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Genetic variants drive the evolution of traits and diseases. We previously modeled these variants as small displacements in

fitness landscapes and estimated their functional impact by differentiating the evolutionary relationship between genotype

and phenotype. Conversely, here we integrate these derivatives to identify genes steering specific traits. Over cancer co-

horts, integration identified 460 likely tumor-driving genes. Many have literature and experimental support but had eluded

prior genomic searches for positive selection in tumors. Beyond providing cancer insights, these results introduce a general

calculus of evolution to quantify the genotype–phenotype relationship and discover genes associated with complex traits

and diseases.

[Supplemental material is available for this article.]

From short-termdisease risk to long term species evolution, the ge-
notype–phenotype relationship describes how genetic variations
induce biological change (Manolio et al. 2009). Experimental
screens tracking the effect of these variations include RNA interfer-
ence (RNAi) (Boutros and Ahringer 2008), CRISPR-Cas9 knockouts
(Mali et al. 2013; Koike-Yusa et al. 2014; Wang et al. 2014b; Hart
et al. 2015), and deep mutational scans (Fowler et al. 2014) within
the limitations of achievable perturbations and assays (Mak and
Justman 2017). Alternately, statistical analyses of genome-wide as-
sociation identify overrepresented variants in case-control studies.
These presumably influence the phenotype common to case sub-
jects (Hirschhorn and Daly 2005; Hardy and Singleton 2009), al-
though sample size, signal quality (McCarthy et al. 2008), and
rate biases (Korte and Farlow 2013) may limit accuracy.

Here, we propose a different approach to recover the geno-
type–phenotype relationship, which is based on representing ge-
netic variations as moves in the fitness landscape (Wright 1932).
Prior theory suggests that these moves should generally be small
and nearly neutral (Nei 2005). Against this background, we hy-
pothesize that gene mutations driving new phenotypes are the re-

sult of abnormally large moves in the fitness landscape. Testing
this hypothesis requires a metric for motions in the fitness land-
scape. We propose to use the evolutionary action (EA) of muta-
tions on fitness described in prior work as the derivative of the
genotype–phenotype relationship (Katsonis and Lichtarge 2014).
In practice, the EA score correlates with the experimental effects
of mutations (Katsonis and Lichtarge 2014) and consistently per-
formswell in blinded assessments of predictions of deleteriousmu-
tations against state-of-the-art statistical and machine learning
methods (Katsonis and Lichtarge 2017, 2019). A limitation of
EA, however, is that it describes only the impact of single muta-
tions, or individual moves in the fitness landscape. This is not suf-
ficient to interpret complex polygenic phenotypes owing to
multiple causal variants. To identify groups of gene variations
that in aggregate drive patients to a disease region of the fitness
landscape, we therefore propose a new operation, called Cohort
Integration (CI), which sums the individual effects of variants
measuredwith EAover all genes and over all patients. Calculus sug-
gests that this summation will reverse the differential operation
that led to EA in the first place and thus recover the genotype–phe-
notype relationship, meaning it will uncover genes that drive co-
hort-specific traits.
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Here, we test this model in cancer. Tumor genomes evolve
(Greaves and Maley 2012) by acquiring advantageous somatic
mutations that, when considered collectively across a cohort of
cancer patients, should be associated with a large displacement
in the fitness landscape. The average number of coding mutations
per tumor can be as small as about eight in leukemia but is more
often confoundingly large, such as about 1600 in colorectal can-
cers (Vogelstein et al. 2013). Among these, however, the number
of cancer-driving somatic mutations are relatively few, three to
five by some estimates (Tomasetti et al. 2015), and finding these
cancer drivers remains difficult, as well as critical for personalized
therapy (Chin et al. 2011). To search for cancer genes that harbor
these driver mutations, state-of-the-art methods (Dees et al. 2012;
Davoli et al. 2013; Vogelstein et al. 2013; Lawrence et al. 2014;
Tokheim et al. 2016; Martincorena et al. 2017; Bailey et al.
2018; Dietlein et al. 2020; Martínez-Jiménez et al. 2020) pool sta-
tistics and machine learning to search for signs of positive selec-
tion in cancer genes, including mutation frequency (Dees et al.
2012; Lawrence et al. 2014), surrounding nucleotide context
(Dietlein et al. 2020), inactivation bias (Greenman et al. 2007;
Van den Eynden et al. 2015; Martincorena et al. 2017), functional
impact (Gonzalez-Perez and Lopez-Bigas 2012; Davoli et al. 2013),
and structural or functional clustering (Tamborero et al. 2013;
Porta-Pardo and Godzik 2014). Some of the challenges to identify
driver genes include inaccurate background mutation rates
(Lawrence et al. 2013), too few mutations per gene (Van den
Eynden et al. 2015), and unbalanced distributions of passenger
mutations (Bignell et al. 2010) that lead to a repertoire of muta-
tional signatures (Alexandrov et al. 2013, 2020). Notably, as
much as 60% to 80% of genes identified by one method are
not found by others (Tokheim et al. 2016), and a large number
of rare cancer drivers in individual patients remains hidden for
lack of a population-wide role (Garraway and Lander 2013;
Chang et al. 2016). The sequencing of diverse types of somatic tu-
mor tissue from a large number of patients by The Cancer
Genome Atlas (TCGA) (The Cancer Genome Atlas Research
Network 2008; The Cancer Genome Atlas Research Network
et al. 2013; Tomczak et al. 2015; The ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium 2020) yields a rich
data set for discovering new cancer genes. Here, we used CI to pri-
oritize the collective fitness impact of variants across all genes and
all patients in a cohort in order to discover candidate cancer-
driver genes and compare this approach to other cancer gene
identification techniques (Greenman et al. 2007; Dees et al.
2012; Gonzalez-Perez and Lopez-Bigas 2012; Davoli et al. 2013;
Tamborero et al. 2013; Lawrence et al. 2014; Porta-Pardo and
Godzik 2014; Van den Eynden et al. 2015; Tokheim et al. 2016;
Martincorena et al. 2017; Bailey et al. 2018).

Results

CI of the fitness effects detects selection on a variant set

As detailed in the Supplemental Information, our evolutionary cal-
culus model hypothesizes a formal genotype–phenotype relation-
ship. Differentiating this relationship yields the EA equation for
the fitness effects of genetic variants. Integrating the numerical
values of the gene fitness effects given by EA over a patient cohort
shouldmeasure the relationship of each genewith the phenotype,
as illustrated in the visual summary of the evolutionary calculus
theory (Fig. 1A–E). As a basic test of EA in cancer, the experimental
and clinical effects of TP53 (Kato et al. 2003),MLH1 (Raevaara et al.

2005), BRCA1, and BRCA2 (Spurdle et al. 2012) mutations agree
with EA fitness scores better than alternative methods
(Supplemental Fig. S1).

