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Cardiovascular (CV) diseases are the major cause of death in industrialized countries.

The main function of the CV system is to deliver nutrients and oxygen to all tissues.

During most CV pathologies, oxygen and nutrient delivery is decreased or completely

halted. Several mechanisms, including increased oxygen transport and delivery, as

well as increased blood flow are triggered to compensate for the hypoxic state. If the

compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage

can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology

of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription

for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis,

glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and

survival, among others. The overall regulation of the expression of HIF-dependent genes

depends on the severity, duration, and location of hypoxia. In the present review, common

CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly

from their stabilization and activation, are related to the development and perpetuation

of hypoxia in these pathologies. We further classify CV diseases into acute and chronic

hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis,

disease progression and clinical outcomes of these diseases. We conclude that HIFs

and their derived factors are fundamental in the genesis and progression of CV diseases.

Understanding these mechanisms will lead to more effective treatment strategies leading

to reduced morbidity and mortality.

Keywords: hypoxia, cardiovascular, oxygen, hypertension, stroke, sepsis, heart failure, hypoxia inducible factors

INTRODUCTION

The industrialization era and the concomitant rise in life expectancy of the past 70 years, has
brought a transition to where cardiovascular (CV) diseases are the predominant pathology (1).
In the US, the prevalence of CV diseases in adults ≥ 20 years of age is 48% and increases with age
(2). CV diseases are also responsible for one third of all deaths, the highest among all disorders.
Moreover, Fryar et al. (3) show a staggering 47% of the population with at least one of the three
key risks factors (high blood pressure, high cholesterol, or smoking) for developing a CV disease.
Although lifestyle changes and current pharmacological treatments have slowly decreased overall
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mortality for the past 10 years (2), the lack of understanding
of the triggering mechanisms that lead to CV disorders
keep the incidence, prevalence and mortality at the top of
the epidemiologic charts. Recent discoveries in the cellular
mechanisms of oxygen sensing, particularly the Hypoxia
Inducible Factors (HIFs) are shared by multiple pathologies,
including CV diseases. This is a logical association as the main
phenomenon in many diseases is a decreased nutrient and
oxygen supply under normal or increased demand. Therefore,
the mechanisms along the HIF pathway unveil a core pathogenic
event in CV diseases that could lead to the development of
preventive and therapeutic strategies in CV disease. To provide
a full picture to the reader on the relevance of oxygen and its
relationship with CV diseases, we will first define important
aspects of oxygen physiology, then we will focus on the
most relevant pathologic CV states related to a decrease in
oxygen supply (hypoxia) and discuss the role of HIFs in the
pathophysiology of CV diseases.

OXYGEN AS THE CENTRAL MOLECULE
OF LIFE

The rise of atmospheric oxygen concentrations on earth
around 2.1 billion years ago triggered the evolutionary
diversification and expansion of aerobic organisms (4).
This event contributed to more complex life forms that
ultimately developed intricate oxygen delivery networks
(respiratory systems) to fulfill the metabolic needs of complex
organisms such as the human body. Oxygen, therefore, plays
a fundamental role in metabolism, and respiration of CV and
all other tissues (5). Under this evolutionary process, we have
also developed oxygen sensing mechanisms and adaptation
pathways to compensate and survive changes in oxygen
concentration (6).

The earth atmospheric gas mixture is composed of 78%
nitrogen, 21% oxygen, and 1% argon with traces of carbon
dioxide (CO2), hydrogen and other gases. At sea level, the
atmospheric total gas pressure is 760 mmHg, therefore, the
partial pressure of Oxygen (PO2), also known as oxygen tension,
is 21% of 760 mmHg, or 159 mmHg. Diffusion of oxygen
is the net movement from a higher pressure to a lower
pressure region. In mammals, a convective system is additionally
required for efficient oxygen transport and exchange as the
differential pressure between the alveoli and blood is small.
Thus, a ventilatory system capable of delivering and removing
air from the alveoli, together with a circulatory system that
continually supplies deoxygenated blood to the lungs (perfusion),
has been developed to comprise the respiratory system and
successful oxygen exchange. This transport mechanism favors
simple diffusion of oxygen through the gas exchange barrier, the
alveoli, with a PO2 of 100 mmHg, to the blood. According to
Henry’s law, the concentration of a gas dissolved in a liquid is
proportional to its partial pressure in the gas phase. Therefore, the
concentration of oxygen in blood (CaO2) is directly proportional
to the alveolar PO2 and ranges from 80 to 100 mmHg. The

