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Clearance of mixed biofilms 
of Streptococcus pneumoniae 
and methicillin‑susceptible/
resistant Staphylococcus aureus 
by antioxidants N‑acetyl‑l‑cysteine 
and cysteamine
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Fernando González‑Camacho1, Covadonga Pérez‑García1, Jose Yuste1,2* & 
Mirian Domenech1,2,4*

Biofilm-associated infections are of great concern because they are associated with antibiotic 
resistance and immune evasion. Co-colonization by Staphylococcus aureus and Streptococcus 
pneumoniae is possible and a threat in clinical practice. We investigated the interaction between S. 
aureus and S. pneumoniae in mixed biofilms and tested new antibiofilm therapies with antioxidants 
N-acetyl-l-cysteine (NAC) and cysteamine (Cys). We developed two in vitro S. aureus–S. pneumoniae 
mixed biofilms in 96-well polystyrene microtiter plates and we treated in vitro biofilms with Cys and 
NAC analyzing their effect by CV staining and viable plate counting. S. pneumoniae needed a higher 
proportion of cells in the inoculum and planktonic culture to reach a similar population rate in the 
mixed biofilm. We demonstrated the effect of Cys in preventing S. aureus biofilms and S. aureus–S. 
pneumoniae mixed biofilms. Moreover, administration of 5 mg/ml of NAC nearly eradicated the S. 
pneumoniae population and killed nearly 94% of MSSA cells and 99% of MRSA cells in the mixed 
biofilms. The methicillin resistance background did not change the antioxidants effect in S. aureus. 
These results identify NAC and Cys as promising repurposed drug candidates for the prevention and 
treatment of mixed biofilms by S. pneumoniae and S. aureus.

Streptococcus pneumoniae colonizes the nasopharyngeal tract asymptomatically of 5–10% of adults and 20–40% of 
children1,2. The burden of disease by S. pneumoniae is substantial as it is the main bacterial cause of community-
acquired pneumonia, acute otitis media (AOM), bacterial meningitis, and a major cause of bacterial sepsis3,4. 
Antibiotics are essential players against pneumococcal infections, but the emergence of multidrug-resistant 
strains5–7 makes preventive measures such as vaccines one of the best cost-effective strategies to ameliorate the 
impact of antibiotic resistance in the epidemiology of S. pneumoniae6. Pneumococcal vaccines have decreased the 
incidence of invasive pneumococcal disease (IPD) worldwide, but the emergence of non-vaccine serotypes, due 
to serotype replacement and capsular switch phenomena, is worrisome in most of the European countries8–11. In 
addition, the impact of pneumococcal vaccines against colonization of the nasopharynx seems to be moderate 
in the pediatric population12.

Nasopharyngeal colonization, a critical step in IPD, is associated with biofilm formation, where the capsular 
polysaccharide (CPS) of S. pneumoniae, can be an impediment. The expression of CPS is detrimental for biofilm 
formation13,14. At least 101 different pneumococcal serotypes are known demonstrating the high variability of CPS 
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within this pathogen15,16. The serotype 19A, which is a good biofilm former in vitro, is also a good colonizer with 
a significant incidence of IPD9–11,17,18. The important rise in the last years of antibiotic-resistant strains of serotype 
19A since the introduction of the PCVs19–21 makes this particular serotype an ideal candidate for biofilm studies.

Staphylococcus aureus frequently colonizes the skin of the human population (> 30%) but can be found in the 
nasopharynx up to 80% of individuals being serotypes 5 and 8 among the most frequent producing staphylococ-
cal infections22–25. S. aureus is well known for producing implant-associated infections, where the biofilm state is 
essential for promoting persistence, evasion of the immune system, and antimicrobial resistance26. Furthermore, 
this pathogen can produce secondary episodes of bacterial pneumonia after influenza virus infection22,27,28, which 
is a frequent trait shared with S. pneumoniae29. In addition, the emergence of methicillin-resistant Staphylococcus 
aureus (MRSA) is worrisome in the hospital environment because it is associated with high mortality rates30. This 
situation can get worse when the infection is linked to biofilms due to the increased resistance and competence, 
leading to the dissemination of antibiotic resistance genes between MRSA and methicillin-susceptible Staphy-
lococcus aureus (MSSA) strains and even with non-related microorganisms in a mixed biofilm26. In 2004, Cryer 
et al. when studying patients with recalcitrant chronic rhinosinusitis demonstrated the existence of biofilms on 
the sinus mucosa31. In addition, mixed infections between S. aureus and other pathogens such as S. pneumoniae 
producing biofilm-associated pathologies including otitis, rhinitis, and sinusitis have been reported32–35.