For proof of concept of the CI approach, we used mutation
data from distinct populations and from random simulations.
The cohort integral of nearly 24 million germline missense vari-
ants from more than 2500 diverse, healthy individuals in The
1000 Genomes Project (The 1000 Genomes Project Consortium
2015) showed an exponentially decreasing distribution as a func-
tion of EA, biased toward lower EA values than simulated random
nucleotide substitutions (P=3.8 ×10−29; see Methods) (Fig. 2A).
This EA distribution bias is consistent with negative selection
against germline variants with large fitness effects among
healthy-born individuals. In contrast, the cohort integral of
645,359 cancer somatic missense mutations from 5996 patient tu-
mor genomes across 20 cancers from TCGA (Tomczak et al. 2015)
was exponentially decreasing at a slower rate that was indistin-
guishable from computer-simulated random substitutions of nu-
cleotides in protein-coding regions (P=0.41) (Fig. 2B). This is
consistent with most cancer somatic missense mutations being
random and under little selection (Greenman et al. 2007). A sin-
gle-gene illustration is the TCGA-wide cohort integral of DNAH5,
a large and frequently mutated gene that has not, to the best of
our knowledge, been associated with cancer and that appears
free of any selection pressure (P=0.84) (Supplemental Fig. S2A).
The distribution of EA values was also indistinguishable between
random nucleotide substitutions and computer-simulated vari-
ants generated according to mutational signatures of mono-
and trinucleotide substitution ratios observed in somatic muta-
tions from 20 different cancer types (Supplemental Table S1;
Supplemental Fig. S2B,C). These observations suggest that the dis-
tribution of EA values is insensitive to biases related to the mech-
anism that generates the mutations and is specific to fitness
selection forces.

In contrast, cohort integrals of representativewell-established
tumor suppressors, such as TP53, CDKN2A, PTEN, and NOTCH1,
computed over all TCGA somatic missense mutations found in
any cancer type, were all strongly biased toward high EA scores,
usually above 70 and consistent with complete loss of function
(P-value=2.8 ×10−303, 2 × 10−7, 9.7 × 10−50, and 1.4 ×10−11, re-
spectively) (Fig. 2C). This difference indicates positive selection
and fits the expectation that cancer-causingmutations oftenweak-
en tumor suppression. Likewise, the cohort integrals of representa-
tive oncogenes, such as PIK3CA, BRAF, KRAS, and NRAS, were all
also highly significant (P-value=2.2 ×10−57, 9.4 × 10−179, 1.1 ×
10−63, and 9.6 ×10−45, respectively) (Fig. 2D). Their peak EA scores,
however, fell between 30 and 70, consistent with gain-of-function
variants that repurpose rather than destroy a protein.Wemay also
apply CI on individual cancer types. For example, CDH1 is known
to drive breast and stomach cancers (Corso et al. 2020). This gene
has a significant, nonneutral cohort integral in these cancer types
(P-value=0.002 and 0.03, respectively) (Supplemental Fig. S2D)
but not in any other cancer type individually or collectively (P-val-
ue = 0.9) (Supplemental Fig. S2E). These data show that CI identi-
fies populations and genes under different selection pressures.
Typically, inherited coding variants in healthy individuals are un-
der negative selection, passenger coding variants in cancer popula-
tions are under random (or no) selection pressure, andwell-known
cancer-driver genes are under positive selection, with intermediate
EA values in oncogenes and larger EA values in tumor suppressors.
These differences suggest that CI provides a new method to iden-
tify genes under positive selection.
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CI recovery of cancer-driving genes performs on par with or

better than existing state-of-the-art methods

To assess performance on recovering cancer-driver genes, we com-
pared CI to 10 state-of-the-art algorithms usingmultiple criteria of
success. All algorithms were evaluated over the same test popula-
tion of 7916 exomes from 34 cancer types, collected by another
study (Tokheim et al. 2016). Nevertheless, the result should be cau-

tiously interpreted because the included
methods may rely on different variant
types and engage external complemen-
tary information. We adapted and en-
riched previously used benchmark
measures (Tokheim et al. 2016) to evalu-
ate each method for precision measured
by the overlap of the discovered genes
with a gold-standard gene set (CGC Over-
lap, Supplemental Table S2) and with the
consensus of genes discovered by the
other algorithms (Method Consensus);
the combined true- and false-positive
rates measured by area under the receiver
operating characteristic (AUC-ROC) and
precision-recall (AUPRC) curves; the
overlap of the discovered genes when us-
ing each half of the test population (Con-
sistency); and the discrepancy between
observed and theoretical P-value distri-
butions (P-value deviation). Using only
the missense mutations as input to the
CI approach resulted in 61 significantly
nonrandom genes after multiple testing
correction (Q-value< 0.1), with a CGC
Overlap of 0.64, AUPRC of 0.32, and
AUC-ROC of 0.73. Although this CGC
Overlap was the best compared with the
other methods, the small number of dis-
covered genes resulted in intermediate
AUC-ROC and AUPRC performance (Sup-
plemental Fig. S3). This likely stems from
the fact that other methods used addi-
tional mutations, such as nonsense vari-
ants and frame-shift insertions and
deletions (fs-indels). However, account-
ing for nonsense variants in the CI
framework is straight forward because
random nucleotide changes provide the
expected rate of nonsense mutations,
and we can score them with the highest
impact for a loss-of-function variant
(EA =100). CI of missense plus nonsense
mutations thus discovered 98 genes after
multiple testing correction (Q-value <
0.1), which increased AUC-ROC (0.79)
and AUPRC (0.39) values compared
with using missense variants only, and
precision (CGCOverlap of 0.56) remained
better than the state-of-the-art methods
(Fig. 3A; Supplemental Fig. S3; Supple-
mental Table S3, “CI”). To also account
for fs-indels in our approach, we further
combined the CI P-value of each gene

with the probability that fs-indels appear in that gene by chance
(see Methods). This modified CI approach prevents the discovery
of genes owing to fs-indel variants only and results in the inclusion
of borderline CI analysis genes (P-value <0.05, but Q-value>0.1)
when these genes have sufficient support from the fs-indel vari-
ants analysis. This raised the number of discovered genes to 159
and further improved the AUC-ROC (0.81) and AUPRC (0.43) val-
ues [Fig. 3A; Supplemental Fig. S3; Supplemental Table S3, “CI

E

B
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D

Figure 1. Evolutionary calculus of the genotype–phenotype relationship. (A) Our hypothesis is that the
genotype (γ) is linked to phenotype (φ) through a continuous evolutionary function ( f ). (B) The fitness
effect (Δφ), or evolutionary action (EA), of each mutation is the product of evolutionary gradient ( f′ )
and genotypic change (Δγ). Evolutionary gradient is the sensitivity of themutated position to substitution
approximated by evolutionary trace (ET), which accounts for the phylogenetic distances between homol-
ogous sequences (Δφ) that vary at a residue position (Δγ); the size of genotypic change can be approx-
imated by substitution odds. (C) EA score calculation for the R175H variant of TP53. The evolutionary
gradient ( f′ ) of position 175 was measured by ET ranks of importance, and the genotypic change (Δγ)
of R-to-H substitution was measured by ranks of context-dependent substitution log-odds. These two
terms were then multiplied and normalized to yield the EA score. (D) To identify genes under positive
selection in a trait-associated cohort, for every gene k, we compared the cohort integral, represented
by the distribution of EA scores, of its cancer somatic mutations in the patient cohort (Cj) with the cohort
integral of random mutations. A nonrandom cohort integral indicates the gene k harbors cancer-driver
mutations and therefore is a cancer-driver gene. (E) Cancer-driver genes are identified by nonrandom
cohort integrals. Cohort integral of somatic mutations was significantly different from random (one-
tailed two-sample Kolmogorov–Smirnov test) for the cancer gene TP53, in contrast to the noncancer
gene DNAH5.
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(with INDEL)”]. Using fs-indels variants alone recovers 349 candi-
date cancer genes with a 0.28 AUPRC and 0.19 CGC Overlap. Addi-
tionally, we assessed the performance of CI with fs-indels across 13
cancer types within test population. As expected, the robustness of
the CI with fs-indels method, as measured by AUC-ROC, AUPRC,
and Consistency, decreases with cancer cohort size (Supplemental
Fig. S4). A comparable performance reduction is observed for other
state-of-the-art methods. This benchmark analysis establishes that
the calculus-basedCImethods have robust performance compared
with state-of-the-art methods for identifying candidate cancer
genes. Additionally, CI P-values for missense and nonsense muta-
tions can be combinedwith P-values based on an independent test
for fs-indels with no appreciable loss of performance; therefore, CI
with fs-indels is used hereafter.