gradient between the alveoli PO2 and the arterial partial pressure
of oxygen (PaO2) in physiological conditions favors oxygen flow
from the alveoli to the blood. Once oxygen is present in the blood,
a specialized protein that reversibly binds to oxygen, hemoglobin,
can efficiently distribute the gas to all tissues according to their
metabolic needs.

Each tissue has a unique metabolic rate that confers its
surrounding milieu with its own PO2. Hypoxia occurs when
the metabolic needs of a tissue are not met because oxygen
demand exceeds supply (6). Thus, hypoxic tissue has a low PO2
under increased metabolic demand and/or reduced supply. In
CV diseases, the PaO2 may not reflect tissue oxygen supply,
or tissue oxygenation. A relevant example is shock, where
the contractile responses of blood vessels to blood pressure
shifts is impaired, thereby decreasing O2 delivery to all tissues.
Thus, an important goal in shock is the maintenance of blood
pressure and monitoring of O2 by gasometry. Even with a slight
hypoxemia, a septic shock patient can suffer from irreversible
hypoxic damage to vital organs. In fact, shock remains as the
primary cause of death in intensive care units (7). Recently,
emerging evidence suggested measuring mitochondrial oxygen
tension as an alternative to gasometry. The rationale for this is
mitochondria are the ultimate destination of oxygen utilization
(8). Therefore, a precise understanding of the location of
the hypoxic insult is relevant to develop a more accurate
measurement of regional hypoxia.

PHYSIOLOGICAL REGULATION OF
OXYGEN TRANSPORTATION IN BLOOD

The high electronegative nature of O2 works as an electron
acceptor element that ultimately allows for highly efficient
energy generation (in the form of ATP production) from
oxidative phosphorylation at the mitochondria of all human
cells. For this to happen, O2 must first be transported to
virtually all tissues of the human body. Since O2 solubility
in the blood is very low (solubility coefficient = 0.0003),
other evolutionary mechanisms such as hemoglobin, were
designed to improve transportation and delivery of O2 to
the tissues.

Hemoglobin (Hb) is a heterotetrameric protein formed by
two α- and two β-globin chains of 141 and 146 amino acid
residues, respectively, that form two different dimer subunits.
Each globin has a heme group characterized by an Iron ion
at the center of a porphyrin ring that allows reversible O2

binding thus allowing four O2 molecules to bind. Hb transitions
between a deoxygenated (deoxyHb), low-affinity, tensile “T” state
and an oxygenated (oxyHb), high-affinity, relaxed “R” state. A
detailed explanation on the structure and binding dynamics of
Hb has been reviewed elsewhere (9–11). The binding of O2 to
a single heme increases the affinity of other O2 molecules for
the remaining hemes until Hb saturation. The opposite is also
true, the release of O2 by a single heme forms a saturated Hb
and reduces the affinity for the remaining O2-bound hemes. This
is known as cooperative ligand binding (positive cooperativity)
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FIGURE 1 | Schematic representation of hemoglobin (Hb) and its affinity for Oxygen (O2) in a classic HB-O2 dissociation curve. (A) The Hb structure has two α- and

two β-subunits (light and dark magenta, respectively). Each subunit has a heme residue with Fe+2. Transition from deoxy-Hb (“T” state) to oxy-Hb (“R” state) is

represented from left to right. Increasing concentrations of O2, changes the structure of hemoglobin to “R” state allowing the cooperative binding of O2. The transition

starts by displacement of H2O from the distal region of the binding pocket by a diatomic ligand such as O2. Once the O2 is sequestered at the distal pocket, the

proximity with Fe+2 from the heme group allows O2 to bind covalently. Finally, minor electrostatic rearrangements stabilize the new conformation. After this process,

the hydrophobic interactions between the other subunits are weakened facilitating bonding between O2 and the unliganded hemes of the same Hb. (B) Hb saturation

curve shows changes in affinity for O2 by multiple factors. Under low pH, the C-terminal residues of the globin β-chains are protonated, which facilitates O2 release

from heme by shifting the Hb conformation to the low-affinity T-state (12). Similarly, CO2, Cl
−, and 2,3-diphoglycerate DPG, bind to multiple cationic residues on the