During the pre-vaccine era and after the introduction of PCV7, several studies have shown a negative associa-
tion between S. aureus and S. pneumoniae carriage, describing that carriage of PCV7 vaccine serotypes impairs 
the colonization by S. aureus2,36–38. The mechanism described for this negative association was observed using 
in vitro studies and was related to the killing of S. aureus with hydroxyl radicals (·OH) released by the presence 
of pneumococcus, which induces DNA degradation, leading to the death of S. aureus strains39. In contrast, co-
colonization in vitro and in vivo studies have demonstrated that this negative association does not occur in a 
mixed biofilm over a cell layer4 and in animal models40,41. In this sense, epidemiological studies showed that up 
to 24% of patients were colonized by both species42–44 and that vaccination with the conjugate vaccine did not 
modify the nasopharyngeal carriage by S. aureus45,46.

Due to discrepancies in the literature described above, the interaction between S. pneumoniae and S. aureus in 
biofilm-related diseases needs to be investigated in more detail. The physiological interactions between bacteria 
involved in multispecies biofilms include the exchange of genetic material and antibiotic resistance factors47. 
Recalcitrance is a common characteristic of a biofilm in which the concentration of antibiotics necessary to clear 
the bacteria can be up to 1,000 times higher in the biofilm than against planktonic microorganisms48. Moreover, 
there are insufficient data supporting potential therapies that can target both microorganisms causing infec-
tion in a biofilm state. In this sense, several evidences suggest that antioxidants compounds such as N-acetyl-
l-cysteine (NAC) and cysteamine (Cys) might have the potential as antimicrobial drugs against individual 
biofilms of certain species, although their activity against polymicrobial biofilms of S. aureus and S. pneumoniae 
is unknown49–54.

In this work, we describe two in vitro models of an MSSA-S. pneumoniae (Sp) and MRSA-Sp mixed biofilms 
that can be useful to understand the dynamics of the interaction between these two pathogens and to test anti-
biofilm therapies. Hence, the antimicrobial activity of NAC and Cys has been explored in both mixed biofilm 
models.

Results
Mixed biofilms of S. pneumoniae and S. aureus require a higher proportion of pneumococcal 
cells and a short incubation period.  We first examined the influence of different proportions of pneu-
mococcal and MSSA/MRSA bacterial cells in the inoculum to establish the optimal conditions for the survival 
of both species in the mixed biofilm (Fig. 1). We measured the biomass using a CV assay measuring the optical 
density (A595) and viable count cells determined as CFU/ml in mixed biofilms (Fig. 1). To obtain a similar level 
of both species (S. pneumoniae and S. aureus) in the mixed biofilm at the final time, the proportion of S. pneu-
moniae in the inoculum had to be much higher than S. aureus regardless of the susceptibility profile (MSSA or 
MRSA) (Fig. 1A,B). Moreover, we found a significantly increased pattern in the biofilm biomass (A595) when 
the proportion of S. pneumoniae in the inoculum was higher (proportions 1:2, 1:5, 1:7, 1:8, 1:11, and 1:16) in 
comparison to greater levels of S. aureus in the inoculum (proportions 5:1 and 2:1) in both systems (***P < 0.001, 
one-way ANOVA) (Fig. 1C,D).

For further experiments, we chose the proportions 1:1 and 1:11 for all the mixed biofilms (MSSA:Sp and 
MRSA:Sp) and the incubation period of 5 h because individual biofilms of both species showed a reduction in the 
viability after 5–6 h (Fig. S1). The choice of the 1:1 proportion was useful to test NAC and Cys in an inhibition 
assay because, at the early phase of biofilm formation, both populations in the inoculum are equal, an ideal condi-
tion to test antioxidants as a preventive measure. On the other hand, the proportion 1:11 was selected to test the 
therapeutic effect in a preformed mature mixed biofilm where both populations are equal at 4–5 h (Figs. 1, 2, 3).

