and 180 min). Fifteen
minutes before each blood extraction, acepromazine (1 mg kg− 1;
Sigma-Aldrich) was i.v. administered for sedative and vasodilator
purposes. All the procedures were performed aseptically and using
sterile labware. The rectal temperature was monitored at 0, 90, 150,
210 and 330 min post challenge. Six hours after inoculation, the
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animals were killed by the administration of a lethal dose of T-61
(Sigma-Aldrich).

Blood and serum testing
For bacteremia analysis, whole blood was serially diluted (1:10 in sterile
saline) and plated in TSB Agar plates. Viable counts were determined
after 16–18 h of incubation at 37 °C. For serum preparation,
blood samples (4 ml) were taken under sterile conditions, centrifuged
(3000 r.p.m., 10 min, 4 °C) using serum-separating tubes and stored at
− 80 °C for subsequent analysis. Fluoride/EDTA and EDTA-containing
vacutainer tubes were used for lactate quantification and hematological
analysis, respectively (Sysmex XT-1800i; Sant Just Desvern, Spain).
Biochemical parameters were determined using a Hitachi-911
automatic analyzer (Hitachi Medical Systems, Madrid, Spain).

Post-mortem analyses
Post-mortem samples of the spleen, liver, kidneys and lungs were
extracted and weighed, and 1 g of each was homogenized and serially
diluted for plating and viable counting. The remainder of the organ
was fixed by immersion in 4% formaldehyde and was subsequently
prepared for inclusion, cutting and hematoxylin–eosin staining. All the
procedures were performed aseptically and using sterile labware.
Anatomopathological analyses of histological preparations were carried
out using the Anatomopathologic Diagnostic Service for Laboratory
Animals (University of Zaragoza, Spain).

Endotoxin and cytokine quantification
Endotoxin was indirectly quantified by measuring IL-8 in a Toll-like
receptor (TLR)4-expressing cell line that responds to LPS by secreting
this cytokine (HEK-293/TLR4; kindly provided by Dr Juan José
Lasarte). To account for the presence of potential IL-8 inducing
compounds other than LPS in rabbit serum, IL-8 levels were measured
in an identical cell line lacking the TLR4 receptor (HEK-293/LacZ).
Cells were cultured in Dulbecco’s modified Eagle’s medium supple-
mented with 4.5 g l− 1 glucose, 10% heat-inactivated fetal bovine
serum, penicillin/streptomycin and blasticidin (5 μg ml− 1 for each;
GIBCO; Thermo Fisher Scientific, Alcobendas, Spain) at 37 °C in
5% CO2. In the case of HEK-293/TLR4, cells were supplemented
with 25 μg ml− 1 hygromycin B (Invivogen Ultrapure; InvivoGen,
San Diego CA, USA). Cells (5× 105) were exposed to rabbit
serum (1:10 dilution) for 24 h, and IL-8 was then quantified in the
supernatants by solid-phase sandwich enzyme-linked immunosorbent
assay (R&D Systems; Madrid, Spain). Assays were performed in
triplicate. The serum levels of IL-6 and TNFα were determined
using solid-phase sandwich enzyme-linked immunosorbent assay
(R&D Systems) following the manufacturer’s instructions.

Statistics
The data were statistically analyzed using SPSS V15.0 software
(IBM España, Madrid, Spain). analysis of variance was applied to
study the potential differences in the bacterial load, endotoxin levels,
cytokine concentrations and biochemical parameters. If there was
homogeneity of variances, parametric Student–Neuman–Keuls
post hoc test was conducted. Otherwise, the Tamhane test was applied.
For the group comparisons of temperatures at different time points,
repeated measures factorial design-analysis of variance was applied,
followed by Student’s t-test for related measures, adjusting the average
s.d. Graphics were prepared using GraphPad Prism V6.01 software
(GraphPad Software, La Jolla, CA, USA).

RESULTS

Kinetics of bacteremia
To evaluate whether the combined administration of Pep19-2.5
and ceftriaxone reduces the bacterial burden in rabbits, we
intravenously inoculated a group of New Zealand rabbits with
~ 3.7 × 109 CFU of S. enterica. Immediately after inoculation,
the animals received a single i.v. administration of Pep19-2.5
and ceftriaxone. As a control, we treated the animals with
either one of those therapies, whereas a third group received
only vehicle (saline). In addition, to verify that inocula
prepared in different days had a comparable size, we plated
each bacterial suspension on solid medium and performed
viable counts (Supplementary Figure S1). Interestingly, at the
earliest time point (2min post challenge), the combined
therapy was the only treatment capable of reducing bacteremia
(Figure 1). The two-component therapy also outperformed the
single ceftriaxone-based therapy 30min post challenge because
the former was the only treatment displaying sterilizing activity
(Figure 1). By contrast, Pep19-2.5 by itself displayed no
detectable antibacterial activity at any time point.