N- and C-termini of the α- and β-chains that ultimately stabilizes the T-state conformation of Hb (13, 14). The specific allosteric shift is represented by the orange

dashed line displaced to the right from the continuous blue line. The orange dot shows a reduced affinity observed by a higher P50-value. The opposite is also true,

where the allosteric shift to the left by the above-mentioned factors (represented by the green dashed line) increases the affinity of O2 for Hb, shown by the green dot

and the smaller P50-value. Adapted from Storz (15).

or homotropic allostery and is often represented as the classic
sigmoidal Hb-O2 dissociation curve plotted as SO2 against PO2
(Figure 1) (15).

Diatomic ligands such as nitric oxide (NO), an endogenous
signaling molecule, and carbon monoxide (CO), a byproduct

of cellular metabolism, can competitively displace O2 from
the heme group. In fact, the overall association equilibrium
constants of NO and CO for the heme group are 1 × 108

and 1 × 104 times higher, respectively, than O2 (16, 17). The
resultant higher affinities in both gases are catastrophic for O2
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transportation by Hb as the O2 concentration available in blood
(0.3 mLO2/dL) does not meet the metabolic demand of the
whole body (≈250 mL/dL in a 70Kg human). Unlike the heme
group alone, the globin structure can help differentiate the unique
electrochemical properties of O2; O2 undergoes an “electrostatic”
discrimination by donation of hydrogen bonds increasing its
affinity for heme (18).

Other regulatorymechanisms of theHb-O2 affinity are ligands
that bind to a distinct region of the globin subunits separate from
heme. The first evidence of this affinity modulation was the Bohr
effect, where the pH acidity and CO2 are inversely related to
Hb-O2 affinity; thus, a highly acidic pH decreases Hb-O2 affinity
and vice versa. This type of modulation is known as heterotropic
allostery (or classical allosteric modulation) and tightly regulates
oxygen release from red blood cells to metabolically active tissue
upon changes in the tissue microenvironment (Figure 1).

Mutations on key amino acids involved in O2 binding to Hb as
well as the expression of other isoforms by globin genes encoding
for the α- and/or β subunits also modify the affinity for O2

(19, 20) [a detailed list of Hbmutations and clinical consequences
in humans can be found elsewhere (21)]. There are 3 α-like
globin genes: HBZ (ζ-globin), HBA1(α1-globin) and HBA2(α2-
globin); and 5 β-like globin genes: HBE1 (ε-globin), HBG1 (Aγ-
globin),HBG2 (Gγ-globin),HBD (δ-globin) andHBB (β-globin).
Diseases that affect the expression of globins, such as sickle cell
syndrome and β-thalassemia, or that affect the amount of total
Hb, anemia for example, are deficient in O2 transportation, and
thus induce chronic hypoxic states.

Myoglobin (Mb) is also an O2-binding protein expressed
mainly in the striated muscle. As a monomeric protein, Mb can
only bind one oxygen molecule, although with greater affinity
than Hb. This feature favors O2 diffusion and storage to the
muscle as well as guarantees O2 supply for myocytes. Mb,
therefore, is vital in hypoxic states, such as exercise, high altitude
or water diving, and as a compensatory mechanism by increasing
its expression to efficiently store and supply O2 to metabolically
active tissues (22–24).

In summary, O2 transportation in blood requires Hb to meet
the demands of all tissues. Under physiological conditions, O2

availability is proportional to the metabolic activity of a tissue as
CO2, lactate, acidic pH, and temperature increase shifting the R-
T state equilibrium to favor O2 unloading. The continuous O2

usage by tissues generates a constant pressure gradient favoring
diffusion of O2 to the perfused tissue from the capillary blood.
Under physiological hypoxic states, however, other mechanisms,
such as overall expression, changes in the isoforms or mutations
on Hb or/and Mb, as well as vascular tone regulation take place
for an optimal handling and delivery of O2.