Once the experimental conditions were established, we found that the MSSA-Sp and MRSA-Sp mixed biofilms 
grew at similar rates in comparison to individual biofilms (Figs. 2, 3, and Fig. S1). At the 1:1 proportion, MSSA 
and MRSA showed a higher ability to adhere to the polystyrene plates and form biofilms in comparison to S. 
pneumoniae 19A, whereas in planktonic cultures, the proportions of both species were similar (Figs. 2A and 3A). 
Our results confirm that S. pneumoniae needs an initial advantage, with a higher proportion of the inoculum 
size, to achieve a similar population level in the mixed biofilm after 4 h (Figs. 2B and 3B). In addition, a higher 
proportion of S. pneumoniae was necessary for the planktonic culture to maintain a similar population rate of 
both bacterial species in the mixed biofilm (Figs. 2B and 3B), whereas S. aureus can maintain a higher population 
in the mixed biofilm with a similar proportion in the planktonic culture (Figs. 2A and 3A).
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Effects of cysteamine in S. aureus monospecific biofilms.  The antimicrobial activity of Cys in the 
prevention and treatment of S. aureus biofilms was analyzed because it has never been reported for this pathogen 
(Figs. S2 and S3). We used strains of both serotypes 5 and 8. In the inhibition assays (prevention), we observed a 
significant antimicrobial effect when Cys was used with doses over the MIC showing a dramatic reduction in the 
total biomass and biofilm biomass of both MSSA and MRSA strains from both serotypes (Fig. S2). In the case of 
the MRSA strain of serotype 5, exposure to concentrations around the MIC (0.1 mg/ml of Cys) had a stronger 
effect (***P < 0.001) both in the total and biofilm biomass (Fig. S2B) in comparison to the MSSA strain and both 
strains of serotype 8, where we only could observe a reduction in the total biomass but not in the biofilm forma-
tion (Fig. S2).

Treatment of S. aureus biofilms with Cys showed antimicrobial activity with concentrations ≥ 2.5 mg/ml 
(***P < 0.001, one-way ANOVA) with a greater effect in the strains of serotype 8 (Fig. S3). Lower concentrations 
were tested but did not show any effect in the preformed biofilm (data not shown). In the case of strains of sero-
type 5, this reduction after Cys treatment showed a plateau with increasing concentrations of Cys (Fig. S3A,B), 
and similar reduction levels were obtained even with higher doses such as 20 mg/ml (data not shown). However, 
in strains of serotype 8, higher doses such as 5 and 10 mg/ml of Cys reduced, even more, the viability of the 
population within the biofilm (Fig. S3C,D). In both serotypes, Cys effect was stronger in the MRSA strain than 
in the MSSA strain (Fig. 3). Overall, treatment with Cys was effective against the biofilm of S. aureus reaching 
from a 45% reduction in the MSSA strain of serotype 5 (Fig. S3A) to a 93% reduction in the MRSA strain of 
serotype 8 (Fig. S3B).

Antibiofilm effects of NAC and Cys in MSSA‑Sp and MRSA‑Sp mixed biofilms.  We evaluated the 
antibiofilm activity of NAC and Cys in the prevention of mixed biofilms by S. aureus and S. pneumoniae grown 
in the 1:1 proportion (Fig. 4). The preventive effect of NAC in both models was lower than the effect of Cys. The 
use of sub-inhibitory concentrations of NAC in the mixed biofilm reduced the total biomass (adhered and not 
adhered cells) and biofilm biomass of both systems (Fig. 4A,B), but only after 2.5 mg/ml of NAC this effect was 
greater, achieving the biofilm biomass at 10 mg/ml of NAC in both systems (***P < 0.001, one-way ANOVA) 

Figure 1.   Influence of bacterial proportions in the inoculum on MSSA/MRSA-Sp mixed biofilm formation 
in vitro. S. pneumoniae and S. aureus were mixed in different proportions, and aliquots of 200 µl final volume 
containing from 4 × 105 to 4 × 106 CFU/ml were dispensed into 96-well polystyrene microtiter plates and 
incubated 5 h at 34 °C. (A,B) The viability of MSSA (squares), MRSA (circles) and S. pneumoniae (triangles) was 
determined by plate counting. (C,D) Grey bars indicate mixed biofilm formation determined by CV staining 
(biomass). Data represent the average of at least three experiments. Standard deviation bars are shown.
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(Fig. 4A,B). The use of concentrations of Cys around the MIC in the mixed biofilm reduced the total biomass 
and biofilm biomass, being higher in the MRSA-Sp mixed biofilm at 0.1 mg/ml (***P < 0.001) (Fig. 4D) than 
in the MSSA-Sp mixed biofilm (Fig. 4C). These results confirm previous findings with individual biofilms of S. 
aureus and Cys (Fig. S2A,B). Moreover, when using concentrations of Cys over the MIC, the biofilm biomass was 
nearly eradicated (***P < 0.001, one-way ANOVA) (Fig. 4C,D). These results, confirm Cys as an ideal candidate 
to prevent S. aureus–S. pneumoniae mixed biofilms.

