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Abstract
Purpose of Review Immunotherapy has shown an unprecedented response in treatment of tumors. However, challenges such as
lack of cytotoxic lymphocytes to mount an immune response or development of resistance to therapy can limit efficacy. Here, we
discuss alternative checkpoints that can be targeted to improve cytotoxic lymphocyte function while harnessing other compo-
nents of the immune system.
Recent Findings Blockade of alternative checkpoints has improved anti-tumor immunity in mouse models and is being tested
clinically with encouraging findings. In addition to modulating T cell function directly, alternative checkpoints can also regulate
activity of myeloid cells and regulatory T cells to affect anti-tumor response.
Summary Combination of immune checkpoint inhibitors can improve treatment of tumors by activating multiple arms of the
immune system.
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Introduction

T cell dysfunction or “exhaustion” is a phenomenon that can
result from chronic antigenic stimulation in the context of a
tumor [1]. Broadly defined, exhaustion refers to a progressive
loss of proliferative capacity, cytotoxicity, and inflammatory
cytokine production. Exhausted T cells upregulate inhibitory
molecules on the cell surface which mediate loss of effector
function. Although T cell exhaustion can prevent immunopa-
thology, autoreactivity, or T cell apoptosis in chronic antigen
stimulation scenarios such as chronic viral infection, in the
presence of a tumor, it can lead to immune evasion and tumor
progression. Therefore, targeting inhibitory molecules such as
cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or
programmed cell death protein-1 (PD-1) and their ligands
has become a cornerstone of cancer immunotherapy [2].

Using immune checkpoint inhibitors (ICI) against PD-1
has generated unprecedented response in treating many
solid tumors such as colon cancer, melanoma non-small
cell lung cancer, and renal cell carcinoma [3]. Despite the
success of ICIs in treating “hot” tumors that are inflamed
and have infiltrating T cells that can be mobilized with
ICIs, many “cold” tumors such as glioblastoma, prostate
cancer, and pancreatic cancer are refractory to anti-PD-1
treatment due to a dearth of cytotoxic T lymphocytes
(CTLs) in the tumor. Even within “hot” tumors, anti-
PD-1 therapy does not work for the majority of the pa-
tients, and those who respond initially are at risk of de-
veloping resistance to the therapy. This resistance is often
accompanied by a concomitant increase in alternative
checkpoint molecules such as LAG-3, TIM-3, VISTA,
TIGIT, and B7-H3 in the tumor. As a result, our arsenal
of ICIs is constantly expanding, with alternative check-
points being targeted to prevent resistance and to stimu-
late T cell infiltration of “cold” tumors.

The multitude of studies exploring the blockade of these
alternative checkpoints have revealed intricate interactions be-
tween these checkpoint molecules and non-CTLs including
antigen-presenting cells (APCs), immunosuppressive cells,
and T regulatory cells (Tregs). In this review, we will high-
light the emerging alternative checkpoints and their effect on
the lymphoid and myeloid compartments in cancer.
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TIM-3 (T Cell Immunoglobulin Mucin-3)

TIM-3 or hepatitis A virus cellular receptor 2 (HAVCR2) is an
immune checkpoint that is present on CD4+ T cells, CD8+ T
cells, NK cells, macrophages, dendritic cells (DCs), and B
cells. Originally identified on the type 1 helper T cell (Th1)
subset of CD4+ T cells as a suppressor of effector function in
an autoimmunemouse model, it is now appreciated as a potent
checkpoint molecule capable of mediating exhaustion among
tumor-infiltrating CD8+ T cells [4]. Numerous animal studies
have shown the efficacy of targeting TIM-3 along with PD-1
to reverse T cell exhaustion and boost anti-tumor immunity [5,
6]. Analysis of immune cells from human tumors also corrob-
orates the association between TIM-3 expression, T cell ex-
haustion, and poor prognosis [7–9]. Guided by these findings,
there are many ongoing phase I and phase II clinical trials
exploring dual TIM-3/PD-1 blockade in recurrent glioblasto-
ma (NCT03961971), leukemia (NCT03066648), and ad-
v an c ed o r me t a s t a t i c s o l i d t umo r s (AMBER ,
NCT02817633) as well as other tumors [10] (see Table 1).

