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Abstract: In the past year and a half, SARS-CoV-2 has caused 240 million confirmed cases and
5 million deaths worldwide. Autophagy is a conserved process that either promotes or inhibits
viral infections. Although coronaviruses are known to utilize the transport of autophagy-dependent
vesicles for the viral life cycle, the underlying autophagy-inducing mechanisms remain largely
unexplored. Using several autophagy-deficient cell lines and autophagy inhibitors, we demonstrated
that SARS-CoV-2 ORF3a was able to induce incomplete autophagy in a FIP200/Beclin-1-dependent
manner. Moreover, ORF3a was involved in the induction of the UPR (unfolded protein response),
while the IRE1 and ATF6 pathways, but not the PERK pathway, were responsible for mediating the
ORF3a-induced autophagy. These results identify the role of the UPR pathway in the ORF3a-induced
classical autophagy process, which may provide us with a better understanding of SARS-CoV-2 and
suggest new therapeutic modalities in the treatment of COVID-19.
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1. Introduction

Autophagy is a conserved cellular process of intracellular degradation of senescent or
malfunctioning organelles to maintain intracellular homeostasis [1,2]. Autophagy occurs
in response to different forms of stress, including nutrient deprivation, growth factor
depletion, infection, and hypoxia. Dysregulated autophagy is associated with certain
cancers, neurodegenerative diseases, immune dysfunction, and aging. Thus, autophagy is
placed under the spotlight of pharmacologists and clinicians [3]. Autophagy goes through
formation of three membrane structures in turn: phagophore, autophagosome, and au-
tolysosome. Briefly, ATGs (autophagy-related genes) are recruited to a specific subcellular
location termed the PAS (phagophore assembly site) to form a cup-shaped structure termed
the phagophore. Gradually, phagophore elongates and seals into a double-membraned
vesicle termed the autophagosome. Autophagosome fuses with the lysosomal membrane
to form an autolysosome, which is followed by the degradation of the autophagic body
together with its cargo by autolysosomal hydrolytic milieu [2]. ATGs play an irreplaceable
role in the whole process of autophagy. To date, more than 30 ATGs have been identified to
be involved in the autophagy pathway [4]. Autophagy is modulated by several autophagy-
related signaling pathways, including the ULK1 (Unc-51-like kinase 1) complex (consisting
of ULK1, ATG13, FIP200, and ATG101) for autophagy initiation, PI3KC3 (the phosphoinosi-
tide 3-kinase catalytic subunit type III) complex (consisting of Beclin-1, AMBRA1, VPS34,
VPS15, and ATG14L) for autophagosome nucleation, the ATG12-ATG5-ATG16L1 complex
for autophagosome elongation, and the STX17-SNAP29-VAMP8 complex for vesicle fusion
and further autolysosome-mediated degradation processes [5].

ER (endoplasmic reticulum), a vast membranous network, coordinates diverse cellular
processes [6]. To maintain ER homeostasis, cells have evolved multiple protein quality-
control systems, including the UPR (unfolded protein response), ERAD (ER-associated
degradation), and autophagy. The accumulation of misfolded proteins triggers UPR via
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three UPR sensors (PERK, IRE1, and ATF6), and the misfolded proteins are cleared by
ERAD for proteasomal degradation or autophagy for lysosome-mediated degradation [7,8].
Under basal conditions, PERK, IRE1, and ATF6 are bound by a chaperone binding im-
munoglobulin protein (BIP) resident on ER membrane. During ER stress, BIP is recruited
to unfolded or misfolded proteins and dissociated from these UPR sensors, resulting in
UPR activation [9]. It is worth mentioning that the link between autophagy and UPR has
been well demonstrated. ATF4 and CHOP, downstream molecules of the PERK-eIF2a
pathway, regulate the expression of many ATG genes [10]. IRE1 could mediate Beclin-1
activation through JNK and TRAF2 [11]. ATF6 indirectly regulates autophagy via XBP-1
and CHOP [12].