Treatment or disaggregation of mixed biofilms (MSSA/MRSA:Sp, 1:11) with NAC was effective in reduc-
ing both populations (***P < 0.001, one-way ANOVA) (Fig. 5A,B). Mixed biofilms treated with 0.5 mg/ml of 
NAC showed a clearance of MSSA cells (around 50%), MRSA cells (over 20%), and a marked reduction of S. 
pneumoniae cells (99%) (Fig. 5A,B). At 5 mg/ml, NAC killed nearly 94% of MSSA cells, 99% of MRSA cells and 
practically eliminated S. pneumoniae indicating that NAC could be a promising option for the treatment of S. 
aureus–S. pneumoniae mixed biofilms.

Treatment with Cys showed a marked clearance of pneumococcal population within the mixed biofilm with 
up to 99% reduction of S. pneumoniae using a concentration ≥ 2.5 mg/ml in the mixed biofilms with MSSA or 
MRSA (***P < 0.001, one-way ANOVA) (Fig. 5C,D). However, treatment with Cys was not as effective in decreas-
ing the viability of S. aureus within the mixed biofilm (Fig. 5C,D), obtaining a similar level in the reduction 
of the populations in comparison to the individual biofilm of MSSA or MRSA of serotype 5 described above 
(***P < 0.001, one-way ANOVA) (Fig. S3A,B). The use of higher concentrations of Cys (levels around 20 mg/
ml) cleared the pneumococcal population within the mixed biofilm but the reduction of S. aureus was similar 
to the lower doses (data not shown).

To confirm the effect of both antioxidants, CLSM was performed in MSSA-Sp and MRSA-Sp biofilms formed 
in glass-bottom dishes (Fig. S4). Images confirmed the killing effect of 2.5 mg/ml of NAC and Cys in the mixed 
biofilm system, being greater the effect of NAC in both systems in agreement with viable counts. Figure S4 shows 
that adding NAC kills the bacterial cells in the biofilms, but does not have a marked effect on the density of the 

Figure 2.   Time course of MSSA-Sp mixed biofilm formation using two proportions. (A) Mixed biofilm 
MSSA-Sp 1:1. (B) Mixed biofilm MSSA-Sp 1:11. In the top panel is represented MSSA (red) and S. pneumoniae 
(green) viable cells within the biofilm. In the middle panel is represented MSSA viable cells (light red) and S. 
pneumoniae (light green) viable cells in the planktonic culture. In the bottom panel is represented the total 
biomass (black bars) and biofilm biomass (grey bars) determined by CV staining. The data represent the average 
of six experiments. Standard deviation bars are shown.
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biofilm. Moreover, the lethal effect of 2.5 mg/ml of Cys in the mixed biofilm MSSA-Sp was higher than in the 
mixed biofilm of MRSA-Sp (Fig. S4).

Impact of cefditoren against mixed biofilms of MSSA‑Sp and MRSA‑Sp.  The antimicrobial activ-
ity of cefditoren (CEF) was used against MSSA-Sp and MRSA-Sp biofilms. The reason for using this 3rd gen-
eration oral cephalosporin is because we have recently demonstrated that it has been the most active β-lactam 
against S. pneumoniae clinical isolates during the last 16  years, demonstrating the lowest MIC50 and MIC90 
throughout the period 2004–202055,56. For biofilm treatment, we used double the MIC90 of previous studies of 
both S. pneumoniae clinical isolates and MSSA clinical isolates55,56. Our results demonstrated that CEF reduces 
the pneumococcal population within the mixed biofilm and showed a partial effect against the MSSA strain 
(Fig. 6). In the case of the mixed MRSA-Sp biofilm, this antibiotic only killed the pneumococcal population 
within the mixed biofilm without effect against the MRSA strain. These results confirm that this antibiotic could 
be a good choice to ameliorate the impact of pneumococcal resistant strains even when forming complex pol-
ymicrobial biofilms, but it is not as effective against the polymicrobial biofilms as the antioxidants NAC and Cys 
(Figs. 4 and 5).