To examine the power of CI, we tested the robustness of its re-
sults as we reduced the number of test population exomes by
down-sampling. First, we defined a target set of 58 genes, as those
identified by CI using all 7916 test exomes and also reported as
cancer associated by at least four of five reference sources (see
Supplemental Table S4; Davoli et al. 2013; Kandoth et al. 2013;
Vogelstein et al. 2013; Lawrence et al. 2014; Forbes et al. 2017).
Then, for increments of 100 tumor exomes, we calculated the per-
centage overlap of the genes identified by the subset and the target
genes. For each increment, we generated 10 subsets by resampling
exomes and calculated the average and standard deviation of the
overlap (Supplemental Fig. S5). Using half of the 7916 exomes
was sufficient to detect 86% of the target genes, whereas 1150
exomes (14%) were sufficient to detect half of the target genes.
These results show that CI is robust and powerful, producing reli-
able results even with a fraction of the input data and suggesting
that it may also be capable of identifying driver genes in specific
cancer types.

CI detects genes under positive selection across cancer mutational

landscapes

Next, to discover new candidate cancer-driving genes, we applied
CI prospectively and separately over the genomic sequencing data
from 5996 TCGA tumor genomes across 20 cancers from TCGA
(see Methods). CI detected 326 candidates that were implicated
in at least one TCGA cancer type (Fig. 3B). Moreover, 134 addition-
al candidate pan-cancer genes were found by analyzing all cancer
genomes together (Q-value <0.1) (Supplemental Table S5). CI was
also applied to an updated release of TCGA tumor exomes (Supple-
mental Table S6) with significantly overlapping findings (Supple-
mental Table S7). The 460 genes identified in any and all of the
20 cancer types included 116 transcription regulators, 65 enzymes,
and 33 kinases (Supplemental Fig. S6A). Gene set enrichment anal-
ysis (GSEA) using hallmark gene sets (see Methods) (Liberzon et al.
2015) found nine significant associations (Supplemental Fig. S6B),
including PI3K-AKT-MTOR signaling (Q-value=3×10−4), apical
junction (Q-value =3×10−4), and p53 pathway (Q-value=6 ×
10−4). An ingenuity pathway analysis (see Methods) (Kramer
et al. 2014) found significant overlap with 261 overlapping canon-
ical pathways (Q-value<0.1) (Supplemental Table S8), most of
which are cancer-signaling pathways. The topmolecular and cellu-
lar functions (Supplemental Table S9) included gene expression
(Q-value=4× 10−15 to 4×10−38), cell death and survival (Q-value =
9×10−11 to 6 ×10−25), cell cycle (Q-value=3×10−11 to 7×10−23),
cell growth and proliferation (Q-value=6 ×10−11 to 3×10−22),
and cellular development (Q-value=8×10−11 to 4×10−18).

We hypothesized that if CI robustly identified cancer-driver
genes, then it could point out which patient cohorts shared tu-
mors of similar genetic etiology. This was tested with a similarity
tree of cancer types based on the candidate drivers that were

B

A C

D

Figure 2. Coding variants under selection have nonrandom cohort integrals. The cohort integrals for all germline variants in the 1000 Genomes Project
(A) and all somatic mutations from The Cancer Genome Atlas (TCGA; B). The somatic TCGA mutations were also shown for the tumor-suppressor genes
TP53, CDKN2A, PTEN, andNOTCH1 (C ) and for the oncogenes PIK3CA, BRAF, KRAS, andNRAS (D). The dashed lines correspond to simulated randomamino
acid changes in all human genes (A,B) or the respective single gene (C,D). The P-values of cohort integral differences between the observed and simulated
random mutations were calculated by the one-tailed two-sample Kolmogorov–Smirnov test.
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predicted independently in each type (see Methods) (Fig. 3C). As
expected, patients with renal papillary carcinoma (KIRP) clustered
together with those suffering from renal clear cell carcinoma
(KIRC), rectal adenocarcinoma (READ) with colon adenocarcino-
ma (COAD), and lower grade glioma (LGG)with glioblastomamul-
tiforme (GBM). Head–neck (HNSC), cervical (CESC), bladder
(BLCA), and lung squamous cell carcinoma (LUSC) clustered in
one branch, in agreement with a study proposing LUSC, HNSC,
and BLCA as a squamous-like subtype (Hoadley et al. 2014).
Together these data suggest that across distinct patient cohorts,
CI robustly identifies biologically reasonable candidate cancer-
drivers in specific cancers and can indicate which genes associate
more broadly with the tissue-of-origin.

To assess novelty, we compared the 460 genes to a gold-stan-
dard control list of genes already associated with cancer in estab-
lished sources (Supplemental Table S4): the COSMIC Cancer
Gene Census (Forbes et al. 2017) and candidate genes suggested
by 20/20 (Vogelstein et al. 2013), MutSigCV (Lawrence et al.
2014), TUSON (Davoli et al. 2013), and MuSiC (Kandoth et al.
2013).Of the 465 genes fromthese combined sources, CI recovered
147 (P-value=1 ×10−124, hypergeometric test), withmutual agree-
ment coverage rising from 13% (37 of 285, P-value=3×10−16) for

genes imputed by a single source only to
95% (39 of 41, P-value=8×10−61) for
genes agreed upon by all five (Supple-
mental Fig. S6C). For the 313 candidates
identified by CI but not part of this
gold-standard list, cancer was the top dis-
ease or function annotation according to
ingenuity pathway analysis (Supplemen-
tal Table S10). Moreover, 215 genes had
independent cancer associations from
three lines of evidence: appearance in at
least 10 cancer papers (n=118, P-value=
0.0001) (Supplemental Fig. S6D), signifi-
cant diffusion to known cancer drivers
in the STRING protein–protein interac-
tion network (n=55, P-value =2×10−5)
(Supplemental Fig. S6E; Shin et al. 2007;
Lisewski et al. 2014; Szklarczyk et al.
2015), and a nonsynonymous-to-synon-
ymous mutation ratio, dN/dS, greater
than one and consistent with positive se-
lection (n=159, P-value =2×10−14) (Sup-
plemental Fig. S6F).Overall, 27 geneshad
support from all three types of evidence,
58 from two, and 130 from one, leaving
98 genes (21%) with no prior support
from any of these sources (Supplemental
Fig. S6G). Moreover, when we quantified
a confidence score for cancer associa-
tion by weighing the support sources
(see Methods), the CI significance
Q-value correlated strongly with the
cancer-association confidence scores (P-
value <0.0001) (Supplemental Fig. S6H).