What makes TIM-3 a unique candidate for immunotherapy
is that it has multiple ligands including galectin-9 (Gal-9),
carcinoembryonic antigen cell adhesion molecule
(CEACAM-1), phosphotidylserine (PS), and high-mobility
group protein B1 (HMGB-1) [11–14]. The function of TIM-
3 has been shown to vary depending on the specific receptor-
ligand interaction (see Table 2). For example, TIM-3 can have
both pro- and anti-inflammatory effects depending on which
cell type it is present on and which ligand interacts with TIM-
3. TIM-3 on DCs, when ligated to galectin-9, can promote an
inflammatory Th1 response. However, TIM-3 on Th1 cells
can downregulate Th1 immune response when ligated with
galectin-9 [15]. Furthermore, the interaction of galectin-9 with
TIM3+ CD8+ T cells in an immunosuppressive context such
as tumor microenvironment can promote effector function
[16]; however, this same interaction in the context of an auto-
immune or hyperimmune environment can promote CD8+ T
cell apoptosis [17].

Another ligand, HMGB1, illustrates the unique role of
TIM-3 in suppressing antigen presentation. HMGB-1 is
an alarmin produced by stressed and necrotic cells and
is capable of binding immunogenic nucleic acids and
recruiting them to DC endosomes for interaction with
TLRs (Toll-like receptors) [18]. By binding HMGB1,
TIM-3 can sequester it from activating TLRs. This re-
duces the immunogenicity of nucleic acids from dying
tumor cells and plays a role in abrogating the benefit of
DNA vaccines [19]. In contrast, phosphotidylserine is a
ligand of TIM-3 exposed on the surface of apoptotic cells
that stimulates TIM-3+ DCs to phagocytose the apoptotic
cell and cross-present their antigens to T cells [20].

By having such diverse and opposing functions depending
on context, TIM-3 illustrates the necessity of considering not

only the protein level of checkpoints on immune cells to de-
termine optimal immunotherapy regimen but also the tumor
microenvironment as a whole. This includes the availability of
ligands, the context in which the ligand interacts with the
checkpoint, and the nature of ongoing antigen presentation.
Through optimization of treatment schedule, or improvements
in local delivery of immunotherapy to tumor or draining
lymph node, or co-blockade of select ligands along with the
checkpoint molecule, we can improve cancer treatments by
maximizing anti-tumor function while minimizing pro-tumor
effects of checkpoint molecules.

LAG-3 (Lymphocyte Activation Gene 3)

LAG-3 is an inhibitory molecule expressed on activated T
cells, NK cells, Tregs, plasmacytoid dendritic cells, and B
cells. It is structurally similar to CD4 protein and is embedded
in the CD4 locus. It binds to MHC II with a greater affinity
than CD4, leading to early speculations that LAG-3 inhibits T
cell activation by sequestering MHC II from binding to CD4
protein [21]. However, more recent studies have shown that
the interaction between the extracellular region of LAG-3 and
MHC II is neither universal nor sufficient to prevent T cell
activation [22]. The study found that LAG-3 can only bind
stable complexes of peptide-MHC II, and the intracellular
regions of LAG-3 are indispensable for transducing an inhib-
itory signal. This provided a key piece of evidence linking
LAG-3 to the maintenance of tolerance to dominant antigens,
indicating the co-opting of this tolerance mechanism for can-
cer evasion despite the presence of immunogenic tumor
antigens.

Although MHC II was long considered the canonical li-
gand, recent evidence shows that galectin-3, LSECtin (liver
sinusoidal endothelial cell lectin), and fibrinogen-like protein
1 (FGL-1) interact with LAG-3 and negatively regulate T cell
function [23, 24, 25••](see Table 2). Due to its effect on T cell
regulation, blocking LAG-3 has been tested in multiple mouse
models of tumor and has shown significant synergy with PD-1
blockade [26–28]. In tumor-infiltrating T cells derived from
patients, co-expression of LAG-3 and PD-1 was indicative of
a greater exhaustion phenotype and worse prognosis than PD-
1 expression alone [29–31]. As a result, many clinical trials
exploring combination LAG-3 and PD-1 blockade are cur-
rently underway. Indeed, the combination of anti-PD-1 with
BMS-986016, a monoclonal antibody against LAG-3, has
generated exciting results demonstrating clinical benefits in
melanoma patients initially refractory to anti-PD-1 therapy
[32••]. This combination is now being tested in multiple phase
I and II trials for both hematological and solid malignancies.