Endotoxin levels in rabbit serum
To investigate whether any of the treatments had
LPS-neutralizing activity, we quantified endotoxin levels in
rabbit serum 90min post challenge. We first tried to directly
measure LPS levels using an Limulus amebocyte lysate-based
method, but this approach rendered poor and unreliable
results, likely due to serum compounds interfering with the
Limulus amebocyte lysate test. To circumvent this problem,
we quantified endotoxin concentrations in serum using
TLR4-expressing cells that respond to LPS by secreting IL-8,
which was subsequently measured by enzyme-linked

Figure 1 Kinetics of the bacteremia in rabbits infected with
S. enterica and subsequently treated with Pep19-2.5 and/or
ceftriaxone. At time 0, animals (n=6 per group) received an i.v.
injection containing 3.7×109 CFU of S. enterica serovar
Minnesota. Immediately afterwards, animals were treated with
ceftriaxone (15 mg kg−1; i.v.) and/or Pep19-2.5 (5 mg kg−1; i.v.).
A group of animals was left untreated and received only vehicle
(saline). At the indicated time points, whole blood was extracted,
serially diluted and plated for viable counting. Differences were
statistically analyzed using analysis of variance followed by post hoc
tests (*Po0.05; **Po0.01; ***Po0.001).
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immunosorbent assay. In control experiments, we demon-
strated that LPS quantitatively induced IL-8 secretion in these
cells (data not shown). To account for the presence of potential
IL-8-inducing compounds other than LPS in rabbit serum,
IL-8 levels were measured in an identical cell line lacking the
TLR4 receptor. As shown in Figure 2, the concentrations of
TLR4 agonists in serum from ceftriaxone-treated rabbits were
much higher than those measured in infected rabbits not
treated with the antibiotic. This difference was not detectable in
cells lacking TLR4. In marked contrast to the liberation of
TLR4 agonists by ceftriaxone, Pep19-2.5 showed a potent
ability to neutralize TLR4 agonists (Figure 2). Notably, rabbits
treated with the combined therapy had very low serum levels of
TLR4 agonists, demonstrating that Pep19-2.5 counteracts the
LPS-releasing potential of ceftriaxone.

Concentration of pro-inflammatory cytokines
Based on the ceftriaxone-related release of TLR4 agonist, we
next investigated the pro-inflammatory response of rabbits on
S. enterica challenge. As shown in Figure 3, we measured the
serum concentrations of TNFα and IL-6 at 90min and 180min
post challenge, respectively, coinciding with the peak

concentration of each cytokine in serum, as determined in
preliminary assays (Supplementary Figure S2). Ceftriaxone
treatment displayed a trend to increase both the IL-6 and
TNFα serum levels compared with untreated animals. By
contrast, Pep19-2.5 not only lacked pro-inflammatory activity
when given alone but also counteracted the IL-6- and
TNFα-inducing ability of ceftriaxone. Notably, animals
receiving the combined therapy had levels of IL-6 even
lower than those measured in untreated animals (Figure 3a),
suggesting that the two components of the combination act in
synergy to neutralize this cytokine.

Metabolic parameters
Abnormally high serum values of both glucose and lactate
(that is, hyperglycemia and hyperlactatemia, respectively) are
common during acute infection, particularly in patients with
sepsis. To investigate whether our rabbit model reproduces these
symptoms, we measured the serum levels of glucose and lactate
throughout the course of the experiment. Inoculation of
S. enterica caused a significant and progressive increase in
glucose and lactate levels that was even more severe for the
latter marker (Supplementary Figure S3). Neither the single nor
combined treatment, however, was found to significantly reverse
these increments at any time point (Supplementary Figure S3).

Hematological markers
Infections are known to induce leukocytosis, whereas
leukopenia is characteristic of acute sepsis due to overwhelming
infections. As shown in Supplementary Figure S4, the
inoculation of S. enterica caused a severe decrease in white
blood cells, which was of similar magnitude in both the
untreated and treated groups (~60% of the initial value).