Coronaviruses are a group of enveloped RNA viruses, with non-segmented, positive-
strand RNA genomes, classified under the order Nidovirales, family Coronaviridae, subfamily
Coronavirinae. To date, several coronaviruses, including IBV (infectious bronchitis virus),
MHV (mouse hepatitis virus), SARS-CoV (Severe Acute Respiratory Syndrome Coron-
avirus), and MERS-CoV (Middle East Respiratory Syndrome Coronavirus) have been
implicated in the induction of autophagy [11,13]. Typically, autophagy is important to
facilitate the capture and elimination of invading pathogens [14]. As for coronaviruses, the
cellular autophagy pathway is exploited for the replication and egress of coronaviruses
under certain situations [15]. Existing evidence supports that SARS-CoV and MHV infec-
tion can increase autophagosome formation in host cells. However, it is still controversial
whether these viruses rely on autophagy for viral replication and release [16]. COVID-19 is
certainly one of the most serious infectious diseases in human history, and people around
the world are still trapped in the COVID-19 pandemic due to a lack of comprehensive
understanding of the molecular interaction between SARS-CoV-2 and innate immune
systems. Of note, structural and nonstructural proteins of coronavirus are essential for
interaction with the host innate immune system [17,18], which may shed light on coron-
avirus invasion and replication. SARS-CoV ORF3a is the largest accessory protein of SARS
coronavirus, which is essential for viral replication and release [19–21]. SARS-CoV-2 ORF3a
and SARS-CoV ORF3a share 72% similarity in the gene sequence, which makes it easy to
infer that the two proteins may exhibit similarity in functions.

Investigating the contribution of individual SARS-CoV-2 proteins to innate immunity
may allow us to elucidate the pathogenesis of SARS-CoV-2 and speculate effective and
specific therapeutics. Here, we focus on the largest accessory protein of SARS-CoV-2 ORF3a
and aim to investigate its underlying interaction with autophagy [22,23]. Recently, studies
have demonstrated the role of SARS-CoV-2 ORF3a in inducing autophagy in detail [24–26].
Here, we seek a more comprehensive mechanism in a different aspect for SARS-CoV-2
ORF3a and autophagy.

2. Materials and Methods
2.1. Cell Lines and Culture Conditions

Hela, MEF, Vero, Vero-E6, and 293T cells were kept in our laboratory. ATG5 and ATG7
KO MEF cells were kindly provided by Dr. Ming-Zhou Chen (Wuhan University, Wuhan,
China). FIP200 and ATG16L1 KO knockout Hela cells were kindly provided by Dr. Feng
Shao (Peking University, Beijing, China). Beclin-1 KO Hela cells were kindly provided by
Dr. Wen-Sheng Wei (Peking University, China). Cells were cultured in DMEM with 10%
heat-inactivated fetal bovine serum and 1% penicillin-streptomycin at 37 ◦C with 5% CO2.
Hela, 293T, and MEF cells were usually passaged at 1:4 every other day. Vero and Vero-E6
cells were passaged at 1:6 every other day.

2.2. Plasmids and Transfection

SARS-CoV-2 ORF3a (Gene ID: 43740569) with HA-Tag was cloned into the pCAGGS
through restriction sites EcoRI and BamHI. Plasmids GFP-mCherry-LC3B (#123230) and
GFP-LC3B (#11546) were purchased from Addgene (Watertown, MA, USA). Transfection
reagent (Yeasen, Shanghai, China) was used according to the manufacturer’s protocol.
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2.3. Antibodies