A unique aspect of LAG-3 protein is that its transmembrane
form can be cleaved by the ADAM10 and ADAM17
metalloproteases to a soluble form (s-LAG-3), which has
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immunomodulatory roles of its own. S-LAG-3 is released from
activated T cells [33] or plasmacytoid DCs [34], and blocking
cleavage of LAG-3 prevents further proliferation and activation
of T cells [35]. However, the complete role of s-LAG-3 remains
elusive. Findings from Triebel and colleagues show opposing
effects of soluble LAG-3 on APC homeostasis. On the one
hand, LAG-3-Ig (fusion of extracellular LAG-3 with IgG1 Fc
portion) canmediate phenotypic maturation of DCs [36] and be
used as a vaccine adjuvant to induce humoral and cellular im-
mune response to antigens [37]. Once mature, these DCs

secrete inflammatory cytokines and lose their capacity to cap-
ture further soluble antigens. On the other hand, the same group
also showed that s-LAG-3 can prevent the differentiation of
monocyte precursors to macrophages and dendritic cells, indi-
cating that the positive effect of s-LAG-3 on DC maturation
depends on the presence of pre-existing DCs [38]. Clinically,
the use of IMP321, a soluble LAG-3 Ig, has shown robust
induction of APC and CD8+ T cell function in advanced renal
cell carcinoma and breast cancer [39–41], but not in pancreatic
ductal adenocarcinoma (PDAC) [42]. To examine the

Table 1 Summary of clinical trials evaluating alternate immune checkpoint targets presented in this review

Checkpoint
Inhibitor

Trial Treatment arms Phase Number
of
patients

Current status Tumor

anti-TIM-3
NCT03961971 + Anti-PD-1 + stereotactic

radiosurgery
I 15 Active, not recruiting Recurrent GBM

NCT03066648 Monotherapy I 873 Active, recruiting Leukemia
+ Decitabine
+ Anti-PD-1
+ Decitabine + anti-PD-1
Decitabine + anti-PD-1

NCT02817633 Monotherapy I Active, recruiting Advanced or metastatic solid tumors
+ Anti-PD-1
+ Anti-LAG-3

LAG-3Ig fusion protein
Brignone et al. [40] + Paclitaxel (for breast

cancer patients)
I/II 21 Complete Advanced renal cell cancer and

metastatic breast cancer
Romano et al. [41] + MART-1 analog peptide

vaccine
I 12 Complete Advanced melanoma

Wang-Gilliam et al. [42] + Gemcitabine I 18 Complete Advanced pancreatic
adenocarcinoma

Anti-LAG-3 Ascierto et al. [32••] Monotherapy I/IIa 43 Complete Advanced melanoma
+ Anti-PD-1

anti-TIGIT
NCT04294810 + Anti-PD-L1 III 500 Active, recruiting Non-small cell lung cancer

Placebo + anti-PD-L1
NCT04256421 + Anti-PD-L1 + carboplatin

+ etoposide
III 400 Active, recruiting Small cell lung cancer

Placebo + anti-PD-L1 +
carboplatin + etoposide

NCT04047862 + Anti-PD-1 I/Ib 39 Active, recruiting Metastatic solid tumors
NCT04150965 Monotherapy I/II 104 Active, not yet

recruiting
Multiple myeloma

+ Pomalidomide +
dexamethasone

Anti-LAG-3
Anti-LAG-3 +

pomalidomide +
dexamethasone

Elotuzumab (anti-SLAM-7)
+ pomalidomide +
dexamethasone

anti-VISTA
NCT02812875 None I 300 Active, not recruiting Advanced solid tumors or

lymphomas
anti-B7-H3

NCT02923180 None II 33 Active, not recruiting Prostate cancer
NCT02475213 + Anti-PD-1

(pembrolizumab or
MGA012)

I 145 Active, not recruiting Melanoma, head and neck cancer,
non-small cell lung cancer,
urothelial carcinoma

NCT03275402 None II/III 32 Active, recruiting Neuroblastoma, CNS metastases,
leptomeningeal metastases
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suitability of this therapy for a wider range of tumors including
those that have a heavy presence of immunosuppressive mye-
loid cells such as glioblastoma [43] and PDAC [44•], it will be

important to deconstruct the interplay between s-LAG-3, the
presence of immunosuppressive myeloid precursors, and
chronic antigen persistence.

