Moghadam et al. BMIC Genomics (2017) 18:571
DOI 10.1186/5s12864-017-3950-9

BMC Genomics

CrossMark

Piil: visualization of DNA methylation and ~®
gene expression data in gene pathways

Behrooz Torabi Moghadam', Neda Zamani®?, Jan Komorowski'* and Manfred Grabherr”"

Abstract

Background: DNA methylation is a major mechanism involved in the epigenetic state of a cell. It has been
observed that the methylation status of certain CpG sites close to or within a gene can directly affect its expression,
either by silencing or, in some cases, up-regulating transcription. However, a vertebrate genome contains millions
of CpG sites, all of which are potential targets for methylation, and the specific effects of most sites have not been
characterized to date. To study the complex interplay between methylation status, cellular programs, and the
resulting phenotypes, we present Piil, an interactive gene expression pathway browser, facilitating analyses through
an integrated view of methylation and expression on multiple levels.

Results: Piil allows for specific hypothesis testing by quickly assessing pathways or gene networks, where the data
is projected onto pathways that can be downloaded directly from the online KEGG database. Piil. provides a
comprehensive set of analysis features that allow for quick and specific pattern searches. Individual CpG sites and
their impact on host gene expression, as well as the impact on other genes present in the regulatory network, can
be examined. To exemplify the power of this approach, we analyzed two types of brain tumors, Glioblastoma
multiform and lower grade gliomas.

Conclusion: At a glance, we could confirm earlier findings that the predominant methylation and expression pattermns
separate perfectly by mutations in the /DH genes, rather than by histology. We could also infer the IDH mutation status
for samples for which the genotype was not known. By applying different filtering methods, we show that a subset of

CpG sites exhibits consistent methylation patterns, and that the status of sites affect the expression of key regulator
genes, as well as other genes located downstream in the same pathways.
Piil is implemented in Java with focus on a user-friendly graphical interface. The source code is available under the GPL

license from https://github.com/behroozt/PiiL.git.
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Background

DNA methylation (DNAm) is a key element of the tran-
scriptional regulation machinery. By adding a methyl
group to CpG sites in the promoter of a gene, DNAm
provides a means to temporarily or permanently silence
transcription [1], which in turn can alter the state or
phenotype of the cell. DNAm of sites outside promoters
can also take effect, where for example methylation in the
gene body might elongate transcription, and methylation
of intergenic regions can help maintain chromosomal
stability at repetitive elements [2]. Change in DNAm has
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been observed to occur with age in the human brain
[3, 4], as well as in various developmental stages [5].
It is also a hallmark of a number of diseases [6, 7],
including cancer [8, 9]. A prominent example is the
methylation of the promoter of the tumor suppressor
protein TP53 [10-12], which occurs in about 51% of
ovarian cancers [13]. Since TP53 is a master regulator of
cell fate, including apoptosis, disabling its expression
has a direct impact on the function of downstream
expression pathways.

Different cancers or cancer subtypes, however, might
deploy different strategies to alter expression patterns to
increase their viability, which might be visible in the
methylation landscape. In gliomas, for instance, it has
been reported that mutations in the IDH (isocitrate
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dehydrogenase genes 1 and 2, collectively referred to as
IDH) genes result in the hyper-methylation of a number
of sites [14].

However, with a few exceptions, the exact relation be-
tween DNA methylation and the expression of its host
gene remains elusive and is still poorly understood. One
confounding factor is the many-to-one relationship be-
tween CpG sites and genes or transcripts. A global asso-
ciation of lower expression with increased promoter
methylation, and increased expression with methylation
of sites in the gene body has been observed [2, 15-17].
By contrast, an accurate means to predict the effect of
methylating or de-methylating any given site, or clusters
thereof, is still lacking. In addition, altering the expres-
sion of certain genes might not be relevant for disease
progression but rather becomes a side effect, whereas
changes in key regulators of networks might result in
large-scale effects. Characterizing the methylation pat-
terns that differ between tumor types allows for a more
accurate diagnosis and can thus inform the choice of
treatment. Moreover, examining the effect on the regula-
tory machinery in a pathway or gene expression network
level might give insight into how the disease develops,
progresses, and spreads [18].