Temperature monitoring
Sepsis in humans is known to induce either hypothermia or
hyperthermia. To study whether any of these symptoms could
be detected in our animal model, we monitored the rectal
temperature of all the animals throughout the assay. As shown
in Figure 4, the inoculation of S. enterica markedly reduced the
rabbit temperature from 38 °C at the beginning of the
experiment to ~ 35.5 °C at the late time points post challenge
(330min). The kinetics of hypothermia in animals treated with
Pep19-2.5 tended to be more rapid and to reach lower
temperature values, but this trend was not significant.
However, the apparent pro-inflammatory activity exhibited
by ceftriaxone was not associated with aggravated hypothermia
compared with untreated animals. Remarkably, when
ceftriaxone was administered combined with Pep19-2.5, the
two compounds acted jointly, leading to less-intense hypother-
mia (Figure 4). This convergent activity reverted hypothermia
and resulted in a rise of the temperature 330min after
S. enterica challenge that was indistinguishable from basal
levels (Figure 4).

Figure 2 Quantification of the levels of TLR4 agonists in rabbit
serum 90 min post challenge. The levels of TLR4 agonist
(for example, LPS) were quantified in rabbit serum by measuring
the production of IL-8 in TLR4-expressing cells (HEK-293/TLR4)
incubated with serum samples (n=6 per group). As a control to
account for potential IL-8-inducing compounds other than LPS, a
duplicate measurement was performed in an identical cell line
lacking the TLR4 receptor (HEK-293/LacZ). Cells were exposed to
rabbit serum for 24 h, and IL-8 was quantified in the supernatants
by solid-phase sandwich enzyme-linked immunosorbent assay.
Assays were performed in triplicate, and the results were
analyzed using analysis of variance followed by post hoc tests
(*Po0.05; **Po0.01; ***Po0.001). The horizontal line within
the boxes represents the median, whereas the lower part
represents the 25th percentile, and the upper part represents the
75th percentiles. The whiskers represent the range of the values.
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Bacterial load in organs
The post-mortem quantification of the bacterial load in
selected organs revealed high numbers of viable bacteria in
the liver, spleen, lungs and kidneys of all studied rabbits
(Figures 5a–d). Animals receiving ceftriaxone (either alone or
combined with Pep19-2.5) showed lower levels of CFUs in the
kidneys and liver (Figures 5a and c, respectively). However, the
efficiency of the combined treatment to reduce bacterial
colonization in the lungs was lower than that of the ceftriaxone
single treatment (Figure 5b). When Pep19-2.5 was adminis-
tered as a single treatment, it increased the bacterial load in the
liver compared with that in untreated animals (Figure 5c) and
showed a non-significant trend to do so in the kidneys and
lungs (Figures 5a, b and d). This phenomenon was not
detected in the spleen.

To indirectly quantify the extent of the inflammatory
response in animals, we measured the weight of the liver,
spleen, lung and kidney of the rabbits. All organs studied

remained within the normal weight ranges at the end of the
experiment with the exception of the spleen, which showed
increased weight in all groups (data not shown).

Histological analysis of the spleen
The presence of splenomegaly prompted us to perform a more
detailed histological study to assess potential differences
between the groups. In general, microscopic findings were
similarly independent of the treatment, but with different
intensity (Supplementary Figure S5). Splenitis was confirmed
in samples from all groups and was due to the presence of an
inflammatory infiltrate of heterophils (that is, rabbit cells
equivalent to polynuclear neutrophils). Abundant bacteria were
present in this infiltrate. Bacteria were detected both inside
macrophages and free in the extracellular space. Bacterial cells
frequently appeared distorted likely because of the activation of
immune system effectors (Supplementary Figure S5). The
previous findings were accompanied by various degrees of
hemorrhage in the splenic tissue. Although there were marked
individual responses, in general, treatment with Pep19-2.5
either alone or combined with ceftriaxone, was associated with
milder alterations and with a lower bacterial burden than in the
untreated controls and in animals that received ceftriaxone
single treatment (Table 1).

DISCUSSION

The current study demonstrated the therapeutic potential of
Pep19-2.5, a synthetic peptide, in combination with the
antibiotic ceftriaxone in a rabbit model of sepsis. The dual
therapy of Pep19-2.5 and ceftriaxone reduced both the bacterial
load (Figures 1 and 5) and endotoxin levels in serum
(Figure 2), causing a considerable drop in the production of
IL-6 (Figure 3a and Supplementary Figure S2A) and TNFα
(Figure 3b and Supplementary Figure S2B). Moreover, we
found an abrogation of hypothermia and a re-establishment of
normal rectal temperature (Figure 4), as well as milder
alterations and a lower bacterial burden in the spleens of
Pep19-2.5/ceftriaxone-treated animals (Table 1).

