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The return of Pfeiffer’s bacillus: Rising incidence of ampicillin
resistance in Haemophilus influenzae

Eva Heinz*

Abstract

Haemophilus influenzae, originally named Pfeiffer's bacillus after its discoverer Richard Pfeiffer in 1892, was a major risk for
global health at the beginning of the 20th century, causing childhood pneumonia and invasive disease as well as otitis media and
other upper respiratory tract infections. The implementation of the Hib vaccine, targeting the major capsule type of H. influenzae,
almost eradicated the disease in countries that adapted the vaccination scheme. However, a rising number of infections are
caused by non-typeable H. influenzae (NTHi), which has no capsule and against which the vaccine therefore provides no
protection, as well as other serotypes equally not recognised by the vaccine. The first line of treatment is ampicillin, but there is a
steady rise in ampicillin resistance. This is both through acquired as well as intrinsic mechanisms, and is cause for serious
concern and the need for more surveillance. There are also increasing reports of new modifications of the intrinsic ampicillin-
resistance mechanism leading to resistance against cephalosporins and carbapenems, the last line of well-tolerated drugs, and
ampicillin-resistant H. influenzae was included in the recently released priority list of antibiotic-resistant bacteria by the WHO.
This review provides an overview of ampicillin resistance prevalence and mechanisms in the context of our current knowledge

about population dynamics of H. influenzae.

DATA SUMMARY

The data for Fig. 1 for different serotypes per country is
derived from the ECDC (https://ecdc.europa.eu/en/inva-
sive-haemophilus-influenzae-disease/atlas), the data for the
Hib vaccine implementation from the WHO (http://www.
who.int/immunization/monitoring_surveillance/data/en/).
Fig. 2 shows a summary of several studies, all data is avail-
able from the previously published studies and reports, and
is clearly cited in the text and listed in the bibliography.

INTRODUCTION

H. influenzae is a diverse species and has traditionally been
classified by its polysaccharide capsule, which can either be
entirely absent (non-typeable H. influenza, NTHi [1]), or
one of six serotypes (a-f; [1-3]). In the 1980s, one of the
most successful vaccines to date, the Hib vaccine, was
widely implemented against the major disease-causing
form of H. influenzae, serotype b; this serovar almost dis-
appeared in countries which introduced Hib into their vac-
cination scheme [4] (Fig. la-c). The introduction of the
vaccine in 73 countries supported by the Global Alliance
for Vaccines and Immunizations (GAVI) was estimated to

save 1.4-1.7 million lives 2011-2020 [5], and was intro-
duced into all GAVI-supported countries by 2014 [6]
(Fig. 1d, e). The success of the Hib vaccine is accompanied
by rising numbers of NTHi as well as, to a much lesser
extent, other serotypes [7-9], which fill the niche left by
the strongly reduced prevalence of H. influenzae b [10-13]
(Fig. 1b). In post-Hib settings NTHi is now the main path-
ogenic lineage, causing upper respiratory tract and ear
infections and chronic obstructive pulmonary disease
(COPD) infections [14, 15] which is the third leading cause
of death world-wide [16], and is one of the three leading
causes of acute otitis media (AOM; together with Strepto-
coccus pneumoniae and Moraxella catarrhalis [17]). NTHi
is also the main type causing invasive disease, including
sepsis and meningitis [11, 12, 17-19]. Even though invasive
disease, especially meningitis, was mostly driven by Hib in
the pre- and sometimes also the post-vaccination period
[20, 21], several reports show NTHi meningitis cases com-
prise up to 69% of the H. influenzae-derived meningitis
[19, 22-25]. For detailed discussion of virulence and inter-
action with the host the readers are pointed to several
recent expert reviews [10-13, 17, 26], these aspects will not
be covered in detail here.
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The main treatment against H. influenzae is ampicillin, a
member of the beta-lactams. These interfere with the bio-
synthesis of the Gram-negative cell wall through binding of
the enzymes which cross-link the peptidoglycan subunits,
the penicillin-binding proteins (PBPs [27, 28]). Key resis-
tance mechanisms are either acquired enzymes that hydro-
lyse beta-lactams (beta-lactamases), or target modifications
through changes in the PBP sequences. The majority of
high-risk multi-drug-resistant Gram-negative pathogens to
date acquired beta-lactamases, which mainly spread
through mobile elements [29, 30]. There has been a steady
increase in H. influenzae isolates resistant to ampicillin,
including a high number of intrinsic resistance cases, and
tracking of the epidemiology is challenging due to the geno-
mic diversity of H. influenzae and its high prevalence of
recombination. The importance of an increasing level of
resistance amongst H. influenzae isolates has been recog-
nised by the WHO, and it was included in the recently
released list of high-priority antimicrobial-resistant patho-
gens [31]. This review will profile this currently under-
studied pathogen with an emphasis on the increasing
prevalence of ampicillin resistance and the rising number of
resistance mechanisms against other antimicrobial classes in
the context of its complex population.