Table 2 Summary of ligand-checkpoint interactions

Ligand Ligand + cell Checkpoint + cell Interaction context Interaction outcome

TIM-3
Gal-9

? Th1 cells Hyperimmune
conditions

Apoptosis of TIM3+ cell [11]

Secreted by tumor CD8+ T cells Tumor Apoptosis of TIM3+ cells [13]
Recombinant protein DCs Tumor TIM3+ DC activates CD8+ T cells [16]

HMGB1
Extracellular protein DCs Tumor Nucleic acids released from tumor and bound to HMGB1 cannot

activate TLRs. Impaired antigen presentation [19]
Extracellular protein CD8+ Tregs in the

liver
Hepatic necrosis

during infection
CD8+ Tregs suppress activation of CD8+ T effector cells against

infection [14]
PS Apoptotic cells CD8+ DCs Apoptosis CD8+ DCs phagocytose apoptotic cells and cross-present antigens to

CD8+ T cells [20]
CEACAM-1 CD8+ T cells CD8+ T cells T cell homeostasis CEACAM-1 can form heterodimers with TIM-3 in trans or in cis,

potentiating TIM-3’s inhibitory role [12]
LAG-3
MHC II APCs CD4+ T cells T cell homeostasis LAG-3 bound to stable peptide-MHC II complex, suppressed T cell

activation [22]
Gal-3 T cells and non-T

cells in TME
CD8+ T cells Tumor Activation of tumor-specific T cells suppressed [23]

LSECtin Tumor cells CD8+ T cells Tumor LSECtin induced on melanoma cells can suppress T cell activation [24]
FGL-1 Secreted by some

tumors
CD8+ T cells Tumor Activation of antigen specific T cells suppressed [25••]

MHC II DC Soluble LAG-3 DC homeostasis Suppression of monocytic differentiation to DC [38]
and promotion of DC maturation [36]

TIGIT
CD155/PVR DCs TIGIT-Fc fusion

protein
DTH DCs exhibit tolerogenic changes, T cell priming reduced [47]

CD122/PVRL2 Target cell for
cytotoxicity

NK cells Immunosurveillance Inhibition of NK cytotoxicity [46]

VISTA
VSIG3 Immobilized

VSIG3-IgG1Fc
T cells T cell homeostasis Activation and proliferation of T cells inhibited [62]

PSGL-1 CD4+ T cells VISTA-Fc fusion
protein

T cell homeostasis Activation and proliferation of T cells inhibited [63]

VISTA
(homophilic
binding)

Apoptotic cells,
phagocytes, T cells

Apoptotic cells,
phagocytes, T cells

Phagocytosis/T cell
homeostasis

Apoptotic cells phagocytosed; T cell activation suppressed [64]

B7-H3
? ? Tumor cells, APCs Tumor B7-H3 blockade improve anti-tumor response [81–83]

Gal-9 galectin-9

HMGB1 high mobility group box 1

PS phosphatidylserine

CEACAM-1 carcinoembryonic antigen-related cell adhesion molecule 1

Gal-3 galectin-3

TME tumor microenvironment

LSECtin liver and lymph node sinusoidal endothelial cell C-type lectin

FGL-1 fibrinogen-like protein 1

PVR poliovirus receptor

DTH delayed-type hypersensitivity

PVRL2 poliovirus receptor-related 2

VSIG3 V-set and Ig domain-containing protein 3

PSGL-1 P-selectin glycoprotein ligand-1
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TIGIT (T Cell Immunoreceptor with Ig and ITIM
Domains)

TIGIT, also known as VSTM3 or WUCAM, is an inhibitory
molecule found on T cells, Tregs, and NK cells. It has been
shown to mediate T cell dysfunction and is co-expressed with
PD-1, LAG-3, and TIM-3 [45]. The ligands for TIGIT are
CD155 (PVR or poliovirus receptor) and CD122 (PVRL2)
[46]. TIGIT demonstrates multiple mechanisms of signaling.
It can signal extracellularly by acting as a ligand for CD155
which is found on DCs. CD155 then promotes tolerogenic
behavior in DCs by promoting secretion of anti-
inflammatory IL-10 and diminishing production of the p40
subunit of IL-12p40, thereby indirectly reducing T cell acti-
vation [47]. Another mechanism of TIGIT signaling involves
interaction with CD155, which outcompetes the T cell
cytotoxicity-promoting DNAM-1 protein from binding to
CD155 [47, 48]. In doing so, TIGIT closely mimics the role
of inhibitory CTLA-4 in preventing costimulatory CD28 from
binding B7 ligand. Through its immunoreceptor tyrosine-
based inhibition motif (ITIM) and immunoreceptor tail
tyrosine-like (ITT-like) motif, TIGIT can also signal intracel-
lularly to directly suppress T cell activation [49].