CI profiles distinguish tumor-suppressor

genes from oncogenes

Because tumor suppressors and onco-
genes have distinct peaks in their EA dis-

tributions (Fig. 2C,D), we could measure the selection pressure
for complete loss of function (sLOF) with the skew of the distri-
bution toward the maximum EA of 100, expected for tumor sup-
pressors, and the selection pressure for gain of function (sGOF)
by the skew toward the intermediate EA of 50, expected for onco-
genes. For example, known tumor-suppressor genes and onco-
genes (Supplemental Table S11) had significantly greater sLOF
or sGOF scores, respectively, than other genes (Supplemental
Fig. S7A), enabling a separation of tumor-suppressor genes from
oncogenes (Supplemental Fig. S7B) that was measurable with
an area under the receiver-operator characteristic curve of 0.96
(Supplemental Fig. S7C). At a binary separation threshold of
0.1, the accuracy was 90% (Supplemental Fig. S7D), classifying
correctly 93% (50 out of 54) of tumor suppressors and 83% (15
out of 18) of oncogenes (Fig. 4A). These data show that CI may
sort oncogenes from tumor suppressors based on distinct selec-
tion profiles in the cancer mutational landscape. We could
then classify the 460 candidate cancer genes identified by CI
into 357 likely tumor-suppressor genes and 103 likely oncogenes
(Supplemental Table S5). Among the 98 (21%) of new genes iden-
tified by CI, 18 were likely oncogenes and 80 were tumor
suppressors.

BA

C

Figure 3. CI recovers cancer-driving genes in benchmarking and prospective analyses. (A) The perfor-
mance of CI against 10 state-of-the-art methods over the same input samples. The heatmap represents
the relative performance of the methods (red means the best, and white means the worst performance)
for six evaluationmetrics: area under the receiver operating characteristic curve, deviation from the expect-
ed P-valuedistribution, overlapwith theCOSMICCancerGeneCensus, overlapwith the consensus of all the
othermethods, theconsistencyamongcohort subsamples, and theareaunder theprecision-recall curve. (B)
CI identified 460 genes under positive selection in TCGA tumors. The number of tumor suppressors (blue)
andoncogenes (red) identifiedbyCI ineachcancer type. (C)HeatmaprepresentationofCIQ-valueof the56
candidate genes that were identified in two ormore cancer types. The significance level is represented by a
color scale from red (more significant) to yellow (less significant). The cancer types were ordered according
to a dendrogram of pairwise distances based on the overlap of predicted driver genes (see Methods).

Hsu et al.

920 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275811.121/-/DC1


Experimental support for oncogenes and tumor suppressors

Next, we verified these genes against theCRISPR essentiality screen
from the Cancer Dependency Map (DepMap) database (Tsherniak
et al. 2017), which used Cas9-mediated DNA cleavage to observe
the effects of gene inactivation on cell proliferation. Because cer-
tain cancer cell lines are dependent on activated oncogenes to
maintain their malignant properties, known as oncogene addic-
tion (Weinstein and Joe 2008), this screen should be a good test sys-
tem to independently validate the role of the 103 putative
oncogenes. As expected, cancer cell lines are dependent on CI on-
cogenes when they harbor mutations with EA scores between 30
and 70, which is the range for gain-of-function mutations, and a
similar dependency was observed in the known oncogenes from
COSMIC but not in random genes (Fig. 4B; Supplemental Table
S12). Moreover, CI oncogenes identified in individual cancers
had significantly stronger essentiality responses in their corre-
sponding cancer types, suggesting tissue specificity (Supplemental
Fig. S8). These results together show that CI is able to classify onco-
genes and tumor-suppressor genes and can also identify oncogenic
gain-of-function variants in the context of specific cancer types.

CI provides insight into the biology of

specific cancers

Head and neck squamous carcinoma

For illustration, we initially focus our at-
tention on head and neck squamous car-
cinoma (HNSC). Based on the somatic
mutations from 508 HNSC tumors, CI
identified 45 candidate genes (Fig. 5A;
Supplemental Table S13), and the major-
ity (39 out of 45) were predicted to be tu-
mor suppressors, consistent with the
genomic landscape of this cancer re-
ported by others (Agrawal et al. 2011;
Stransky et al. 2011; The Cancer
Genome Atlas Research Network 2015).
CI identified the major candidate tumor
suppressors previously published for
HNSC, including TP53, FAT1, NOTCH1,
CDKN2A, CASP8, PTEN, RB1, FBXW7,
AJUBA, and NSD1. CI also identified
two well-known oncogenes for HNSC
(PIK3CA andHRAS), as well as known on-
cogenes in other cancers but new in
HNSC (NEF2L2, RAC1, and MAPK1)
(Supplemental Table S5). Of the 45 can-
didates, 28 have already been associated
with cancer (though not necessarily
HNSC) in COSMIC or by other state-of-
the-art methods, and 17 genes were pre-
dictions unique to CI, nine of which
were associated with cancer in literature
(Supplemental Table S13).

HNSC candidate genes were in-
volved in pathways associated with on-
cogenesis (Fig. 5B). Cell differentiation
is a key pathogenic pathway in HNSC
that includes thewell-knownHNSCdriv-
ers NOTCH1, TP63, FAT1, and ZNF750
(Agrawal et al. 2011; Pickering et al.
2013; The Cancer Genome Atlas

ResearchNetwork 2015). CI recovered three of these knowndrivers
and predicted three more candidates from the same pathway,
NOTCH2, PDZRN4, and KDF1. We have previously detected
NOTCH2 as a driver in aggressive cutaneous squamous cell carcino-
ma (Pickering et al. 2014), and its homology with the known tu-
mor-suppressor gene NOTCH1 lends further support to the
notion that NOTCH2 is also a HNSC driver gene. PDZRN4 belongs
to the LNX gene family of homologous RING type E3 ubiquitin li-
gases (Katoh and Katoh 2004), and two related LNX family mem-
bers have been shown to bindNUMB, a negative NOTCH regulator
(Rice et al. 2001). Exogenous expression of PDZRN4 has been
shown to inhibit growth of hepatocellular carcinoma cell lines
(Hu et al. 2015a), suggesting a tumor-suppressor function consis-
tent with the CI classification. KDF1 regulates TP63 and has
been identified as a regulator of squamous differentiation through
both human and mouse genetic studies (Lee et al. 2013). Another
key pathway in HNSC is epigenetic regulation. CREBBP, EP300,
KMT2D, and NSD1 have previously been identified as frequently
mutated epigenetic regulators in HNSC (The Cancer Genome
Atlas Research Network 2015), and we have identified ARID2 and

A

B

Figure 4. CI distinguished tumor-suppressor genes fromoncogenes. (A) The selection for gain-of-func-
tion (sGOF) and loss-of-function (sLOF) indices for 54 known tumor-suppressor genes (left) and 18
known oncogenes (right). Genes were plotted according to the sLOF index (x-axis) and sGOF index
(y-axis) for the cancer type with themost significantQ-value, and the circle color indicates the CIQ-value
for the most significant cancer type, which is represented by a color scale from red (more significant) to
yellow (less significant). Genes located in the red rectangular area are classified as oncogenes, and genes
located in the blue rectangular area are tumor-suppressor genes. (B) Genome-scale CRISPR gene-
dependency screen–validated CI oncogenes. Oncogenes from the COSMIC database (COSMIC), onco-
genes identified by the CI method across all cancers (CI PAN), or oncogenes from individual cancer types
(CI Indiv.) show a statistically significant shift toward essentiality (Ceres score≤−0.6) when harboring
variants of moderate EA range (30≤ EA score < 70) as opposed to other mutations, including low EA var-
iants (0≤ EA <30), high EA variants (70≤ EA <100), nonsense variants, and other uncategorized variants.
No difference was observed for random genes. Statistical significance was calculated with a Mann–
Whitney U test.
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KMT2B as additional HNSC cancer-related epigenetic regulators.
Other important pathways are theDNAdamage and cell stress pro-
cesses, and CI identified the DNA-damage-response gene
HNRNPUL1 and the nonsense-mediated RNA decay (NMD) factor
UPF2, the latter can be targeted by Pateamine A (Dang et al.
2009). Last, we identifiedNF2, which is a proven tumor-suppressor
gene and is responsible for hereditary neurofibromatosis type II
but has not been previously linked to HNSC. These results suggest
that CI can identify new candidate driver genes in individual can-
cer types, although further experimental studies are required to
validate them as true drivers.