Rabbit anti-LC3B (#3868), rabbit anti-ATG5 (#12994), rabbit anti-ATG7 (#8558), rabbit
anti-Beclin-1 (#3495), rabbit anti-ATG16L1 (#8089), rabbit anti-BIP (#3177), rabbit anti-
ATF6 (#65880), rabbit anti-ATF4(#11815), rabbit anti-XBP1 (#12782), rabbit anti-PERK
(#5683), rabbit anti-IRE1 (#3294), rabbit anti-p-eif2α (#3398), rabbit anti-FIP200 (#12436),
and mouse anti-CHOP (#2895) antibodies were purchased from Cell Signaling Technology
(Danvers, MA, USA) (dilution concentration 1:1000). Rabbit anti-p-IRE1 (PA1-16927)
was purchased from Invitrogen (Waltham, MA, USA) (dilution concentration 1:1000).
Mouse anti-p62 (18420-1-AP), mouse anti-HA-tag (66006-2-Ig), and mouse anti-β-actin
(66009-1-Ig) were purchased from Proteintech (Wuhan, China) (dilution concentration
1:5000). HRP-conjugated goat anti-mouse (G1214) and goat anti-rabbit (G1213) were
purchased from Servicebio (Wuhan City, China) (dilution concentration 2:5000). Alexa
Fluor 568 goat anti-mouse IgG, IgM (H + L) (A-11004) and Alexa Fluor 647 goat anti-mouse-
IgG (H + L) (A-21445) were purchased from Thermo Fisher (Waltham, MA, USA) (dilution
concentration 1:500). Immunofluorescence antibodies were diluted in PBS. Immunoblot
antibodies were diluted in TBST.

2.4. Western Blotting

Cells were lysed in RIPA Lysis Buffer (Beyotime, Shanghai, China) with protease
inhibitor cocktail. The total protein concentration was determined using a bicinchoninic
acid (BCA) protein assay kit (Beyotime). Equal amounts of total proteins (50 µg) per well
were separated with SDS-PAGE (80 V for 30 min, 120 V for 1 h) and transferred to the
PVDF membrane (Cytiva, Marlborough, MA, USA) (200 mA for 2 h). Membranes were
blocked with 5% non-Fat Milk in TBST for an hour. Cut membranes were incubated with
indicated primary antibodies overnight at 4 ◦C and HRP-labeled secondary antibodies for
2 h. Protein bands were imaged in Amersham Imager 600 system. Photo densitometric
data of protein bands were analyzed and quantified with ImageJ.

2.5. Confocal Immunofluorescence Microscopy

For immunofluorescence microscopy, 1–2 × 104 cells were plated on a 35 mm Glass Bot-
tom Cell Culture Dish (NEST, Wuxi, China). Treated cells were fixed with 4% paraformalde-
hyde (Servicebio), permeabilized with 0.02% Triton X-100, and then incubated with indi-
cated antibodies overnight at ◦C after blocking with 2% BSA. Finally, cells were equilibrated
in PBS and stained for DAPI (0.5 µg/mL). Cells were imaged using a Zeiss LSM880292.
Microscopy images were possessed with LAS-AF-Lite2.6.0. Representative images of at
least three independent replicates are shown.

2.6. RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated with TRIzol Reagent (Servicebio) according to the instructions
and transcribed into the first-strand cDNA with cDNA Synthesis Kit (Servicebio). RT-qPCR
(Real-time quantitative PCR) assays were performed using a ChamQ Universal SYBR
qPCR Master Mix (Vazyme, Nanjing, China) in a Roche LightCycler 96 system. Data
were normalized to the β-actin level. ∆CT(control) = CT(target gene, control) − CT(β-
actin, control). ∆CT(treatment) = CT(target gene, treatment) − CT(β-actin, treatment).
∆∆CT = ∆CT(treatment) − ∆CT(control). The primers used in RT-qPCR analysis are listed
in Supplemental Table S1.

2.7. Statistical Analysis

All data were from at least 3 independent trials. Semi-quantitative analysis of Western
blotting and immunofluorescence microscopy were conducted with ImageJ. One-way
ANOVAs followed by Dunnett’s multiple comparisons test were used in comparisons oc-
curring with 3+ groups. T-tests or T-tests with Welch’s correction were used in experiments
where only two groups are compared. All data analyses were performed with GraphPad
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Prism 8. p-values < 0.05 were considered statistically significant (* p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.001).