Here, we present PiiL (Pathway interactive visualization
tool), an integrated DNAm and expression pathway
browser, which is designed to explore and understand the
effect of DNAm operating on individual CpG sites on
overall expression patterns and transcriptional networks.
Piil. implements a multi-level paradigm, which allows
examining global changes in expression, comparisons be-
tween multiple sample grouping, play-back of time series,
as well as analyzing and selecting different subsets of CpG
sites to observe their effect. Moreover, Piil accepts pre-
computed sub-sets that were generated offline by other
methods, for example the bumphunter function in Minfi
[19], Monte Carlo Feature Selection (MCFS) [20], or un-
supervised methods, such as Saguaro [21]. PiiL accesses
pathways or gene networks online from the KEGG data-
bases [22, 23], and allows for visualizing pathways from
different organisms with up-to-date KEGG pathways.

In keeping a sharp focus on methylation, expression,
and ease-of-use, Piil builds upon the user experience
with other, typically more general visualization tools. For
example, Cytoscape [24] is a widely-used, open source
platform for producing, editing, and analyzing generic bio-
logical networks. The networks are dynamic and can be
queried and integrated with expression, protein-protein
interactions data, and other molecular states and pheno-
types, or be linked to functional annotation databases.
Due to the extensibility of the core, there are multiple plu-
gins available, some specifically for handling KEGG data-
bases, such as KEGGscape [25] and CyKEGGParser [26],
features that are natively built into PiiL. Pathview [27], an
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R/Bioconductor package, also visualizes KEGG pathways
with a wide range of data integration, such as gene expres-
sion, protein expression, and metabolite level on a selected
pathway, but, unlike PiiL, lacks the ability to examine
methylation at the resolution of individual sites. Pathvisio
[28], another tool implemented in Java, provides features
for drawing, editing, and analyzing biological pathways, and
mapping gene expression data onto the targeted pathway.
Extended functionality is added via different available plu-
gins, but similar to Pathview, it does not provide function-
ality specific to analyze the effects of DNAm based on
individual sites. KEGGanim [29] is a web-based tool that
can visualize data over a pathway and produce animations
using high-throughput data. KEGGanim thus highlights the
genes that have a dynamic change over conditions and in-
fluence the pathway, a feature that is also available in Piil.

In the following, we will first describe the method, and
then exemplify how Piil benefits the analysis of large
and complex data sets without requiring the user to be
an informatics expert.

Implementation
PiiL is platform independent, implemented in Java with
an emphasis on user-friendliness for biologists. It first
reads KGML format pathway files, either from a storage
media, or from the online KEGG database (using REST-
style KEGG API), where in case of the latter, a complete
list of available organisms and available pathways for the
selected organism is loaded and locally cached for the
current session. Multiple pathways can be viewed in dif-
ferent tabs, with each tab handling either DNAm or gene
expression data, referred to as metadata in this article.
According to the metadata, genes are color-coded based
on individual samples, or a user-defined grouping. The user
can also load a list of genes with no metadata, and find
overlapping genes highlighted in the pathway of interest.

Obtaining information about the pathway elements

Gene interactions (activation, repression, inhibition, expres-
sion, methylation, or unknown) are shown in different
colors and line styles. Piil allows for checking functional
annotations for any gene in the pathway by loading infor-
mation from GeneCards (http://www.genecards.org),
NCBI Pubmed (http://www.ncbi.nlm.nih.gov/pubmed), or
Ensembl (http://www.ensembl.org) into a web browser
through one click.