Discussion
The existence of polymicrobial biofilms with bacterial species such as S. aureus and S. pneumoniae is worrisome. 
Bacteria in biofilms are more recalcitrant to antibiotic treatments and the immune system, therefore facilitating 
the colonization process. The close contact in the biofilm state contributes to the interchange of virulence factors 
and resistance genes increasing the relevance of biofilms in clinical practice26,57–59. The step from nasopharynx 
colonization to diseases such as AOM, sinusitis, and bacterial pneumonia is hypothesized by host changes after 
suffering a viral upper respiratory infection60–62. Moreover, epidemiological studies showed a co-colonization 
in the nasopharynx of humans by S. aureus and S. pneumoniae despite being traditionally seen as contrasting 

Figure 3.   Time course of MRSA-Sp mixed biofilm formation using two proportions. (A) Mixed biofilm 
MRSA-Sp 1:1. (B) Mixed biofilm MRSA-Sp 1:11. In the top panel is represented MRSA (patterned red) and S. 
pneumoniae (green) viable cells within the biofilm. In the middle panel is represented MSSA viable cells (light 
patterned red) and S. pneumoniae (light green) viable cells in the planktonic culture. In the bottom panel is 
represented the total biomass (black bars) and biofilm biomass (grey bars) determined by CV staining. The data 
represent the average of six experiments. Standard deviation bars are shown.
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species42–44. This antagonistic relationship has been described previously39,63 but our study demonstrates a suitable 
interaction by both species. The establishment of an in vitro model using 96-well polystyrene plates containing 
S. pneumoniae and S. aureus forming a mixed biofilm supports previous works describing the possibility of the 
interaction between both pathogens4,40,41.

In this in vitro model, S. aureus has an advantage in the growth as biofilm compared to S. pneumoniae, 
which needs a higher proportion of the inoculum and a higher rate in the planktonic culture to achieve a final 
concentration within the mixed biofilm similar to the obtained with S. aureus. This may happen because of the 
innate nature of the pathogen that forms biofilms easily in both biotic and non-biotic surfaces64. In the case of 
abiotic surfaces, where electrostatic and hydrophobic interactions play an important role in static biofilm assays, 
S. aureus also uses negatively charged teichoic acids and its major autolysin AltA to attach to polystyrene and 
glass surfaces65–67. In the case of S. pneumoniae, the initial attachment to abiotic surfaces has been only reported 
to be mediated by weak electrostatic and hydrophobic interactions58,68. Moreover, the CPS of the pneumococ-
cal strain used, despite expressing the CPS of a good biofilm former serotype18, could interfere with the initial 
attachment and biofilm formation, and therefore, S. aureus could take advantage and dominate the attachment 
and formation within the mixed biofilm.

In this study, we have used two strains with different backgrounds, including MSSA and MRSA clinical 
isolates, to see if the antibiotic susceptibility profile interferes in the interaction between S. pneumoniae and S. 
aureus. Our results demonstrated that both strains had a similar biofilm pattern individually or mixed with S. 
pneumoniae.