3. Results
3.1. SARS-CoV-2 ORF3a Promoted the Expression of Autophagy-Related Genes

To investigate the interaction between SARS-CoV-2 ORF3a and autophagy, Hela,
MEF, and Vero-E6 cells were utilized as cell models to investigate how ORF3a modulated
the activation of autophagy. Thus, plasmids pCAGGS and pCAGGS-HA-ORF3a were
transfected into Hela, MEF, and Vero-E6 cells. Then we examined the transcription pat-
tern of autophagy-related genes via RT-qPCR (quantitative reverse transcription PCR).
Interestingly, our results showed that ORF3a strongly promoted the expression of many
autophagy-related genes in Hela, MEF, and Vero-E6 cells, including ulk1, beclin-1, wipi1,
atg5, atg7, and lc3 (Figure 1 and Figure S1). These data indicate that autophagy could be
induced by SARS-CoV-2 ORF3a at least at the transcriptional level.
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Figure 1. SARS-CoV-2 ORF3a promoted the expression of autophagy-related genes. Hela and MEF cells (1–2 × 105 cells)
were transfected with HA-Tag-ORF3a (2 µg) or empty vector (2 µg) for 24 h. qPCR was performed to detect the expression
level of ulk1, atg13, beclin-1, wipi1, atg5, atg7, p62, and lc3. Data were analyzed by T-tests or T-tests with Welch’s correction.
qPCR Data (mean ± SEM) are representative of three independent experiments. ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.001.

3.2. ORF3a Could Induce Autophagy

To further investigate whether autophagy was induced by SARS-CoV-2 ORF3a, the
immunoblotting assay was then used to detect the conversion of LC3B-I to LC3B-II, a
standard marker indicating the induction of autophagy. Interestingly, the conversion of
LC3B-I to LC3B-II was induced significantly in ORF3a-transfected in Hela, Vero, and MEF
cells (Figure 2A,B and Figure S2), indicating that ORF3a-induced autophagy could be a
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universal phenomenon in these cell lines. To further investigate the interaction between
ORF3a and autophagy, autophagy induction was measured over a dose range and over time
after transfection with ORF3a. Interestingly, we observed that the induction of autophagy
may reach a saturation point when transfected with 1 µg pCAGGS-HA-ORF3a (Figure 2C),
while the induction of autophagy by ORF3a was exhibited in a time-dependent manner
(Figure 2D). To further identify the role of ORF3a in autophagy induction, pCAGGS-
HA-ORF3a was co-transfected with GFP-LC3B into Hela cells. We then used confocal
microscopy to measure the distribution of LC3B. Further confocal results showed that
LC3B was distributed throughout the cytoplasm in pCAGGS-transfected cells, whereas
LC3B was distributed in specific puncta in ORF3a-transfected cells (Figure 2E). These data
indicate that autophagy is induced by SARS-CoV-2 ORF3a.
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Figure 2. ORF3a could induce autophagy. (A,B) Hela and Vero cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a
(2 µg) or empty vector (2 µg) for 24 h. Western blot was performed to detect LC3B and p62. (C) Hela cells (1–2 × 105 cells)
were transfected with HA-Tag-ORF3a (1, 2, and 4 µg) or empty vector (1, 2, and 4 µg) for 24 h. Western blot was performed
to detect LC3B and p62. (D) Hela cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) or empty vector
(2 µg) for 12 h, 24 h, and 48 h. Western blot was performed to detect LC3B and p62. (E) Hela cells (1–2 × 104 cells) were
co-transfected with GFP-LC3B (0.5 µg) and HA-Tag-ORF3a (0.5 µg) or empty vector (0.5 µg) for 24 h. Immunofluorescence
was performed to detect LC3B puncta. Scale bars: 4 µm. Magnification: 630×. One-way ANOVAs followed by Dunnett’s
multiple comparisons test were used in comparing multiple groups. Student’s t-test was used to test statistical significance
across two groups. Data were representative of 3 independent experiments. *** p ≤ 0.001, **** p ≤ 0.001.