Highlighting DNAm level differences

DNAm data is read with CpG sites as the rows, and
beta values (estimate of methylation level using ratio
of intensities between methylated and unmethylated
alleles) in the columns. Piil accepts data from whole
genome bisulfite sequencing (Bismark [30] coverage files),
as well as any of Illumina’s Infinium methylation arrays
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(HumanMethylation27 BeadChip, HumanMethylation450
BeadChip or MethylationEPIC BeadChip). In any of the
input formats, the CpG/probe IDs or positions need to be
replaced with their annotated gene name. A Java applica-
tion named PiiLer, also distributed with the software, uses
pre-annotated files (done by Annovar [31]), to perform
the conversion.

Genes are colored on a gradient from blue for low
methylation levels (beta-value or methylation percent-
age), through white (for methylation level close to 0.5)
to red when methylation levels approach 1. Once loaded,
the metadata can be reused in different pathways.

Since there are typically multiple CpG sites per gene,
additional information, such as the CpG ID, genomic pos-
ition, and genomic location relative to a gene (for example
intronic, exonic, upstream, UTR5, etc.) can be added to
the gene name (separated with an underscore), allowing to
quickly group sites by location and putative function. In
this case, the methylation levels of all sites are averaged to
set the color, and the gene border is colored green as an
indication. The methylation status of each of the multiple
sites hitting a gene can be viewed in a pop up window
allowing the user to select or deselect specific sites to be
included/excluded in the analysis. Figure 1 shows a snap-
shot of the PiiL screen.

Selecting a subset of CpG sites

Piil allows for selecting a subset of CpG sites to be in-
cluded in the analysis (i.e. for assigning the color for a
specific gene, producing plots and etc.). There are mul-
tiple options for including/excluding specific CpG sites:

a) Filtering out the CpG sites that have very little
variation by choosing a threshold for the standard
deviation of the beta values for each site over all
samples.

b) Selecting CpG sites based on user defined ranges for
beta values.

¢) Selecting CpG sites based on their annotated
genomic position. For example, selecting the CpG
sites that are exonic, UTR5, etc.

d) Providing a list of pre-selected CpG sites with the
CpG ID or genomic position.

These functions facilitate the visibility of the difference
between the methylation levels of different groups of
samples. Since averaging the beta values of all sites in-
cluding the ones that do not vary significantly between
the samples for color-coding, the differentiating signal is
weakened and often difficult to detect. The genes with
no CpG site present on the list of selected sites or no
site passing the standard deviation filtering criteria are
colored in gray.
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Highlighting gene expression level differences

FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) gene expression values are the second
type of metadata that can be loaded into a pathway.
Genes are colored for each sample according to the
log2-fold difference between the expression value of the
current sample and the median of expression values of
all samples. The user can set the difference scale; by de-
fault, ranging from -4 to +4. To make colors compar-
able with DNAm beta values, the n-fold over-expressed
genes are colored in blue, and the n-fold under-
expressed ones are colored in red, with white indicating
little or no differences. We note that this color conven-
tion is inverse to expression-centric color schemes, but
greatly facilitates finding patterns that are shared be-
tween DNAm and expression in case higher methylation
correlates with lower or silenced expression.

Different view modes

There are three different view modes for reviewing the
data and highlighting potential patterns: 1) single-sample
view, 2) multiple-sample view and 3) group-wise view,
where the median methylation/expression level is shown
for each group of samples. More details can be found in
the Additional file 1: S1.

Finding similar-patterns

The “find similar-patterns” function allows for mining for
genes with similar or dissimilar patterns of methylation or
expression to any given gene or set of CpG sites, based on
the Euclidian distance (check Additional file 1: S2).

Browsing pathway independent genes

Genes that are not part of any known pathway can be
displayed in a grid of genes, termed PiiLgrid. While not
constituting a connected pathway, all functionalities of
Piil are also applicable to that set of genes. This option
is useful after finding the genes with identical methyla-
tion pattern to a targeted gene. The set of genes can be
browsed in a new tab for further analysis, for example,
comparing their expression level with the targeted gene.