In murine tumor models, TIGIT is upregulated on tumor-
infiltrating cells compared with cells from peripheral lym-
phoid organs [45, 50]. Among the tumor-infiltrating CD8+
T cells, TIGIT is upregulated on severely dysfunctional cells
that have the highest expression of PD-1, TIM-3, and the
transcription factor Eomes, which is associated with terminal-
ly exhausted T cells [45]. Findings from Kurtulus et al. indi-
cate that TIGIT + Tregs could promote severed dysfunction of
T cells and show that TIGIT expression on Tregs drives the
suppression of an anti-tumor response [45]. This highlights
the potential of TIGIT blockade as a Treg-targeting therapy.

The use of TIGIT blockade alone [50] or in combination
with anti-PD-1 therapy [50, 52] has shown efficacy in murine
models of tumor. In human samples, TIGIT is upregulated in
tumor-infiltrating lymphocytes, and co-expression with PD-1
and LAG-3 is associated with severe CD8+ T cell dysfunction
and poor prognosis [50, 53–55]. In vitro assays using T cells
derived from patients with multiple myeloma [51•] or ad-
vanced melanoma [54] have shown improvement in effector
function following TIGIT blockade alone or with anti-PD-1
therapy, respectively. TIGIT upregulation on Tregs has also
been correlated with poor clinical outcome following anti-PD-
1 and/or anti-CTLA-4 therapy [56]. Currently, there are clin-
ical trials evaluating TIGIT blockade along with anti-PD-L1
therapy for non-small cell lung cancer (SKYCRAPER-01,
NCT04294810), small cell lung cancer (SKYCRAPER-02,
NCT04256421), or with anti-PD-1 therapy (NCT04047862)
for metastatic solid tumors. Furthermore, newer trials in 2020
are exploring novel combinations; for example, a multiple
myeloma trial is studying combination of TIGIT blockade

with pomalidomide (NCT04150965). The results of these tri-
als will be eagerly anticipated and can chart the role of TIGIT
blockade in the management of other tumors as well.

VISTA (V-Set Immunoglobulin Domain
Suppressor of T Cell Activation)

VISTA, also known as programmed death-1 homolog (PD-
1H), is a checkpoint molecule recently discovered to be in-
volved in peripheral tolerance and T cell inactivation [57–59].
In addition to expression on T cells, VISTA is also found on
myeloid cells and non-immune cells such as tumor cells.
Unlike most other inhibitory molecules, VISTA does not need
to be present on T cells to cause dysfunction. VISTA expres-
sion on cancer cells or APCs can also impair T cell activity
[60, 61], warranting investigations of possible binding part-
ners for VISTA used by T cells. Studies suggest VSIG3 is a
ligand for VISTA [62], co-inhibitory PSGL-1 is a VISTA-
binding partner [63], and VISTA can have homophilic inter-
action with VISTA on other cells [64].

In mouse tumor models, overexpression of VISTA on can-
cer cells has been associated with rapid tumor growth and
impaired survival [59]. VISTA can be expressed on patient-
derived tumor cells as well, and high expression is associated
with tumor progression [65] and lymph node metastasis [66]
as well as T cell suppression [67]. Using VISTA blockade has
shown pre-clinical anti-tumor efficacy [60, 67]. VISTA en-
gagement in vitro has been shown to drastically reduce de-
granulation and cytokine production of tumor-infiltrating T
cells isolated from pancreatic cancer patients [44]. What
makes VISTA blockade more appealing is that its upregula-
tion is implicated as a potential mechanism of acquired resis-
tance in melanoma patients treated with anti-PD-1 [68•] and
prostate cancer patients treated with anti-CTLA-4 therapy
[69•]. Currently, CA-170, an orally available small molecule
inhibitor of VISTA, is being tested in combination with PD-
L1/PD-L2 blockade in a phase I trial in patients with advanced
tumors and lymphomas unresponsive to available therapies
(NCT02812875). An anti-VISTA monoclonal antibody
(JNJ-61610588) was also being examined clinically, but this
study has been prematurely terminated.