3.3. ORF3a-Induced Autophagy Was an Incomplete Process

During autophagy, ubiquitinated proteins are clustered with p62 and are subsequently
engulfed by autophagosome. Autophagosome fusing with lysosome results in the degra-
dation of the autophagic body together with its cargo by the autolysosomal hydrolytic
milieu [27,28]. The accumulation of autophagy substrate p62 means the degradation pro-
cess is interrupted. Considering that ORF3a overexpression promoted p62 accumulation



Viruses 2021, 13, 2467 6 of 12

in ORF3a-transfected Hela and Vero cells (Figure 2A,B), ORF3a may induce incomplete
autophagy. To confirm our hypothesis, mCherry-GFP-LC3B, a tandem fluorescence-labeled
LC3B vector, was used to detect autophagic flux based on the switch of fluorescence signals.
Briefly, when autophagosome fuses with lysosome, the acidic lysosomal environment
could quench the green fluorescence but not the red fluorescence, and red fluorescence
can be detected by confocal microscopy assay. Here, ORF3a was co-transfected with
mCherry-GFP-LC3B into Hela cells. We observed that ORF3a overexpression could not
quench the green fluorescence (Figure 3A), indicating that ORF3a-induced autophagy was
incomplete (Figure S3). Rapamycin was employed here as a positive control of autophagy
induction. To further confirm the autophagy flux process during ORF3a transfection, Hela
cells were subsequently treated with autophagy inhibitors BafA1 (bafilomycin A1) and CQ
(chloroquine), which are known to inhibit the autophagosome–lysosome fusion process, to
measure the conversion of LC3B-I to LC3B-II and the accumulation of p62 by immunoblot-
ting assay. We observed that pretreatment of BafA1 or CQ could not further promote
ORF3a-induced accumulation of LC3B-II and p62 (Figure 3B,C). These data indicate that
SARS-CoV-2 ORF3a-induced autophagy is indeed an incomplete process.
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Figure 3. ORF3a-induced autophagy was an incomplete process. (A) Hela cells (1–2 × 104 cells) were co-transfected with
mCherry-GFP-LC3B (1 µg) and HA-Tag-ORF3a (1 µg) or empty (1 µg) vector for 24 h. Rapamycin (50 mM, 6 h) was used
as a positive control. Partial magnifications of 10× based on the original images were placed next to the original ones.
Immunofluorescence was performed to assess autophagy status. Scale bars: 4 µm. Magnification: 630×. (B) Hela cells
(1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) for 24 h and treated with Baf-A1 (50 nM) for 6 h before harvest.
Western blot was performed to detect LC3B and p62. (C) Hela cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a
(2 µg) for 24 h and treated with CQ (50 nM) for 6 h before harvest. Western blot was performed to detect LC3B and p62.
One-way ANOVAs followed by Dunnett’s multiple comparisons test were used in comparing multiple groups. Student’s
t-test was used to test statistical significance across two groups. Data were representative of 3 independent experiments.
**** p ≤ 0.001.
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3.4. ORF3a-Induced Autophagy Was Dependent on the Classical Autophagy