Figure 4.   Prevention with antioxidants of MSSA/MRSA-Sp mixed biofilms (Inhibition of mixed biofilms). 
Mixed biofilms were distributed in the wells of a microtiter plate, which was then incubated for 5 h at 34 °C in 
the presence of different concentrations of NAC (A,B) or Cys (C,D). The MIC of NAC for the S. pneumoniae 
strain was 2.5 mg/ml and 5 mg/ml for both MSSA /MRSA strains whereas the MIC of Cys for the S. pneumoniae 
strain and both S. aureus strains was 0.156 mg/ml. Absorbance levels after CV staining of mixed biofilms (A) 
and (C) MSSA-Sp (B) and (D) MRSA-Sp. Dark grey bars represent total biomass (adherent plus non-adherent 
cells) and white bars represent mixed biofilm biomass. Data represent the average of at least three experiments. 
Standard deviation bars are shown, and asterisks mark statistically significant results (two-tailed Student’s t test: 
*P < 0.05; **P < 0.01; ***P < 0.001) when comparing the treatment versus the non-treated biofilm. For multiple 
comparisons, we performed one-way ANOVA obtaining ***P < 0.001 in all the cases.
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One of the main challenges in the outcome of the infection caused by S. aureus biofilms is the loss of efficacy 
of the antibiotic treatment, especially when these biofilms are formed by MRSA strains26,69. It is common that 
conventional antibiotic therapy does not work in recalcitrant MSSA and MRSA biofilms. This could aggravate 
the situation, imposing a positive selection pressure for the emergence of resistant strains6,70. Treatment with 
the thiol antioxidant NAC (a precursor of glutathione synthesis), has been used to prevent and disrupt S. aureus 
biofilms, as a single treatment or in combination with other enzymes and antibiotics49. Different mechanisms 
have been reported for the antimicrobial activity of NAC50,71,72. Among them, competitive inhibition of cysteine 
uptake with microbial strains is of great importance. In addition, reaction of the NAC sulfhydryl group with bac-
terial proteins leading to reduction of disulfide bonds affecting bacterial attachment within the biofilm has been 
found to reduce bacterial viability. Moreover, modification of the intracellular redox equilibrium also confers 
antimicrobial activity50,71. In addition, NAC could be acting as a weak acid on the biofilm, penetrating the matrix 
and the cell wall. In this sense, NAC dissociates and acidifies the cytoplasm, denaturing bacterial proteins and 
causing DNA damage inside the bacteria72. Cys is an aminothiol that deprotonates and forms thiol anions (−S−) 
that are able to disrupt intermolecular and intramolecular disulfide bonds of bacterial proteins73. In this case, 
cleavage of disulfide bonds of bacterial proteins not only denatures key bacterial enzymes that play important 
roles in their metabolism and survival but also impairs the structural integrity of the extracellular matrix of 
biofilms52. As a consequence of these antimicrobial mechanisms, Cys prevents the formation and disrupts the 

Figure 5.   Treatment with antioxidants of MSSA/MRSA-Sp mixed biofilms (Disaggregation of mixed biofilms). 
Mixed biofilms were first incubated for 4 h at 34 °C, then washed with sterile H2Od and incubated with different 
concentrations of NAC (A,B) or Cys (C,D) for 1 h at 37 °C. The MIC of NAC for the S. pneumoniae strain was 
2.5 mg/ml and 5 mg/ml for both MSSA /MRSA strains whereas the MIC of Cys for the S. pneumoniae strain and 
both S. aureus strains was 0.156 mg/ml. (A,C) Viability of MSSA-Sp mixed biofilm. (B,D) Viability of MRSA-Sp 
mixed biofilm. Black bars correspond to MSSA, grey bars correspond to S. pneumoniae, and grey patterned bars 
represent MRSA viable cells within the mixed biofilms. Data represent the average of at least three experiments. 
Standard deviation bars are shown, and asterisks mark statistically significant results (two-tailed Student’s t test: 
*P < 0.05; **P < 0.01; ***P < 0.001) when comparing the treatment versus the non-treated biofilm. For multiple 
comparisons, we performed one-way ANOVA followed by a Dunnett’s post hoc test obtaining ***P < 0.001 in all 
the cases.
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biofilm of several pathogens including Pseudomonas aeruginosa, Enterococcus faecalis, Haemophilus influenzae, 
and S. pneumoniae51–53. In this work, we have demonstrated the antimicrobial effect of different concentrations 
of Cys in S. aureus biofilms, confirming that this compound prevented the biofilm formation of a MSSA and a 
MRSA strain. Moreover, treatment of S. aureus biofilms with doses of Cys over 2.5 mg/ml resulted in a ≈ 50–90% 
reduction of the viable bacteria of the biofilm, showing a lower effect than NAC for this kind of biofilms49. One 
of the main advantages of this study is the use of relevant clinical isolates of S. aureus confirming that both 
antioxidants are effective against MSSA and MRSA strains. We could observe that methicillin resistance does 
not change the effect of the mucolytic agent, as it had been previously reported with NAC49. To this date, the 
identification of S. aureus strains associated with resistance or even tolerance to NAC/Cys has not been shown.