Plasmid-derived ampicillin resistance

Although the first report of resistance occurred in 1972
[32], H. influenzae is still largely treatable by most major
groups of antimicrobials. The first beta-lactam-resistance
mechanisms observed relied on the acquisition of the beta-
lactamases blaTEM-1/2 and blaROB-1 [33, 34], and bla-
TEM-1 is the by far more prevalent gene. It moved via the
associated Tn2/3 transposon onto a cryptic plasmid already
present in H. influenzae, which can also integrate into the
chromosome and carries several resistances [18, 35]. More
recently distribution of mobile resistances was also
described on small but conjugative plasmids, and transfer
to Escherichia coli, as shown in vitro, indicates the possibil-
ity of inter-species resistance spread [36]; others of these
small plasmids lack the conjugation machinery. However,
other common H. influenzae plasmids were highly unstable
when transformed into E. coli [37]; possibly of higher rele-
vance as plasmid reservoirs for H. influenzae are closely
related species like Pasteurella multocida, Haemophilus hae-
molyticus and Haemophilus parasuis [35, 37, 38]. Studies
have shown the presence of conjugative plasmids with
blaROB-1 shared amongst these species; however, these
plasmids have a significant impact on the fitness of H. influ-
enzae, which might explain the low prevalence of blaROB-1
[37]. However, due to the highly permeable cell envelope of
H. influenzae [33, 39], there is an increased influx of beta-
lactams [39]. The otherwise widespread blaTEM-1 enzyme
thus needs to be modified to confer resistance in H. influ-
enza, either through modification of the promoter to
achieve higher expression or through modification of the
enzyme itself [40-43].

IMPACT STATEMENT

Haemophilus influenzae is a human pathogen and causes
respiratory disease as well as invasive disease, such as
sepsis/bacteraemia and meningitis, and was a main
cause of childhood mortality at the beginning of the 20th
century. The introduction of the Hib vaccine, targeting the
main serotype b, almost eradicated Hib disease from
countries which have implemented it in their vaccination
scheme. With the disappearance of Hib however, a
strong increase followed in disease caused by non-
typeable H. influenzae, which is now the leading disease-
causing group. There is a steady rise in antimicrobial
resistances, in particular ampicillin resistance, and an
increasing number of reports of additional resistance
against macrolides, fluoroquinolones and other beta-lac-
tams, including carbapenems. This review highlights the
continuous rise of resistance in the H. influenzae popula-
tion, which is strongly driven through changes in the
chromosome leading to intrinsic resistance. Intrinsic
mechanisms are often more complex and less well-
understood than resistance through acquired genes, and
there is an urgent need for more surveillance and popu-
lation studies of H. influenzae.

Intrinsic resistance against ampicillin and other
beta-lactams

H. influenzae encodes four PBPs, however several studies
have shown that there is no correlation between resistances
and mutations in PBPs 1, 2 and 4 [44, 45]. PBP3 however,
encoded by the gene fisI, clearly confers resistance against
ampicillin, and includes several mutations around func-
tional areas of the protein. Ubukata et al. [46] initiated a
typing scheme which can be used to classify PBP3 accord-
ing to its mutations, and currently comprises four classes
[47, 48]. The main resistance-conferring mutations are in
one of the two key functional sites, disrupting the Lys-
Thr-Gly (KTG) or the Ser-Ser-Asn (SSN) motif, which
lead to a decrease in binding of ampicillin to PBP3 [45-
47]. The thus intrinsically resistant strains against ampicil-
lin are referred to as BLNAR, or beta-lactamase-negative
ampicillin-resistant (Fig. 2); BLNAR strains that acquired a
beta-lactamase in addition are referred to as beta-lacta-
mase-positive amoxicillin-clavulanate resistant (BLPACR),
however this group is usually only found at low prevalence.
Whilst initially BLNAR was mainly observed in Japan,
where Hib was only introduced in 2009 to the vaccination
scheme [49], BLNAR has spread across the globe in the
past 20years (Fig. 2). NTHi, the, to date, most prevalent
H. influenzae type causing disease, is often associated with
considerable proportions of resistance in recent studies
[50], with similar rates of acquired and intrinsic (BLNAR)
resistance mechanisms [51-54]. BLNAR strains are
grouped, according to their resistances, into low-level
(MIC 1ugml™'; sensitive=MIC 0.25ugml™') and high-
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Fig. 1. Drastic change in H. influenzae population following Hib vaccination. (a) The coverage of Hib vaccination 1996 shows low only
very sparse coverage. (b) The change in serotypes combining data from all European countries as retrieved from the European Centre
for Disease, ranging from 1996 with predominantly serotype B to 2016, where the population consists almost entirely of NTHi strains.
(c) The vaccination coverage for Europe in 2016, showing very high vaccination coverage. (d) The introduction of Hib vaccine globally
from 1991 until 2017. (e) The global vaccine coverage 2017 is almost complete and it can be speculated that the H. influenzae popula-
tion equally consists mainly of NTHi strains, as is also shown by isolated studies, although global surveillance data of serotype preva-