To determine whether ORF3a-induced autophagy was dependent on classical au-
tophagy processes, a series of autophagy-deficient cells was used, including Beclin-1 KO
HeLa cells and FIP200 KO HeLa cells. Beclin-1 and FIP200 are classical autophagy-related
genes belonging to the complexes that felicitate autophagy initial stage [29,30]. Interest-
ingly, we observed that knockout of Beclin-1 and FIP200 in Hela cells partially reversed
the ORF3a-induced conversion of LC3B-I to LC3B-II (Figure 4A and Figure S4A), implying
that ORF3a-induced autophagy was classic and dependent on Beclin-1/FIP200. To further
verify ORF3a-induced classic autophagy, conversion of LC3B-I to LC3B-II was detected
in Atg5 or Atg7 KO MEF cells and Atg16L1 KO Hela cells. Consistently, Atg16L1 KO
HeLa cells and Atg7 KO MEF cells abolished ORF3a-induced conversion of LC3B-I to
LC3B-II (Figure S4B,C). Intriguingly, ORF3a could induce a small amount of LC3B-II in
Atg5 KO MEF cells, suggesting that ORF3a-induced autophagy may not be completely de-
pendent on Atg5. Moreover, two autophagy initial stage inhibitors, PI(3)K inhibitor 3-MA
(3-methyladenine) and Ca2+ chelator BAPTA-AM, were further employed to assess the
ORF3a-induced autophagy. Further immunoblotting results showed that ORF3a-induced
autophagy was inhibited by 3-MA (Figure 4B) and BAPTA-AM (Figure 4C). These results
indicate that ORF3a-induced autophagy is dependent on the classical autophagy process.
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Figure 4. ORF3a-induced autophagy was dependent on the classical autophagy. (A) Beclin-1 KO, Atg16L1 KO, FIP200
KO, and WT Hela cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) or empty vector (2 µg) for 24 h. Western
blot was performed to detect LC3B. (B) Hela cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) for 24 h
and treated with 3-MA (50 µM) for 6 h before harvest. Western blot was performed to detect LC3B and p62. (C) Hela
cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) for 24 h and pretreated with BATPA-AM (50 nM) for
16 h before harvest. Western blot was performed to detect LC3B and p62. One-way ANOVAs followed by Dunnett’s
multiple comparisons test were used in comparing multiple groups. Data were representative of 3 independent experiments.
**** p ≤ 0.001.

3.5. ORF3a Induced Autophagy through Unfolded Protein Response

Like autophagy, UPR (the unfolded protein response) is a conserved cellular stress
response induced by ER (endoplasmic reticulum) stress that is important for maintaining
cell homeostasis in response to various pathogenic infections [31]. Currently, many studies
suggest that autophagy is tightly regulated by the UPR. The downstream molecules of
UPR can directly induce the transcription of autophagy-related genes; besides, UPR is
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also able to trigger autophagy directly by affecting Beclin-1 [11]. In mammalian cells,
there are three unique UPR signal pathways: PERK-ATF4, ATF6, and IRE1-XBP1. BIP is a
chaperone and master regulator of the UPR. To elucidate how ORF3a induced autophagy,
immunoblotting assay was used to detect UPR-related proteins BIP, ATF4, CHOP, XBP1-s,
and ATF6 to investigate whether ORF3a could induce the UPR pathway. Interestingly, we
found that UPR-related proteins BIP, ATF4, CHOP, ATF6-C (50 kDa), and XBP1-s were
increased and ATF6 (90 kDa) was decreased in ORF3a-transfected Hela cells (Figure 5A),
indicating the induction of three UPR signal pathways. To determine which UPR pathway
was involved in ORF3a-induced autophagy process, three UPR inhibitors (Ceapin-A7 for
ATF6, GSK2606414 for PERK-ATF4, and 4µ8C for IRE1-XBP1) were used. We found that
ORF3a-induced conversion of LC3B-I to LC3B-II was largely impaired by Ceapin-A7 and
4µ8C, while not GSK2606414 (Figure 5B and Figure S5A). To further solidify our UPR
inhibitor results, siRNAs were used to knock down the expression of atf6, perk, and ire1
in Hela cells. We observed that transfection of ATF6 siRNA or IRE1 siRNA inhibited the
ORF3a-induced conversion of LC3B-I to LC3B-II, while transfection of PERK siRNA did not
(Figure 5C–E and Figure S5B–E). These results indicate that ORF3a promotes the induction
of autophagy via classic ATF6 and IRE1-XBP1 UPR pathway.
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Figure 5. ORF3a induced autophagy through unfolded protein response. (A) Hela cells (1–2 × 105 cells) were transfected
with HA-Tag-ORF3a (2 µg) or empty vector (2 µg) for 24 h. Western blot was performed to detect UPR-related proteins.
(B) 293T cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) or empty vector (2 µg) for 24 h pretreated with
Ceapin-A7 (10 nM), GSK2606414 (5 nM), 4µ8C (10 nM) for 16 h before harvest. Western blot was performed to detect LC3B
and p62. (C–E) Hela cells (1–2 × 105 cells) were transfected with HA-Tag-ORF3a (2 µg) and atf6/perk/ire1 siRNA (50 nM) or
control siRNA (50 nM) for 36 h. Western blot was performed to detect LC3B. One-way ANOVAs followed by Dunnett’s
multiple comparisons test were used in comparing multiple groups. Student’s t-test was used to test statistical significance
across two groups. Data are representative of 3 independent experiments. * p ≤ 0.05, **** p ≤ 0.001.
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4. Discussion