Despite the intense research and innumerable efforts made
in the last decades to develop therapies against sepsis, only
modest improvements were introduced in the management of
septic patients.16 The standard therapy of sepsis comprises
an antimicrobial treatment in conjunction with supportive
therapies (for example, hemodynamic stabilization and airway
management).18 In many cases, however, this treatment
does not prevent the heavy and fast onset of inflammation
characteristic of sepsis. Possible reasons for this failure involve
the release of inflammation-inducing toxins (that is, LPS
and LP) from the cell envelopes of bacteria triggered by various
antibiotics,19 which may worsen the patient’s pro-inflammatory
response. Thus, to be efficient, sepsis therapy must combat the
bacterial infection while simultaneously being capable to
decrease the inflammatory reaction. To achieve this double
objective, we used a classical antibiotic, ceftriaxone, to kill the
bacteria and Pep19-2.5 to neutralize endotoxin.

Figure 3 Quantification of the levels of IL-6 and TNFα in rabbit
serum at different time points post challenge. IL-6 (a) and TNFα
(b) were quantified in animal sera (n=6 per group) by solid-phase
sandwich enzyme-linked immunosorbent assay at 180 min and
90 min post challenge, respectively, coinciding with the peak
concentration of each cytokine (Supplementary Figure S2).
Assays were performed in triplicate, and the results were
analyzed using analysis of variance followed by post hoc tests
(*Po0.05; **Po0.01; ***Po0.001). The horizontal line within
the boxes represents the median, whereas the lower part represents
the 25th percentile, and the upper part represents the
75th percentiles. The whiskers represent the range of the values.
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The anti-endotoxic activity of Pep19-2.5 shown in our
current work extends previous studies revealing that
Pep19-2.5 has LPS-neutralizing capacity in in vitro assays and
that this activity is responsible for the survival benefit of
endotoxemic mice treated with the peptide.17 Using isothermal
titration calorimetry, we confirmed the high-affinity binding
of Pep19-2.5 to not only purified LPS but also heat-killed
Gram-negative and Gram-positive bacterial cells (S. enterica
Minnesota and methicillin-resistant Staphylococcus aureus,
respectively).20 Nevertheless, it is possible that the immuno-
modulating activity displayed by Pep19-2.5 in the present work
is not only due to the peptide’s ability to bind and inactivate
LPS but also to its inherent capacity to downregulate the
inflammatory response.11 Using mouse models of endotoxemia
and septicemia, we previously demonstrated the therapeutic
efficacy of Pep19-2.5 in combination with antibiotics, including
ceftriaxone.10 In the current study, the rabbit was chosen
as the model organism because it is assumed to more closely
reflect the response of the human immune system than mice,
which are the most commonly used animals in sepsis
research.16,21 In fact, rabbits are notably less resistant to LPS
than mice, although these non-rodents are still far from the
exquisite sensitivity of humans to endotoxin. Thus, in current
human studies, 2 ng kg− 1 of LPS were used to induce
endotoxemia;22–24 however, in rabbits, a range of 1–10 μg kg− 1
is applied in i.v. applications.25,26 Nevertheless, these acute
endotoxemia models do not reflect the progressive course of
a real infection and, even less so, the interplay between the
different antigenic stimuli and components of the immune

system that is characteristic of an infectious process. By
contrast, surgical models, such as cecal ligation and puncture,
do reflect the pathophysiological features of human sepsis;
however, these models use uncharacterized mixtures of bacter-
ial populations as the endotoxic stimulus, thereby hindering
the intra-assay and inter-assay reproducibility.27 For these
reasons, sepsis was induced in our model by the i.v. inoculation
of live S. enterica cells to resemble an infectious process,
while simultaneously ensuring the necessary reproducibility.
Furthermore, the induction of bacteremia in our model is of
importance because, in one-third of human sepsis cases, it is
possible to obtain a blood-positive culture.28 Finally, patients
with blood-positive cultures have a higher risk of experiencing
cardiovascular events (for example, myocardial infarction) even
years after infection.29

Similar to our findings, other authors using different
rabbit models of sepsis reported metabolic disorders such as
hyperglycemia and hyperlactatemia,30,31 and showed that the
experimental treatment reduced lactate levels. However, in
these studies, animals received therapy before being infected30

or continuous infusion of the agent,31 unlike in our study.
Similarly, Garcia et al.32 reported amelioration of acidosis in
a rabbit model in which animals were pre-treated with the
experimental drug.