lance compared to the European data is not available.

level (MIC 2pgml™') resistance. High-level-resistant
strains also show resistance against cephalosporins [46, 47]
and have increased in prevalence in parts of Asia [48, 55-
59]. In addition, upregulation of AcrAB, combined with
PBP3 changes, can lead to further resistance to cephalo-
sporins as well as carbapenems, the last-line drugs that are
widely applicable against Gram-negative infections [47,
60-64].

Rising incidence of resistances against other drugs
through intrinsic mechanisms

Given the increasing trend in resistances, the treatment
options for H. influenzae are becoming increasingly limited.
Azithromycin, a macrolide, is widely prescribed in respira-
tory disease, although there is need for caution against
over-use to prevent selection for resistance [65]. Similar to

ampicillin resistance, H. influenzae modifies the macrolide
targets  (50S  ribosomal RNA and ribosome-
binding proteins), leading to high levels of resistance [66,
67]. This mechanism is in addition to the ubiquitously pres-
ent AcrAB multidrug-efflux pump which provides a base-
line reduced susceptibility, and the authors of recent studies
have reported changes in the AcrAB sequence to further
contribute to resistance [68]. Another major alternative are
quinolones, however, recently there has been an accumula-
tion of reports of fluoroquinolone resistance [69-72] again
through mutations in the targets, DNA gyrase (encoded by
gyrA and gyrB) and topoisomerase IV (encoded by parC
and parE); and thus again conferring resistance through a
plasmid-independent mechanism, making it easy for resis-
tances to arise independently through point mutations and/
or spread through recombination.



Heinz, Microbial Genomics 2018;4

T60% France Germany Italy Sweden Spain Portugal Poland
0,
[(eteacr
.ELNA(C)R
50%
O%D_D_[L[.mmu.nﬂull S :-D.[LEL[ID. 0ol ool
b A ® S o 4 S > o S O & (
S WQB S \09 \qq 'PQ S '9\ ’9\ N \qu \qé\ q,QQQ ’L“QD‘ ’LQQ ,»Q\Q \o,qt’ \q« WQB WQQ ,»6‘0’ ) "90 S (,,Qb qg QQ QV 0
Japan
100%. _— 100%.
DBLPA(C}H
.BLM{C}R 50 o DBLPNC)H
.BLNA(C)R
50%. 50%.
50"
0%. 0%. o
o S O 2
& ’196 N [
-50-
-100 0 100 200
long

Fig. 2. Global increase in BLPAR and BLNAR resistance. Data shown was summarised from [47, 50, 52, 53, 55, 106-113]; BLNA(C)R
and BLPA(C)R also include the respective strains with cephalosporin (amoxicillin/clavulanate) resistance. The included studies
assessed exclusively or to the vast majority NTHi isolates, and are recent surveillance studies including the reporting of different resis-
tance mechanisms (BLNAR, BLPAR) shown here as bar charts. For studies summarising isolates over several years, the last year of

the sample origins in the study is used for the order along the x-axis.