We validated experimentally the CUL3 gene, which was nei-
ther in our gold-standard list nor an established HNSC gene but
was identified by CI as a tumor suppressor in this cancer type (CI
Q-value=0.07; sGOF=−0.13; sLOF=0.66). CUL3 is the core com-
ponent of E3 ubiquitin-protein ligase complexes that down-regu-
lates NFE2L2, a known driver of HNSC. Previous work shows
that the disruption of such adaptor–substrate recognition pro-
motes malignancy (Ohta et al. 2008) and has been associated
with poor prognosis in HNSC (Martinez et al. 2015).CUL3 somatic
mutations in TCGA HNSC samples are located at functionally and
structurally important sites (Fig. 6A), as predicted by the evolution-
ary trace (ET) algorithm (Lichtarge et al. 1996;Mihalek et al. 2004).
To assess how CUL3 activity impacts cell growth and survival, four
HNSC cell lines were engineered to ectopically express wild-type
protein. Of the four cell lines, clonogenic potential was di-
minished by wild-typeCUL3 ectopic expression in UMSCC25 cells
(P-value <0.0001) (Fig. 6B) compared with expression of the con-
trol gene LacZ. UMSCC25 was the only cell line to show a promi-
nent higher-molecular-weight CUL3 band following ectopic
expression (Fig. 6C), which is suggestive of the post-translational
neddylation (Hori et al. 1999) that is required for CUL3 ligase activ-
ity (Pintard et al. 2004). Further investigation revealed that ectopic
expression of CUL3 in UMSCC25 cells substantially reduced the

percentage of G1 cells and produced a concomitant increase in
the subG1 fraction (Fig. 6D), indicating cell death. There was
also an increase in cleaved PARP (Fig. 6E), consistent with apopto-
sis, and, as expected, decreased levels of NFE2L2 (also known as
NRF2), the known HNSC driver (Fig. 6F). Collectively, these data
show the ability of CI to discern cancer-driving genes in the
HNSC TCGA population, even if the mutation is uncommon.
The rarity of actual CUL3 mutations in HNSC could be explained
by the cancer cells simply preventing CUL3 neddylation instead,
which would still disable the protein.

Breast cancer

Similar observations aremadewhenCI is applied to 977 breast can-
cer (BRCA) tumor samples. Of the 40 candidate genes identified in
BRCA, 32 are predicted to be tumor suppressors, and six of these
have not been identified by other studies (Supplemental Table
S5). One of these six genes is a dual specificity protein phospha-
tase, a family of genes known to both positively andnegatively reg-
ulate cellular pathways associated with tumorigenesis (Patterson
et al. 2009; Meeusen and Janssens 2018). Based on these observa-
tions, we elected to focus additional in vitro experimental analyses
on dual specificity protein phosphatase 16 (DUSP16).

DUSP16 (CI Q-value =0.09; sGOF=−0.53; sLOF=0.62) has
been implicated as a candidate negative growth regulator and po-
tential tumor suppressor, at least in part through negative regula-
tion of JNK signaling (Domotor 1989; Hoornaert et al. 2003;
Keyse 2008). To confirm the role of DUSP16 as a negative growth
regulator, we generated clonal lines of HEK293 and BT474 human
cells containing transduced doxycycline-inducible DUSP16 (Fig.
6G). Addition of doxycycline to both cell lines resulted in signifi-
cant reduction (P-value<0.001) in cell division relative to the
same clones in the absence of doxycycline (Fig. 6H). The ability
of doxycycline-induced HEK293 and BT474 cells to form colonies

BA

Figure 5. CI identified 45 genes under positive selection in head and neck squamous carcinoma (HNSC). (A) The 45 HNSC candidate genes were plotted
according to their sLOF index (x-axis) and sGOF index (y-axis) as circles. The color of each circle indicates the CIQ-value in HNSC in a color scale of red (more
significant) to yellow (less significant). Genes located in the red rectangular area were classified as oncogenes (names shown in red), and genes located in
the blue rectangle area were classified as tumor-suppressor genes (names shown in blue). (B) Pathways associated with CI-identified candidates in HNSC.
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Figure 6. Overexpressing CUL3 in HNSC cell lines suppresses tumor growth. (A) Somatic missense mutations in CUL3 are shown as spheres in the struc-
ture of a homologous protein (chain C of PDB: 2HYE, sequence identity = 39.82%), and the EA score of the given mutation is shown in parentheses. The
importance of position was evaluated by ET and is represented by a color scale from red (more important) to green (less important). (B) Clonogenic assay
following infection of the cell lines UMSCC25, HN31, UMSCC22A, andMDA1386LNwith lentivirus to express wild-type CUL3 or the control gene LacZ. (C)
Western blot shows the ectopic expression of wild-type CUL3 after lentivirus infection. (D) Cell cycle distribution for the UMSCC25 cell line following ex-
pression of CUL3. (E) PARP levels, a marker of apoptotic death, increase in UMSCC25 cells expressing CUL3; (F ) levels of NFE2L2 (NRF2), the HNSC-driving
protein, are reduced. Overexpression of DUSP16 inhibited cell proliferation, colony formation, migration, and induced apoptosis by inhibition of JNK path-
way. (G) DUSP16 overexpression was assessed by induction with doxycycline (1 µg/mL) to stable HEK293 and BT474 cells containing inducible DUSP16
construct. (H) Overexpression of DUSP16 inhibited cell proliferation of established cells. (I) Clonogenic assay: Overexpression of DUSP16 inhibited colony
formation of HEK293 and BT474 cells. The experiment was performed in triplicates, and the density of the stained cells was measured at 630 nm after
extraction with 10% acetic acid. (J) In vitro scratch assay. Cells were plated and incubated until confluent and then scratched with pipette tip and further
incubated to compare recovery of scratched area. (K ) Overexpression of DUSP16 induced apoptosis in stable BT474 cells. (L) Overexpression of DUSP16
inhibited JUN phosphorylation in stable HEK293 and BT474 cells. Overexpression of DUSP16 induced down-regulation of JUN and FOS transcription in
HEK293 cells (M ) and BT474 cells (N). (O) Depletion of DUSP16 by CRISPR antagonized cell growth inhibition by overexpression of DUSP16. (∗) P-val-
ue < 0.05, (∗∗) P-value < 0.005, and (∗∗∗) P-value <0.001.
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after plating individual cells at low density was also significantly
reduced (HEK293, ∼40%, n=5, P-value=0.014; BT474, ∼50%,
n = 3, P-value= 0.036) (Fig. 6I). Additionally, cell migratory activity
was shown to be reduced in cells with elevated DUSP16 (Fig. 6J;
Supplemental Fig. S9A). Elevation of DUSP16 was associated with
increased cellular apoptotic markers in BT474 cells (Fig. 6K) and
enhanced dephosphorylation of JNK (Supplemental Fig. S9B), as
well as JUN at Ser63, a major proliferative transcription factor in
AP-1 signaling (Fig. 6L; Supplemental Fig. S9C). This effect on
JUN and potentially AP-1 signaling was shown in the reduction
of AP-1 transcription targets JUN and FOS in the presence and ab-
sence of phorbol ester (an AP-1 signaling activator) stimulation
(Fig. 6M,N). Finally, we also showed that the DUSP16-induced in-
hibition of cell division inHEK293 and BT474 cells can be reversed
when DUSP16 protein expression is down-regulated by CRISPR
(Fig. 6O). These results provide evidence that DUSP16 is a potent
tumor suppressor and provides additional support for the ability
of CI to identify novel cancer-driver genes.