General functions

For both methylation and expression values, the meta-
data over all samples can be viewed as a bar plot or
histogram for each gene. In group-wise view, the mem-
bers of each group are shown in the plots. Pathways,
color-coded metadata and all the plots generated by PiiL
can be exported to vector quality images in all viewing
modes, which can be used in posters or publications.
The manual page is accessible directly from the tool and
users can send their feedback via the options in the tool.
An option is provided to check for the latest available
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Fig. 1 A snapshot of Piil in group-wise view mode, showing the “cell cycle” pathway. Samples are grouped by IDH mutation status, each group
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do not have any CpG site based on the applied filter

version and provides a downloadable runnable file of the
latest version.

After checking multiple files in different pathways, a
summary can be generated reporting the file name and
the pathway that it was checked against followed by the
list of matched genes.

Results

“Glioma” refers to all tumors that originate from glial
cells, non-neuronal cells that support neuronal cells in
the brain and nervous system. Gliomas are classified by
the World Health Organization (WHO) as grades I to
IV [32, 33]. Lower Grade Gliomas (LGG) comprises dif-
fuse low-grade and intermediate-grade gliomas (WHO
grades II and III), with a survival ranging widely from 1
to 15 years [34]. Glioblastoma multiform (GBM), also
known as astrocytoma WHO grade IV, is the most com-
mon type of glial tumors in humans, and also the most
fatal brain tumor with a median survival time of
15 months [35]. A recent study, however, reported this
classification as obsolete. They identified a different
grouping that is based on mutations in the IDH1 and

IDH2 genes, which allows for a more accurate classifica-
tion [14]. To examine the possible downstream effects in
more depth, we extracted 65 and 100 samples with
GBM and LGG from the TCGA (The Cancer Genome
Atlas) datasets accordingly [34, 36], for which both
methylation (profiled using Illumina’s HumanMethyla-
tion450 BeadChip) and expression data are available
(https://gdc-portal.nci.nih.gov/legacy-archive/search/f).

Pathways at a glance

For a first assessment of the data, we examined the
“cytokine-cytokine receptor interaction” subsection of
the “pathways in cancer” expression network from
KEGG (Fig. 2a), showing methylation of CpG sites that
exhibit a standard deviation of more than 0.2 across all
165 samples, and grouping the data by IDH mutation
status, i.e. wild-type, mutant, or unknown. Several genes
are associated with CpG sites that drastically differ in
methylation, shown in dark blue (unmethylated) and
dark red (methylated), among them, ERBB2, a member
of the epidermal growth factor (EGF) family and known
to be associated with glioma susceptibility [37-40]. Gene
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expression of ERBB2 is also altered and 2-fold lower in
the IDH mutant samples, as shown in dark red (Fig. 2b).
We next examined methylation values across samples
using the bar plot view feature and using different group-
ings according to recorded phenotypes or molecular alter-
ations in Glioma studied by [41] (Fig. 3). Here, we can
visually confirm that the mutation status of IDH is the
best predictor for methylation (Fig. 3a). In addition, all
samples without known IDH status are lowly methylated
and could thus be putatively classified as ‘wild-type’. By
contrast, codeletion of chromosome arms 1p and 19q (1p/
19q codeletion), reported to be associated with improved
prognosis and therapy in low-grade gliomas patients [42],
appears to have no effect on the methylation of ERBB2.
Likewise, neither mutations in the promoter of the TERT

(Telomerase Reverse Transcriptase) gene [41], nor the
promoter methylation status of the gene encoding for re-
pair enzyme O6-methylguanine-DNA methyltransferase
(MGMT), which has been reported to be correlated with
long-term survival in glioblastoma [43, 44], plays an
obvious role in the methylation of this and other
genes in the pathway.