Figure 4 Effect of treatments on rabbit temperature 330 min post
challenge. The rectal temperature of each animal group (n=6) was
monitored before (designated as ‘basal’ in the figure) and at
a progressively later time points post challenge (until 330 min). For
group comparisons of the temperatures at different time points,
repeated measures factorial design-analysis of variance was
performed, followed by Student’s t-test for related measures,
adjusting the average standard deviation. The asterisk indicates the
only animal group with a rectal temperature indistinguishable from
the control (that is, rabbits receiving the combined treatment,
Po0.05). The horizontal line within the boxes represents the
median, whereas the lower part represents the 25th percentile, and
the upper part represents the 75th percentiles. The whiskers
represent the range of the values.

Figure 5 Post-mortem quantification of the bacterial load in
selected organs. Post-mortem samples of the kidneys (a), lungs
(b), liver (c) and spleen (d) were extracted and weighed. One gram
of each sample was homogenized and serially diluted for plating
and viable counting. Differences were statistically analyzed using
analysis of variance followed by post hoc tests (*Po0.05;
**Po0.01; ***Po0.001). The horizontal line within the boxes
represents the median, whereas the lower part represents
the 25th percentile, and the upper part represents the
75th percentiles. The whiskers represent the range of the values.
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The release of endotoxin from antibiotic-treated bacteria33 is
well documented both in vitro34 and during active infection in
mice,35 rats36 and rabbits.30 The administration of AMPs alone
or combined with antibiotics has been reported to reduce the
LPS levels and counteract sepsis-associated symptoms, leading
to survival benefits in several animal models, including mice
and rats.37–40 Using rabbit models, other authors have reported
that polymyxin B alleviated pathophysiological disorders caused
by endotoxemia41 or septicemia.42,43 Similarly, Lin et al.30

showed that a combination of an AMP (a fragment of the
bactericidal/permeability-increasing protein (rBPI21)) and cefa-
mandole accelerated bacterial clearance, improved cardiopul-
monary dysfunction and prevented rabbit death; however, in
this model, the antibiotic treatment was given before bacterial
challenge. Finally, other groups reported that a recombinant
endotoxin neutralizing protein from Limulus polyphemus com-
bined with antibiotics partially protected rabbits from lethal
peritonitis44,45 or from lethal endotoxemia if animals received
antiendotoxic therapy before being infected.32

To the best of our knowledge, this is the first report
showing evidence in rabbits of AMP-mediated inactivation of
endotoxin (Figure 2), leading not only to the neutralization of
pro-inflammatory cytokine production (Figure 3) but also to

the recovery of normal temperature values (Figure 4). Our
results suggest that Pep19-2.5 and ceftriaxone act in synergy to
combat bacteremia (Figure 1) and neutralize IL-6 production
(Figure 3). This phenomenon is particularly relevant because
any anti-sepsis drug candidate is expected to be administered in
combination with one or several antibiotics. Keeping in mind
that we administered the drugs as a bolus, it is likely that
a constant infusion might result in an even more pronounced
therapeutic effect. Taken together, our results indicate that the
therapy of Pep19-2.5 and ceftriaxone is a promising drug
combination for controlling the crucial causes of sepsis.
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Table 1 Summary of anatomopathological findings in the histological preparations of the rabbit spleena

Sample from the indicated animal group Hemorrhage Degree of necrosis Degree of splenitis Size of follicles Number of bacteria
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Untreated 6 +++ ++++ ++++ Normal +++
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Ceftriaxone 3 ++++ ++ ++ Normal +
Ceftriaxone 4 ++++ +++ ++++ Normal ++
Ceftriaxone 5 +++ ++++ ++++ Normal +++
Ceftriaxone 6 +++ +++ ++++ Normal +++

Pep19-2.5 1 + ++ +++ Normal +
Pep19-2.5 2 + + + Normal +
Pep19-2.5 3 ++ + +++ Normal ++
Pep19-2.5 4 ++ + ++ Increased ++
Pep19-2.5 5 +++ + ++ Normal +
Pep19-2.5 6 ++ + ++ Normal +

Pep19-2.5+ceftriaxone 1 ++ ++ +++ Normal +++
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Pep19-2.5+ceftriaxone 4 + + + Normal +
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Pep19-2.5+ceftriaxone 6 ++ + ++ Normal +

Anatomopathological evaluation of all samples was carried out in a blinded manner by the same pathologist, according to the institutional guidelines.
aPost-mortem samples of the spleen were fixed by immersion in 4% formaldehyde and were subsequently prepared for inclusion, cutting and hematoxylin–eosin staining.
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