H. influenzae population structure

Not only recognised as a pathogen very early on, H. influen-
zae was also the bacterium that opened the area of whole-
genome sequencing, representing the first complete genome
from a free-living organism sequenced (in 1995) [73]. One
of the main challenges of NTHi is its great diversity; whilst
the capsulated lineages are mainly clonal expansions [74],
with each serotype presenting a monophyletic lineage, initial
multi-locus sequence typing (MLST) studies already recog-
nised the increased recombination, and as a consequence
higher diversity, of NTHi [75]; and in population studies,
there are often almost as many STs in a dataset as NTHi
sequences [76-78]. NTHi can also persist in a host over sev-
eral years, which not only leads to changes in virulence
genes as well as potential vaccine targets [79, 80], but also
increases its exposure to antimicrobials to treat unrelated
infections of the host, and is another risk factor in the acqui-
sition or spread of resistances through point mutations and
recombination, respectively. Recombination in H. influen-
zae is elevated for the whole species through its natural
competence, a bacterial mechanism increasing the uptake of

DNA from the same species. This is achieved by a DNA
uptake machinery located at the cell envelope that shows a
strong bias toward certain short DNA sequence motifs, and
the genomes of the respective bacteria are highly enriched
in the preferred sequences, mostly equally distributed
throughout the genome and also reflected in the encoded
peptides [81-83]. This leads to an increased ability to
recombine between different strains [78, 84], and thus also
facilitates easy exchange of chromosomal resistance mecha-
nisms, for example ftsI [85]. In addition, recombination
between related species has been observed, and leads to
spread of resistance through exchange of the chromosom-
ally encoded target gene ftsI [86].

Interactions with other species

H. influenzae shares its niche with Streptococcus pneumo-
niae and Moraxella catarrhalis in the nasopharynx, three of
the four primary pathogens (with Pseudomonas aeruginosa)
causing COPD [87], and the three leading pathogens of
AOM [17]. Similar to the success of the Hib vaccine, the
main disease-causing serovars of S. pneumoniae were suc-
cessfully controlled with several vaccines, but also here we
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see an increase in serovars not targeted by the available
vaccines and in and drug resistances, including penicillin as
well as macrolides [88-91]. Mixed infections further pro-
vide the potential to share resistance mechanisms across
species without actual gene transfer: Moraxella catarrhalis
can secrete outer membrane vesicles (OMVs) containing
beta-lactamase which hydrolyse beta-lactams, and thus
protect de facto sensitive S. pneuomoniae and H. influenzae
strains from the antimicrobial [92], as well as complement
resistance factors, protecting from the immune system
[87]. A similar effect was observed with beta-lactamase-
containing OMVs secreted by H. influenzae protecting
group A Streptococci, another common component of the
nasopharynx microbiota [93]. More studies for a better
understanding are also required to understand the impact
of the widely used pneumococcal vaccines. Results from a
recent study have indicated that introduction of the
S. pneumoniae vaccine resulted in increased carriage of
NTHi, although not due to the expansion of a particular
lineage/sequence type [94]. This study is, however, in con-
trast to other reports, where a reduction of NTHi carriage
following vaccination with pneumococcal vaccine was
observed [95-98]. Other studies reported no change in
NTHi following pneumococcal vaccination; given the dif-
ferent study designs and the differences in pneumococcal
vaccines, some of which include the H. influenzae protein
D as carrier, more data will be required to better under-
stand the impact of different pneumococcal vaccines on
H. influenzae [17, 99, 100].

Conclusion

H. influenzae is a major pathogen, considering respiratory
as well as invasive disease. The success of the Hib vaccine
has been followed by a global increase of NTHi, which
receives little attention from public media and is not
included in major resistance surveillance programs. This is
likely to be since NTHi can still readily be treated in most
cases, but there is an alarming rise in intrinsic resistances
against beta-lactams, as well as other classes. While a lot of
focus is placed on acquired resistance mechanisms, the epi-
demiology of intrinsic resistance is much less understood;
this is additionally challenging for NTHi, which has a highly
diverse population structure and can undergo recombina-
tion, including exchange of resistance determinants, within
the species as well as with related species. Intrinsic resis-
tance, especially against beta-lactams, is also a significant
problem for future drug developments. A major effort to
control the current crisis in antimicrobial resistance is the
development of beta-lactamase and carbapenemase inhibi-
tors [101-103] used in combination with beta-lactams and
carbapenems, respectively, to revert cells with these
acquired enzymes to be de facto susceptible. There are cur-
rently 10 inhibitors in clinical development, but changes in
PBP3 and AcrAB escape these treatment options [104].
Given the limited amount of genomic surveillance data, and
that H. influenzae resistance is not included in current anti-
microbial-resistance monitoring programs [105], the extent
of the increase in resistant isolates, as well as the population

dynamics leading to the spread of resistance, are not clear.
There is an urgent need for better surveillance of resistant
H. influenzae, understanding of the population dynamics,
including recombination events, and the influence of pneu-
mococcal vaccines.
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