B7-H3

B7-H3 (CD276) is a member of the B7 family of proteins that
includes other members such as CD80, CD86, PD-L1 (B7-
H1), and VISTA. It is found on the surface of tumor cells,
activated dendritic cells, and macrophages and allows them to
modulate T cell response [70]. The receptor for B7-H3 has not
been identified, and the role of B7-H3 signaling is controver-
sial as it is reported to have both stimulatory [70, 71] and
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inhibitory effect on T cells [72, 73]. A number of murine
studies have shown an anti-tumor response elicited by B7-
H3 [74–76], but the expression of B7-H3 in human tumors
correlates with poor prognosis, advanced pathological state,
and metastasis in non-small cell lung cancer, pancreatic can-
cer, prostate cancer, and colorectal cancer [77–80]. The iden-
tification of counter receptors for B7-H3 on T cells could shed
light on a seemingly context-dependent, contradictory role of
B7-H3 on T cell homeostasis.

Despite the ambivalent results from correlative studies,
blockade of B7-H3 with antagonistic antibodies has consis-
tently demonstrated an anti-tumor response in mouse models
[81–83]. While these studies indicate the blockade of B7-H3
on tumor cells or tumor-infiltrating DCs and macrophages
enhance T cell function, there are non-immunological reasons
to be hopeful about the efficacy of anti-B7-H3 therapy. B7-H3
on cancer cells has been shown to promote epithelial-
mesenchymal transition (EMT) which can maintain stem
cell-like properties in tumor cells, aid in metastasis, and confer
chemotherapy resistance [84, 85]. Knockdown or blockade of
B7-H3 expression reduces proliferative capacity of cancer
cells, increases chemotherapy sensitivity, and compromises
viability of cancer-initiating cells [86, 87]. B7-H3 is also a
tumor endothelial marker that is highly expressed during path-
ological angiogenesis and not physiological angiogenesis and
can constitute tumor vasculature of colorectal cancer, esoph-
ageal cancer, non-small-cell lung cancer, breast cancer, and
bladder cancer [88]. Because of its broad applicability to gen-
erating an anti-tumor response, B7-H3 blockade has entered
several clinical trials. Antibodies against B7-H3 are currently
being tested on patients with prostate cancer (NCT02923180),
melanoma, head and neck cancer, non-small cell lung cancer
and urothelial carcinoma (NCT02475213), neuroblastoma
(NCT03275402), and many other tumors.

Concluding Remarks

The list of promising alternative checkpoints is not limited to
the ones discussed above. The roles of other immune check-
points like BTLA, Siglec-15, and newer B7 family members
are being increasingly appreciated in dampening immune re-
sponse and mediating tumor progression. While this review
did not provide an exhaustive list of checkpoints or their
mechanisms of action, it sought to present some common
themes that the study of alternative checkpoint molecules
has highlighted over recent years. While cancer immunother-
apy is often considered a T cell-centric approach because of
the prevalence of these markers on T cells, further examina-
tion has revealed that the regulatory roles of checkpoints ex-
tend beyond just T cells. These checkpoints can control the
fate and function of other residents of the tumor microenvi-
ronment as well as of secondary lymphoid organs―from

antigen-presenting cells to immunosuppressive cells to
Tregs. TIM-3 and LAG-3, in addition to attenuating CD8+
T cell function, are now known to boost suppressor activity
in Tregs [89, 90]. Any therapeutic success from blocking these
checkpoints could be attributed to inhibition of Tregs as much
as to the alleviation of T cell exhaustion. Similarly, the effica-
cy of anti-TIM-3 or anti-TIGIT blockade might depend not
only on the reversal of T cell exhaustion but also on the res-
toration of APC function and T cell priming, which could
enhance T cell infiltration of “cold” tumors. Our understand-
ing of themechanism of action of the first generation of check-
point molecules has also evolved. Recent work has shown
PD-1 ablation on myeloid cells can have a greater anti-tumor
effect than PD-1 ablation on T cells, by decreasing accumula-
tion of myeloid precursors of MDSCs [91••]. Data from clin-
ical trials have indicated that the efficacy of anti-PD-1 treat-
ment might rely on recruitment of newly expanded clones of T
cells into the tumor and that the pre-existing TILs have limited
reinvigoration capacity [92••, 93].While it is tempting to think
of the above-mentioned alternative checkpoints solely in
terms of their ability to shift PD-1+ T cell along the
activation-exhaustion spectrum, it is equally important to con-
sider their impact across the different immune compartments.
Such a holistic understanding can allow physicians to tailor
immunotherapy regimen to the distinct immune niche of a
particular tumor in individual patients.
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