For an overall survey of how many genes exhibit
methylation patterns similar to ERBB2, we applied PiiL’s
“find similar-patterns” feature, listing genes with the
least Euclidian distance of beta values. The top three
genes (Fig. 4) with the most similar patterns are FAS, a
gene with a central role in the physiological regulation
of programmed cell death; DAPKI, Calcium/calmodulin-
dependent serine/threonine kinase involved in multiple
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cellular signaling pathways that trigger cell survival,
apoptosis, and autophagy; and SMO, G protein-coupled
receptor that probably associates with the patched pro-
tein (PTCH) to transduce the hedgehog proteins signal
(http://www.genecards.org). There, we found that in
FAS, SMO and ERBB2, the average expression level of
the samples in IDH mutants is lower than the average
expression level of the wild-type samples, while for DAPKI
the mutants exhibit higher expression levels. On the other
end of the scale, BMP2 and BIRCS5 host sites with the most
distant pattern to ERBB2 (Fig. 4). BIRCS is a member of
the inhibitor of apoptosis gene family, negatively regulating
proteins involved in apoptotic cell death (genecards.org).
BMP2 is a member of transforming growth factor super-
family with a regulatory role in adult tissue homeostasis,
reported to be significantly down-regulated in recurrent
metastases compared to non-metastatic colorectal cancer

[45]. Interestingly, expression of BMP2 is suppressed in
wild type and unknown IDH status cancers, but high in
some mutant samples in this data set.

DNA methylation and gene expression

To demonstrate the effect of selecting different subsets
of CpG sites, we examined both PiiLs filters, as well as
other DNAm analysis methods (Fig. 5). We first applied
the unsupervised classification software Saguaro [21] to
all CpG sites, detecting one pattern that perfectly coin-
cides with IDH mutation status. Overall, genes with at
least 10 CpG sites include MYADM, CFLAR, PAX6,
FRMD4A, MEIS1, TNXB, MACRODI1, CHSTS, SRRM3,
CPQ, TBR1, SYT6, RNF39, ISLR2, EML2, BCATI,
ACTAI and, confirming results from our earlier visual
inspection, ERBB2, which we examined earlier. The top
pathways these genes are a part of include “pathways in


http://www.genecards.org
http://genecards.org

Moghadam et al. BMC Genomics (2017) 18:571

Page 7 of 12

beta values beta values beta values beta values beta values
4 4 4 4 4

beta values
4

o] |

o
Samples sorted by: IDH mutation status EWT [ Mutant [JNA

Fig. 4 Bar plot of beta values of all samples for gene ERBB2 compared with FAS, DAPKI1, and SMO, which contain sites most similar in methylation.
Shown are also BMP2 and BIRC5, which are associated with sites most dissimilar. Samples are grouped by IDH mutation status

” o«

cancer”, “mTOR signaling”, and “TNF signaling”. For the
latter, we show the average methylation over all sites of
all genes (Fig. 5a) and sites located upstream (Fig. 5b).
Figure 5c¢ shows the sites with a standard deviation
smaller than 0.2, coloring genes without sites in light
gray. The sites and genes identified by Saguaro (Fig. 5d);
the log-fold changes in expression (Fig. 5e), and genes
with sites exhibiting Speaman’s correlation < -0.7 be-
tween methylation and expression (Fig. 5d) are also
shown for comparison.

Throughout this progression, we note that methylation
values already change dramatically, mostly increasing,

but in some cases decreasing, e.g. TNFRSF. In terms of
correlation, we found four genes in this pathway at
Spearman’s rank correlation coefficient (rho) > 0.7,
TNFRSE TRADD, MAP2K3, and CASPS8, (Fig. 5f) for
which hypermethylation of the promoter has previously
been reported [46]. Two of these genes coincide with
Saguaro, which reports two additional genes, CFLAR
and MAP3KS, but not TNFRSF and MAP2K3 (Fig. 5d).