Prevention of mixed biofilms by these two pathogens and the treatment of polymicrobial biofilms associ-
ated with certain diseases such as AOM and sinusitis are strategies to be prioritized. NAC and Cys have been 
confirmed as good candidates to treat polymicrobial biofilms of S. pneumoniae and non-typeable H. influen-
zae53, making them ideal to treat biofilms where S. aureus, and specifically MRSA, is involved. In this work, we 
describe the antimicrobial effect of both antioxidants against mixed biofilms of S. aureus and S. pneumoniae, 
demonstrating that the pneumococcal population was practically eradicated with only 0.5 mg/ml of NAC and 
2.5 mg/ml of Cys. In the case of S. aureus in the mixed biofilm, NAC markedly reduced the viability and this 
effect was independent of the methicillin susceptibility pattern. Moreover, we observed that the treatment with 
NAC of mixed biofilms does not disperse the bacterial cells within the biofilm. This is an advantage in clinical 
practice as the not dispersing effect avoids the potential colonization of a new habitat within the host. The anti-
microbial activity of Cys against S. aureus in the mixed biofilm was similar to the treatment of individual biofilms 
of the same serotype, preventing mixed biofilms with concentrations around the MIC. Our results showed a 
weaker effect of Cys compared to NAC, which has been already seen in the treatment of polymicrobial biofilms 
of non-typeable H. influenzae and S. pneumoniae53. We also used a 3rd generation oral cephalosporin to test 
a classical antibiotic against polymicrobial biofilms, observing only an effect in the S. pneumoniae population 
using a concentration 16 times over MIC, a mild effect against MSSA population, and non against the MRSA 
population within the mixed. This confirms that the use of alternative therapies against polymicrobial biofilms 
such as antioxidants is necessary.

The search for new treatments against bacteria multiplying as biofilms is an urgent matter, and of great impor-
tance in the clinical practice which is a growing research field. The development of new drugs is an expensive 
and slow process, but drug repurposing has been adopted successfully and is a current priority by the National 
Institutes of Health54. Our results contribute to the knowledge supporting the use of NAC and Cys as promising 
repurposed drugs candidates for the prevention and treatment of individual S. aureus biofilms and against mixed 
biofilms by S. pneumoniae and S. aureus including MRSA strains.

Methods
Bacterial strains and culture conditions.  In mixed biofilms, we tested the following strains: S. pneu-
moniae YNM4 (serotype 19A)8, MSSA 60031/19 strain (serotype 5), and MRSA 60061/19 strain (serotype 5). 
For individual biofilms of S. aureus testing Cys, we also used MSSA 60335/19 strain (serotype 8) and MRSA 
60221/19 (serotype 8). The pneumococcal strain was cultured in 5% Mueller–Hinton blood agar plates and incu-
bated at 37 °C under 5% CO2. S. aureus strains were cultured in Tryptic Soy Agar plates and incubated at 37 °C. 
In mixed infections, we used blood agar plates with 5 µg/ml of gentamicin and plates containing Salt Mannitol 
Agar to select S. pneumoniae and S. aureus respectively.

Figure 6.   Treatment with CEF of MSSA/MRSA-Sp mixed biofilms (Disaggregation of mixed biofilms). Mixed 
biofilms were first incubated for 4 h at 34 °C, then washed with sterile H2Od and incubated with 2 µg/ml of 
CEF for 1 h at 37 °C. The MIC of CEF for the S. pneumoniae strain was 0.12 µg/ml, for the MSSA strain was 
1.25 µg/ml and for the MRSA strain was 2.5 µg/ml. Black bars correspond to MSSA, grey bars correspond to 
S. pneumoniae, and grey patterned bars represent MRSA viable cells within the mixed biofilms. Data represent 
the average of at least three experiments. Standard deviation bars are shown, and asterisks mark statistically 
significant results (two-tailed Student’s t test: ***P < 0.001) when comparing the treatment versus the non-treated 
biofilm.
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Mixed biofilm formation assay.  Biofilm formation was characterized using a crystal violet (CV) assay 
as previously described14. Briefly, cells were grown in a C + Y medium to an A550 of ≈ 0.5–0.6 (≈ 4 × 108 CFU/
ml) and diluted 100-fold in C + Y medium. S. pneumoniae and S. aureus suspensions were used individually or 
combined in different proportions, and aliquots of 200 µl containing from 4 × 105 to 4 × 106 CFU/ml were added 
into 96-well polystyrene plates (Costar 3595, Corning). The biofilms were incubated from 2 to 6 h at 34 °C and 
the A595 of the total growth was measured using the BioTek Epoch2 (BioTek Instruments). This temperature 
was chosen because it mimics the environment found in the upper respiratory tract when temperatures are a 
bit cooler due to higher ventilation in this location74. CV (0.2%) was used to stain the biofilm followed by three 
washes with distilled water to eliminate non-adherent bacteria and solubilization with 95% ethanol. Absorb-
ance (A595) was quantified in the mentioned reader. The number of viable cells (biofilm and planktonic cells) 
was determined in the different cultures in order to isolate S. pneumoniae from S. aureus using specific selective 
plates described above. Briefly, after incubation, the planktonic culture was separated, and the biofilm was rinsed 
twice with phosphate buffer saline (PBS), then gently disaggregated using a pipette and tenfold dilutions were 
prepared in PBS. Viable cells were quantified and expressed as CFU/ml.