To date, many studies have demonstrated the important role of SARS-CoV ORF3a in
interacting with intracellular immune responses, including apoptosis [32], ER stress [33],
NLRP3 inflammasome [34], and type I interferon signaling pathway [33]. Importantly,
knowledge of virus–host interaction is essential to develop effective acting antiviral thera-
pies, such as drugs targeting the autophagy process [35]. Herein, we focus on the interaction
between SARS-CoV-2 ORF3a and autophagy.

In our study, we found that SARS-CoV-2 ORF3a induced the conversion of LC3B-I
to LC3B-II and p62 accumulation, suggesting that ORF3a might induce incomplete au-
tophagy. When evaluating the cellular autophagy, it is necessary to detect the changes of
autophagy flux, dynamic changes of autophagosome formation, fusion of autophagosome
and lysosome, substrate degradation, and so on. This conclusion was further confirmed by
using the autophagy flux reporter plasmid mCherry-GFP-LC3B and the autophagy flux
inhibitors Baf-A1 and CQ [36]. Consistently, the latest study indicates that SARS-CoV-2
ORF3a interacts with VPS39 interaction to prevent the assembly of the STX17-SNAP29-
VAMP8 SNARE complex in forming autolysosome [25]. Moreover, the cytoprotective
properties of autophagy have raised the particular interest of scientists and clinicians.
Antimalarial drugs CQ and HCQ (hydroxychloroquine) exert strong anti-SARS-CoV-2
effects in SARS-CoV-2 infected Vero E6 cells but fail to inhibit SARS-CoV-2 replication in
TMPRSS2-expressing human lung cells or animal models and COVID-19 patients [37,38].
It is doubtful that their putative effects on autophagy inhibition are necessarily causal for
their anti-SARS-CoV-2 activity. Detailed mechanisms of their action against SARS-CoV-2
infection and replication still need to be elucidated. Combined with all current studies on
SARS-CoV-2 ORF3a, ORF3a may promote viral replication to some extent by promoting
the formation of autophagosomes. On the other hand, ORF3a inhibits the formation of
autolysosomes to protect the virus from the hydrolysis in acidic environments.

To further understand ORF3a-induced autophagy, autophagy-related gene deficient
cells were used to detect classical autophagy. We found that autophagy induced by ORF3a
was decreased in FIP200 and Beclin-1 deficient cells. It is known that FIP200 belongs to
Atg1/ULK complex which is a stable complex responsible for autophagy initiation. In
mammals, Beclin-1 is an essential component of two PI3K complexes through its interaction
with either Barkor (Beclin-1-associated autophagy-related key regulator)/ATG14 complex
or UVRAG (UV radiation resistance-associated gene) [39]. It is reported that SARS-CoV-2
ORF3a interacts with autophagy regulator UVRAG to inhibit Beclin-1-Vps34-UVRAG com-
plex, which results in the accumulation of formed autophagosomes in HeLa cells [24,26].
To further confirm that ORF3a could induce classic autophagy, we used another batch of
ATG-deficient cells. ATG7 and Atg16L1 deficient cells abolished ORF3a-induced LC3B-II
accumulation. ATG5, ATG7, and Atg16L1 belong to the Atg12-ATG5-Atg16(L) dimer which
is important for Atg8/LC3-PE conjugation [40]. Interestingly, ORF3a still induced a small
amount of LC3B-II in ATG5-deficient MEF cells, indicating that ORF3a may bypass ATG5
to some extent to cause autophagy. 3-MA is known to permanently inhibit autophagosome
formation by PI3K class I and transiently inhibit PI3K class III. BATPA-AM is a Ca2+ chelator
that can penetrate the cell membrane to disrupt intracellular signal transduction including
mTORC1 and Beclin-1 to inhibit autophagy in this case [41]. ORF3a-induced autophagy in
Hela cells was impaired by 3-MA or BATPA-AM. Combined with autophagy inhibitors
3-MA and BATPA-AM, these results indicated that FIP200-Beclin-1-mediated classical au-
tophagy pathway was essential for ORF3a-induced autophagy. This could be a supplement
to the detailed study of ORF3a-induced autophagy in the previous studies [24,26]. Besides,
researchers find that Beclin-1 stabilizing drug niclosamide could suppress SARS-CoV-2
replication through autophagy activation in SARS-CoV-2-infected Vero-FM cells [42], which
may give us some hints to combat the virus through classic autophagy. The underlying
induction mechanism is worth further investigation.