Methylation blocks expression in pathways
Figure 6 shows the downstream part of the TNF signal-
ing pathway that regulates or initiates the apoptosis
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pathway, consisting of FADD, CASP8 and CASPI0,
which regulates CASP7 and CASP3. Sequential cascade-
like activation of caspases plays a central role in activat-
ing apoptosis, and both CASP3 and CASP7 appear
downregulated or almost silenced. While both CASP10
and CASPS are affected by changes in methylation, the
beta values increase from less than 0.2 to more than 0.7
in CASP8 in the CpG sites selected by Saguaro. In
addition, expression is highly negatively correlated with
methylation (Spearman’s rho = -0.81, p-value <2*107'°),
suggesting that CASPS8 acts as the blocking factor in the
expression cascade. None of CASP3, CASP7 or FADD,

which are situated upstream in the pathway, are differ-
entially methylated, and the decreased expression of
FADD can possibly be explained by differential methyla-
tion/expression of the upstream TRADD gene.

An alternative way to visualize changes in a large
number of samples is implemented in Piil’s ‘playback’
feature. After sorting the samples by methylation of
CASP8 in increasing order, Additional file 2: Video S1
shows methylation and expression in the TNF signaling
pathway, rendering TRADD, CASP8, CFLAR and
MAP3KS8 dark blue in the beginning (low methylation),
and then sharply turning red when switching from
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Fig. 6 A subsection of the “TNF signaling pathway” leading into the apoptosis pathway, showing genes FADD, CASP10, CASP8, CASP7 and CASP3.
FADD, CASP7 and CASP3 are not subject to DNAm changes when comparing IDH wildtype to mutants. CASP10 exhibits somewhat higher
methylation levels, but remains stable at expression. By contrast, sites selected by Saguaro in CASP8 exhibit higher methylation levels in mutants,
as well a correlated downregulation of expression. CASP3 and CASP7, which are downstream of the CASCADE from CASP8, are almost entirely
silenced in expression
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Fig. 7 A PiiLgrid generated for genes covering CpG sites with a similar methylation pattern to ERBB2, showing CpG sites with a standard

showing wild type samples to IDH mutant samples. Ex-
pression changes follow methylation but more loosely,
with several genes appearing blue (high expression) in
the beginning, and transitioning to red (low expression)
later on, as shown side by side with methylation in
Additional file 2: Video S1.

Genes inside and outside of known pathways

Changes in methylation and expression can affect many
genes, a large fraction of which may not be members of
known pathways. To provide all analysis and visualization
features for these genes as well, Piil implements the
“PiiLgrid” feature, which allows to display a any set of
genes regardless of the pathway, but giving access to
all analysis features. An example, genes that harbor
sites similar to ERBB2, is shown in Fig. 7.

Conclusions

Advances in RNA and DNA sequencing allow for gener-
ating large amounts of RNA expression and DNA
methylation data. Following the relatively inexpensive
DNAm Bead Chip for human studies, we anticipate that
genome-wide bisulfite sequencing will add more data
and for a number of different organisms. While tools
and methods for analyzing differential methylation and
expression exist, any functional interpretation is best
understood when integrating and visualizing the data in
context of expression networks or pathways. Piil is a
browser for DNAm and RNA-Seq data, allowing direct
comparison and testing specific hypotheses, in particular
in model organisms for which pathway and expression

network data exists. Its integrated analysis features pro-
vide the ability to quickly assess large amounts of data
points, genes, and CpG sites, and navigating within and
between pathways. Using the publicly available glioma
data set, we have shown that a rich set of interesting as-
pects about this data is accessible with a few mouse
clicks and within a few minutes. We thus anticipate that
PiiL, and perhaps other interactive visualization tools,
will be as common and widely used for epigenomic
analyses as genome browsers are today for genomic
analyses.

Additional files

Additional file 1: S1. View Modes. S2. Calculating the Euclidian
distance. (DOCX 90 kb)

Additional file 2: Video S1. PiiL showing DNA methylation and gene
expression along samples. Color-coded data of all samples is shown
consecutively using Piil’s playback feature. For each gene, the box on top
shows methylation, and the box behind shows gene expression. For the
methylation data, genes with sites selected by Saguaro are highlighted.
The samples are sorted according to the ascending order of beta values
for the CASP8 gene. (MP4 837 kb)
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