Potential therapeutic applications

With a view to personalized therapy, we noted that 70 CI onco-
genes were not found in the gold-standard list (Supplemental
Table S14), of which 13 may be druggable, including nine that
can be directly targeted by drugs and four that belong to a target-
able gene family. For example, the candidate PDE10A, a phospho-
diesterase involved in PKG and PKA signaling (Soderling et al.
1999), is unique to CI in skin cutaneous melanoma (SKCM) and
is predicted to be an oncogene. Consistent with a possible onco-
genic role, its increased expression stimulates cell growth by acti-
vating the Wnt/β-catenin pathway (Li et al. 2015). Selective
PDE10A inhibitors, such as papaverine, PQ-10, and Pf-2545920,
have already been shown to suppress colon tumor cell growth
(Lee et al. 2016). Another unique candidate with an oncogenic
CI profile isDYRK1A in endometrial cancer (UCEC). This dual-spe-
cificity protein kinase regulates cell cycle progression (Fernández-
Martínez et al. 2015), and its drug-induced inhibition decreases
proliferation and colony formation in vitro and suppresses tumor
growth in vivo (Radhakrishnan et al. 2016). These examples show
that CI oncogenes could suggest potential therapeutic targets.

Discussion

The genotype-to-phenotype relationship is central to biology
(Fisher 1930; Wright 1932). It hinges on the fitness effect of muta-
tions, namely, their molecular, cellular, and physiological impact
on the population structure (Orr 2009) and location in the fitness
landscape (Wright 1932). Mutational scan experiments explore
these fitness landscapes to a resolution limited by mutations, as-
says, and epistasis (Cunningham and Wells 1989; Pal et al. 2003,
2006; Datta et al. 2008). Alternately, we show here that evolution-
ary comparative sequence analysis across species can probe a vastly
greater set of mutational trials coupled to evolutionary fitness via
phylogenetic divergences (Lichtarge et al. 1996; Mihalek et al.
2004; Wilkins et al. 2010). EA first tapped these evolutionary data
through differential analysis of fitness landscapes (Katsonis and
Lichtarge2014) to compute the effect of singlemutations relatively
accurately (Katsonis and Lichtarge 2017,2019) and usefully
(Neskey et al. 2015; Osman et al. 2015a,b; Chun et al. 2019;
Clarke et al. 2019). The hypothesis is that genotype (γ) and pheno-
type (φ) are linked through a continuous and differentiable evolu-
tionary fitness function f, such that f(γ) = φ. EA exploited the

computation of the gradient (∇f ), although f itself remained un-
known.Now,we showhow to integrate∇f in the fitness landscape
to compute the path-determining genes driving a population to
phenotype regions of interest. In effect, CI solves f numerically
for each gene, in line with the antiderivative property stemming
from the fundamental theorem of calculus. Integration thus com-
pletes the calculus model introduced with EA. This calculus has
two consequences: It reveals evolutionary constraints and the ge-
netic determinants of complex phenotypes (Kim et al. 2020;
Koire et al. 2021).

The completion of the EA calculus points to a physics-based
description of evolution. Although interpretations may differ
(Doebeli et al. 2017), one possibility is to view f as a potential func-
tion describing the ability of a genotype to perform the evolutionary
work required for reproduction in the fitness landscape. The gradi-
ent of such a potential,∇f , would then define a field describing the
evolutionary force at each point of the genome space acting against a
substitution in the direction of each of the 19 alternate amino ac-
ids. Together, this space and its field are akin to the “fitness land-
scape” and its slope proposed by Wright (1932). The EA equation
can now be interpreted as the product of a force times a displace-
ment, namely, the evolutionarywork of amutation pulling a geno-
type across the landscape against the evolutionary force field. CI, by
summing the work of all mutations minus random background
fluctuations, is the energy of driver gene mutations propelling
the patient cohort along paths to phenotypic traits. This physical
interpretation makes testable predictions: The random back-
ground mutational energy of populations at steady state should
follow the Boltzmann exponential distribution of energy
(Landau and Lifshitz 1980). This model fits observations (Fig. 2;
Supplemental Fig. S2) andmatches the distributionof fitness effect
Fisher anticipated (Fisher 1930) and expanded more recently by
others (Sella and Hirsh 2005). In cancer, this equilibrium distribu-
tion of mutational energy is illustrated by the background EA dis-
tribution of unconstrained random passenger mutations in a gene
such as DNAH5. In contrast, TP53, PIK3CA, and other cancer driv-
ers are under selection rather than fluctuating randomly around an
equilibrium, and their mutational distributions differ drastically
from a decaying exponential form.

In practice, our data show that in cancer this approach com-
plements others to identify driver genes (Tokheim et al. 2016). It
finds 460 genes under positive selection across 20 different types
of cancer cohorts sequenced by TCGA. Almost one third of these
drivers are well-known driver genes (32%). Nearly half (47%) are
known in other types of cancers or supported by publications, in-
teractions with cancer-associated genes, or other evidence of posi-
tive selection. The remainder are less-studied genes (21%). Among
the most implicated pathways were chromatin remodeling, nucle-
ar receptor signaling, apoptosis, protein elongation, transcription,
andG-protein signaling. This is consistentwith cancer biology and
progression, but it also includes many genes that were not previ-
ously reported by other large genetic studies (Dees et al. 2012;
Davoli et al. 2013; Kandoth et al. 2013; Vogelstein et al. 2013;
Bailey et al. 2018). For example, we identified SNF/SWI members
SMARCA2 (pan-cancer), SMARCA1 (colon and pan-cancer),
SMARCC2 (pan-cancer), and BRD7 (skin and pan-cancer), which
are unreported in other large cancer sequencing studies. Among
the latter, SMARCA1 and SMARCC2 have been shown to function
as tumor suppressors in gastric cancers (Takeshima et al. 2015).
Transcription factors belonging to the Forkhead (i.e., FOXP1),
Homeobox (MSX2, HOXB7, HOXB9, TGIF1, and POU4F1), and
Kruppel-like (i.e., KLF5 and KLF3) families were found in the
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pan-cancer analysis (TGIF1 and KLF5were also found in colon and
bladder cancer, respectively), and members from each of these
classes of transcription factors have been extensively linked to can-
cer previously (Tetreault et al. 2013; Joo et al. 2016; Miller et al.
2016). Two protein elongation factors, EEF1A1 and EIF1AX, were
predicted to be oncogenes in the pan-cancer analysis, consistent
with many reports that elongation factors as a class are overex-
pressed in multiple tumor types and control proliferation and
cell death (Abbas et al. 2015). Three genes are involved in G-pro-
tein signaling: RGS22 (pan-cancer) encodes a GTPase activating
protein previously found to function as a tumor suppressor in pan-
creatic and esophageal cancers (Hu et al. 2011, 2015b); ARHGAP5
(colon and pan-cancer) encodes a Rho GTPase activating protein
shown to increase invasiveness of lung cancer cell lines (Wang
et al. 2014a); and RGL2 (pan-cancer) encodes a guanine nucleotide
exchange factor that positively regulates growth of lung cancer cell
lines (Santos et al. 2016).