As a part of cellular stress, autophagy is tightly connected with ER [43]. SARS-CoV
ORF3a, ORF6, ORF8, and spike (S) protein are reported to induce ER stress [33,44–46]. UPR
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is known as part of the cellular ER stress for coping with protein-folding alterations [47],
which comprises PERK-ATF4, ATF6, and IRE1-XBP1—three downstream pathways [48].
Non-structural proteins such as Nsp3, 4, and 6 of SARS-CoV are located on the ER mem-
brane and proved to promote double-membrane vesicle formation that could be associated
with viral replication and transcription complex [49]. To further explore the relationship
between autophagy and UPR under SARS-CoV-2 ORF3a transfection, three classical UPR
inhibitors and siRNAs were used [50–52]. We found that ATF6 and IRE1-XBP1 deficiency
inhibited the ORF3a-induced conversion of LC3B-I to LC3B-II, while UPR deficiency could
also block the accumulation of LC3B-II induced by CQ (Figure S5C–E). We cannot deny
the fact that UPR deficiency could block basal autophagy, whereas our results confirmed
that ORF3a can indeed promote the activation of UPR, supporting that ORF3a-induced au-
tophagy is dependent on the ATF6 and IRE1 signal pathway. In turn, ORF3a-induced UPR
was abolished in Beclin-1 KO Hela cells (Figure S5F). Actually, the role of autophagy in UPR
remains to be investigated, and they could take on functions in a context-dependent man-
ner. Earlier studies indicate that the ATG5-ATG7-ATG16L1 complex can relieve ER-stress
and impair the activation of UPR [53,54]. In addition, Beclin-1, belonging to R-BIP/Beclin-
1/p62 complex, may promote the activation of UPR [55]. These results indicate the complex
interaction between UPR and autophagy during ORF3a transfection, which remains for
further investigation.

In conclusion, our results not only identified the important role of the classical au-
tophagy genes FIP200 and Beclin-1 in the ORF3a-induced incomplete autophagy process,
but also elucidated the crosstalk between UPR and classical autophagy under SARS-CoV-2
ORF3a transfection status. It should be important to expand our understanding of the
relationship between SARS-CoV-2 and autophagy. This may have directional significance
for the new therapeutic modalities in the treatment of COVID-19 and allow us to further
investigate the effects of UPR on FIP200-Beclin-1 axis activation and viral replication to
combat the virus. Limitations of our study also exist. It is elusive whether ORF3a-induced
autophagy is dependent on the transcription of autophagy-related genes. It remains unclear
whether an additional pathway is involved in ORF3a-induced autophagy, and how ORF3a
promotes the activation of FIP200 and Beclin-1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122467/s1, Figure S1: SARS-CoV-2 ORF3a promoted the expression of autophagy-related
genes, Figure S2: ORF3a could induce autophagy, Figure S3: ORF3a-induced autophagy was an
incomplete process, Figure S4: ORF3a-induced autophagy was classic, Figure S5: ORF3a induced
autophagy through unfolded protein response.
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