Susceptibility testing and antibiofilm therapy.  The susceptibility of S. aureus and S. pneumoniae 
strains growing as planktonic cultures to the compounds NAC (Sigma-Aldrich) and Cys (Sigma-Aldrich) were 
determined using the broth microdilution method following CLSI guidelines75. The MIC of NAC for the S. 
pneumoniae strain was 2.5 mg/ml and 5 mg/ml for both MSSA /MRSA strains whereas the MIC of Cys for the 
S. pneumoniae strain and for all S. aureus strains was 0.156 mg/ml. The MIC of CEF for the S. pneumoniae strain 
was 0.12 µg/ml, for the MSSA strain was 1.25 µg/ml and for the MRSA strain was 2.5 µg/ml.

For the antibiofilm therapy, bacterial cells were grown in a C + Y medium to an A550 of ≈ 0.5–0.6. Cells were 
centrifuged and resuspended in an equal volume of C + Y, using a 100-fold dilution in C + Y medium for further 
work. The suspensions of S. aureus were used individually or mixed with S. pneumoniae in the proportion 1:1 (for 
inhibition assays, prevention) or 1:11 (for disaggregation assays, treatment) of MSSA:Sp and MRSA:Sp. 200 µl 
of the different bacterial suspensions were added to each well using 96 wells of polystyrene microtiter plates.

For inhibition assays (prevention), different concentrations of NAC and Cys were added to the initial biofilm 
with the inoculum followed by 5 h incubation at 34 °C. Absorbance (A595) of the total growth was determined 
using the BioTek Epoch2. Biofilm staining with CV and quantification was performed as described above.

For disaggregation assays (treatment), after 4 h incubation at 34 °C, the planktonic cells were aspirated and the 
biofilm was rinsed with PBS. Different concentrations of NAC and Cys were added and biofilms were incubated 
for 1 h at 37 °C, rinsed twice with PBS, disaggregated, and tenfold dilutions were prepared in PBS. Viable cells 
were quantified and expressed as CFU/ml.

Confocal laser scanning microscopy (CLSM) of biofilms.  To evaluate the effect of the antioxidants 
NAC and Cys in the mixed biofilms, we used CLSM to visualize the cells as previously described53. Briefly, bio-
films were grown on glass-bottomed dishes (WillCo-dish; WillCo Wells B.V., The Netherlands) for 4 h at 34 °C. 
The supernatant was removed and the biofilm was rinsed with PBS, and treated with 2.5 mg/ml of NAC or Cys 
for 1 h at 37 °C. Non-adherent bacteria were removed from biofilms by washing with sterile water, and bacterial 
viability within the biofilm was assessed using the LIVE/DEAD BacLight kit (Invitrogen). CLSM observations 
were made with a Leica spectral SP5 confocal microscope and analyzed with the LAS AF software. Images repre-
sent the x–y from XYZ-stacks at 0.5-µm intervals and x–z projections from XZY stacks at 5-µm intervals planes.

Statistical analysis.  Data were obtained from different independent experiments, containing at least three 
replicates in each experiment. A two-tailed Student’s t test was used for two groups’ comparisons, whereas for 
multiple comparisons we choose a one-way ANOVA test and a Dunnett’s post hoc test. GraphPad InStat version 
8.0 was used for every analysis. We consider P < 0.05 (*) as significant whereas P < 0.01 (**) and P < 0.001 (***) 
were considered as highly significant.
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