CI also captures the distinct selection profiles of tumor sup-
pressors and oncogenes. The former have complete loss-of-func-
tion mutations with EA scores above 70, and the latter have gain
of function mutations with EA scores between 30 and 70. During
validation of two predicted tumor suppressors, intact versions of
CUL3 in head and neck cancer and DUSP16 in breast cancer,
each inhibited cancer cell growth in their corresponding cell lines.
For CUL3, these data are consistent with a large-scale cancer gene
identification study that pooled multiple predictive algorithms
(Bailey et al. 2018). For oncogenes, we found strong agreement be-
tween our predicted oncogenes and a large-scale tumor depend-
ency screen (DepMap data) (Fig. 4B; Supplemental Table S12). Of
note, of the 70 candidate oncogenes we find, a third are currently
categorized as druggable targets.

EA calculus has several limitations. It does not currently ac-
count for common and important noncoding cancer mutations,
such as genomic rearrangements (Mitelman et al. 2007; Mertens
et al. 2015) or epigenetic (Esteller 2008) or gene copy number var-
iations (Shlien and Malkin 2009; Yu and Shao 2009). Also, our ap-
proach does not account for the fact that oncogenic drivers are
often seen at hot spot residues (Chang et al. 2018) or near each oth-
er in protein sequence and structure (Tamborero et al. 2013).
Together, with the fact that oncogenic drivers have milder EA
scores than tumor-suppressor drivers, this may lead to lower sensi-
tivity in identifying oncogenes. However, P-values that account
for mutation clustering and recurrence, suggested by existing
methods, could be integrated through Fisher’s combined probabil-
ity test (Fisher 1948), as illustrated here for frameshift indels (see
Methods; Supplemental Fig. S10). Other integrative approaches us-
ingmachine learning are of interest and could reflect even broader
types of data (Guan et al. 2012; Hu et al. 2015b; Yu et al. 2016,
2017). Additionally, the number of available homologous se-
quences for some genes may be insufficient to produce EA scores
of high accuracy. For these genes, somatic mutations may mimic
a random distribution, and the genes will not be identified as can-
cer-driver candidates. Although this limitation may reduce sensi-
tivity, it should not affect the precision of our approach. The
sensitivity of the approach depends logarithmically on the sample
size. Therefore, small sample sizes are sufficient for finding prom-
inent cancer genes, whereas the discovery of very rare drivers re-
mains a challenge. Differential mutation probabilities across sites
might be an important confounder of the substitution odds that
approximate Δγ, because this calculation involves aligned se-
quences of various pair identities that correspond to different
branching lengths. Finally, epistasis is implicit in estimates of ∇f

with ET, but its explicit modeling would require the fitness cross-
effect of dual genome positions x and y, namely, ∂2f/∂x∂y, a sec-
ond-order mixed derivative term beyond the scope of this first-or-
der analytic theory. Formal questions of differentiability and
integrability in fitness landscapes are also not trivial (Carneiro
andHartl 2010). Here, differentiability of f is consistentwith evolv-
ability (Wagner and Altenberg 1996) through smooth mutational
steps and, more strictly, with Schwartz distributions (Schwartz
1963). The discrete domain of integration, which consists of
many somatic variants, in many genes and over many patients
cannot support Riemann integration but is consistent with
Lebesgue–Stieltjes integration (Carter and Brunt 2012) and, more
strictly, a stochastic integral of Ito or Stratonovich type (LeGall
2016).

In summary, we propose a general analytic and evolutionary
framework for the genotype–phenotype relationship. The ap-
proach uses differential and integral calculus to interpret the mu-
tational burden in patient cohorts in light of the couplings
between mutations, selection, and divergence throughout evolu-
tion. Thismethod sidesteps the difficulty ofmeasuringmutational
effects from incomplete and complex descriptions of protein struc-
tures and their dynamics, interactions, and pathways in and across
cells. Instead, it only requires three quantities: f, Δγ, and

�
f ′. We

showed previously how to compute f ′ and Δγ (Katsonis and
Lichtarge 2014), and now by computing

�
f ′ = CI , we complete

this calculus of fitness landscape. The result may appear surprising
but is consistent with the ability of calculus to routinely solve oth-
erwise seemingly intractable problems (Penrose 2007) and is also
consistent with the view that biology is likely to follow statistical
thermodynamic rules for the large-scale behavior of complex sys-
tems that eschews details of internal structures and forces (Sella
and Hirsh 2005; Koonin 2011). Indeed, we find that mutations
in genes that are under no specific selective force follow a random
distribution. In contrast, genes under selection such as those that
drive a group of individuals to a specific location of the fitness
landscape will be typified by a nonrandom distribution. In princi-
ple, this is a general approach to identify the genotype determi-
nants of the phenotype specific to a population (Kim et al. 2020;
Koire et al. 2021), as we show here for cancer.

Methods

Calculation of the EA score of coding missense variants

The EA is an untrained and formalmodel to measure the fitness ef-
fect of missense variants analytically, using protein evolution data
from homologous sequences. Thus, EA predictions of fitness ef-
fects are not based on or adjusted according to experimental val-
ues. As described in detail elsewhere (see Supplemental Material;
Katsonis and Lichtarge 2014), in order to estimate the fitness
effect of variants, EA considers the fitness landscape to be a map-
ping from genotype (γ) to phenotype fitness values (w) via the evo-
lutionary function f : f (γ) =w (Equation 1). In essence, Equation 1
describes the genotype–phenotype relationship. Assuming geno-
types are evolvable, f should be differentiable, such that to first or-
der a sufficiently small genotype variant (Δγ) owing to a mutation
would lead to a fitness perturbation (Δφ) given by f ′(γ) ·Δγ≈Δw=EA
(Equation 2), where EA is the evolutionary action of the mutation
Δγ on fitness, and f ′(γ) is the functional sensitivity of the mutated
site to genotype variants. Although the function f in Equation 1 is
unknown, we may still compute Equation 2 in the special context
of amino acid substitution variants by approximating its two
terms. First, f ′(γ) is approximated with ET ranks of importance
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(Lichtarge et al. 1996). ET measures the functional importance of
protein residues by accounting for the phylogenetic distances
(Δφ) between homologous sequences given a variation (Δγ) at a
given residue position. Thus, positions that tend to vary mostly
between phylogenetically distant homologous sequences are
ranked as more important. Second, Δγ is approximated for coding
variants from amino acid substitution odds. These substitution
odds reflect the differences in various physicochemical properties
of amino acids and are calculated from numerous homologous se-
quence pairs for the specific functional importance of themutated
positions. Thus, alanine to serine has greater substitution odds, as
well as lesser contribution to EA than alanine to tryptophan, in
keeping the greater similarities between the former pair than the
latter. These are first-order approximations, and local functional
and structural features of proteins will impact their accuracy. But
these local effects are treated as second-order effects and, for
now, ignored. In practice, this is justified because EA performs
well in objective tests against state-of-the-art methods to assess
the deleterious impact of mutations (Katsonis and Lichtarge
2017,2019). EA scores for human gene variants are available for
nonprofit use at http://eaction.lichtargelab.org/.

Cohort integration

The methodological innovation in this work is to integrate
Equation 2 in order to recover the genotype–phenotype relation-
ship from Equation 1. In all generality, integrals are sums of terms,
called integrands, each one evaluated from a function of a variable
over a range, called domain. Here, the variable is the genotype var-
iation, the function is Equation 2, the integrands are the EA scores,
and the domain is all mutations in a patient cohort comparedwith
control mutations (for details, see Supplemental Materials).
Therefore, the integral will be a sum of EA scores for patient vari-
ants compared with the sum of random variants. Considering
gene-specific distributions of EA scores, we may calculate integrals
gene by gene, and with a one-tailed, two-sample Kolmogorov–
Smirnov test, we may find whether these integrals differ signifi-
cantly from zero. Insignificant differences indicate geneswith cod-
ing variants in the cancer cohort that are consistent with random
mutational events, not under selection. However, significant
Kolmogorov–Smirnov tests indicate genes with variants that expe-
rienced selection in the cancer cohort, namely, genes with geno-
type perturbations linked to the phenotype of the cohort. To
eliminate genes with EA distributions that are not biased to high
or intermediate EA scores (different than those seen in Fig. 2C,
D), we asked that either the sLOF index is greater than 0.15 or
the sGOF index is greater than 0.1. This integral analysis only
used missense and nonsense mutations compared with random
nucleotide changes. Frameshift insertions and deletions (fs-indels)
were treated separately because they require different control var-
iants. For fs-indels, we used the binomial probability test to com-
pare their frequency in each gene to their frequency in the
genome, assuming that most tumor mutations do not contribute
to cancer (passengers) and that the rate of passenger mutations
is constant throughout the genome. As such, the fs-indelmutation
rate was calculated in the context of each cancer type by dividing
the total number of fs-indelmutations by the combined size of the
genes with at least one mutation. We combined for each gene the
CI P-value (missense andnonsensemutations)with the P-value for
fs-indels according to Fisher’s combined probability (Fisher 1948)
and then corrected for multiple-hypothesis testing (Q-value<0.1)
(Storey and Tibshirani 2003). Because the fs-indels analysis is very
sensitive to sequencing quality and in order to avoid potentially
false-positive findings, we further filtered out genes with missense
and nonsense CI P-value less than 0.05. In practice, this filtering

prevented discoveries based on fs-indel variants only and acted
to lower the stringent threshold of themissense and nonsense var-
iant CI analysis. A flowchart of the CI approach is provided in
Supplemental Fig. S10.

Tumor-suppressor and oncogene classification with sLOF

and sGOF index

We defined the sLOF index and sGOF index to quantify the bias of
coding variants toward high and intermediate EA scores, respec-
tively. To do so, we considered the distribution of EA scores that
corresponds to variants obtained from all possible nucleotide
changes in each gene. Then, we calculated a reference curve of
how the average of the distribution changes when we exclude
any fractions of the variants with the lowest (positive selection)
or the highest (negative selection) EA scores. A positive sLOF index
equal to x indicates that the average EA score of the given coding
variants is equal to the averaged EA score of all possible nucleotide
substitutions in a gene minus fraction x of the substitutions with
the lowest EA scores, whereas a negative sLOF index −x indicates
that the given coding variants have an average EA equal to that
of all possible nucleotide substitutionsminus fraction x of the sub-
stitutions with the highest EA. To account for bias to intermediate
EA scores, we considered theminimumdifference of each EA score
from zero or from100 (DEAvalues). TheDEAvalues for all possible
nucleotide changes in a gene created a new distribution scaled
from zero to 50.We calculated a reference curve of how the average
of the distribution changes when we excluded any fractions of the
variants with the lowest (positive selection) or the highest (nega-
tive selection) DEA values. The positive sGOF index equal to y in-
dicates that the averageDEAvalue of given coding variants is equal
to the average DEA value of all possible nucleotide substitutions
minus the fraction y of the substitutions with the lowest DEA val-
ues (most distant from an EA of 50), and a negative sGOF index −y
indicates that the given coding variants have average EA equal to
that of all possible nucleotide substitutions minus the fraction y
of the substitutions with the highest DEA values (closest to 50).
In sum, a positive sLOF indicates the selection characteristic of a
mutated tumor-suppressor gene, whereas a positive sGOF indi-
cates the selection characteristic of a mutated oncogene. We
then annotate genes as tumor suppressors when their sLOF index
>0.15 and as oncogeneswhen the sGOF index >0.1. Genes that sat-
isfy both the tumor-suppressor and oncogene criteria are annotat-
ed as oncogenes, because oncogenes typically also have positive
sLOF indices (owing to biases of the genetic code to conservative
substitutions), whereas tumor suppressors typically have negative
sGOF indices.

Software availability

The CI software is available as Supplemental Code together with a
README.txt file that contains the instructions for installation and
execution. The method is also available through the web server at
http://cohort.lichtargelab.org/.
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Tomczak K, Czerwińska P,WiznerowiczM. 2015. The Cancer Genome Atlas
(TCGA): An immeasurable source of knowledge. Contemp Oncol (Pozn)
19: A68–A77. doi:10.5114/wo.2014.47136

Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS,
Gill S, Harrington WF, Pantel S, Krill-Burger JM, et al. 2017. Defining a
cancer dependency map. Cell 170: 564–576.e16. doi:10.1016/j.cell
.2017.06.010

Van den Eynden J, Fierro AC, Verbeke LP, Marchal K. 2015. SomInaClust:
detection of cancer genes based on somatic mutation patterns of inacti-
vation and clustering. BMC Bioinformatics 16: 125. doi:10.1186/s12859-
015-0555-7

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler
KW. 2013. Cancer genome landscapes. Science 339: 1546–1558.
doi:10.1126/science.1235122

Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the
evolution of evolvability. Evolution (N Y) 50: 967–976. doi:10.1111/j
.1558-5646.1996.tb02339.x

Wang J, Tian X, Han R, ZhangX,WangX, ShenH, Xue L, Liu Y, YanX, Shen
J, et al. 2014a. Downregulation ofmiR-486-5p contributes to tumor pro-
gression and metastasis by targeting protumorigenic ARHGAP5 in lung
cancer. Oncogene 33: 1181–1189. doi:10.1038/onc.2013.42

Wang T, Wei JJ, Sabatini DM, Lander ES. 2014b. Genetic screens in human
cells using the CRISPR-Cas9 system. Science 343: 80–84. doi:10.1126/sci
ence.1246981

Weinstein IB, Joe A. 2008. Oncogene addiction. Cancer Res 68: 3077–3080.
doi:10.1158/0008-5472.CAN-07-3293

Wilkins AD, Lua R, Erdin S, Ward RM, Lichtarge O. 2010. Sequence and
structure continuity of evolutionary importance improves protein func-
tional site discovery and annotation. Protein Sci 19: 1296–1311. doi:10
.1002/pro.406

Wright S. 1932. The roles of mutation, inbreeding, crossbreeding and selec-
tion in evolution. In Proceedings of the sixth international congress of genet-
ics, Ithaca, NY, Vol. 1, pp. 356–366. Brooklyn Botanic Garden, New
York.

Yu KD, Shao ZM. 2009. Genetic matters of CYP2D6 in breast cancer: copy
number variations and nucleotide polymorphisms. Nat Rev Cancer 9:
842. doi:10.1038/nrc2683-c1

Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, Snyder M. 2016.
Predicting non-small cell lung cancer prognosis by fully automated mi-
croscopic pathology image features. Nat Commun 7: 12474. doi:10
.1038/ncomms12474

YuKH, Berry GJ, RubinDL, ReC, Altman RB, SnyderM. 2017. Association of
omics features with histopathology patterns in lung adenocarcinoma.
Cell Syst 5: 620–627.e3. doi:10.1016/j.cels.2017.10.014

Received May 25, 2021; accepted in revised form March 14, 2022.

Calculus of fitness landscapes

Genome Research 929
www.genome.org