OXYGEN METABOLISM

Eukaryotic cells have evolved in an O2-rich environment for
millions of years and, thus, have efficiently adapted their
metabolic needs using the chemical properties of O2 to produce
energy in the form of ATP (aerobic metabolism). Mitochondria,
a double-membraned organelle, produces most of the ATP (90%)

using first the tricarboxylic acid (TCA) cycle as the enzymatic
machinery in the mitochondrial matrix to metabolize Acetyl
CoA [reviewed elsewhere (25)]. Under the TCA cycle, electrons
from carbon oxidation are transferred to high-energy bearing
molecules (NADH, FADH2), that then serve as electron donors
for the oxidative phosphorylation (OXPHOS) process. This
process relies on the activity of the ATPase synthase (complex
V) together with the electron transport chain (ETC) to generate
ATP [reviewed in (26, 27)]. Part of the ETC (complexes I, III and
IV) pump protons (H+) from the matrix to the mitochondrion
intermembrane space against their electrochemical gradient
using the energy harvested from the electron transfer within
complexes by a series of redox reactions. Finally, complex IV
(also known as cytochrome c oxidase [Cco]) reduces O2 using 4
electrons and 2 H+ to form two water molecules. The differential
electrochemical gradient drives H+ back to the matrix through
complex V which uses this gradient to synthesize ATP from
ADP and phosphate (Pi−) (28, 29). The OXPHOS is, therefore,
the main source of energy and depends heavily on intracellular
[O2]. Decreases in intracellular [O2] in hypoxic or anoxic
states delay the electron transfer capacity in all complexes. The
partially reduced complexes become inefficient at pumping H+,
decreasing the electrochemical gradient of protons. Ultimately,
ATP generation is reduced as less protons are coupled with
complex V needed for ATP synthesis.

Most of the oxygen consumption in the mitochondria (∼98%)
is coupled to the ETC (30). However, some of the electrons
transferred through the ETC (∼2%) are leaked back into the
matrix and react with one of the two unpaired electrons of
O2 forming superoxide (O•−

2 ), a central free radical in reactive
oxygen species (ROS) formation (31). Free radicals are short-
lived intermediates with an unpaired electron in the external
orbit making them highly reactive with their environment
[extensively reviewed elsewhere (32, 33)]. Up to 90% of ROS
production in the cell takes place in the mitochondria (34)
as would be expected due to the high amount of overall O2

consumption. Other extramitochondrial generators of ROS are
Cytochrome P-450 in the endoplasmic reticulum, microsomes
and peroxisomes, xanthine oxidase in the cytoplasm, and the
NADPH oxidase (NOX/Duox) family members, which under
high and normal [O2], are thought to transport single electrons
across biological membranes to generate O•−

2 (35, 36). The
ROS have proven relevant in the regulation of multiple cellular
functions such as oxidative stress regulation, enhancement of
signal transduction, sensing of intracellular O2 tension, among
others (37). Increased supply of O2 (hyperoxia) rises ROS
production as more electrons leak from the ETC and partially
reduceO2 (38). Seemingly paradoxical, hypoxia can also augment
ROS level by impairment of the ETC which also enhances
electron leakage (32, 39–41). This paradoxical phenomenon
appears to be tissue specific. The clinical relevance of such
changes in oxygenation are manifest in multiple pathologic
states where long term exposure to free radicals can induce
“oxidative damage” in DNA and mutagenesis as the first step in
carcinogenesis. Intracellular O2 levels, therefore, are inherently
associated to ROS production and maintaining optimal cellular
function. This tight association makes ROS suitable candidates
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for sensing of intracellular [O2] as will be discussed in the
next section.

OXYGEN SENSING

The function of a sensor, strictly speaking, is to detect a
change in the system that ultimately generates a response
(signal) to maintain the biological homeostasis of the system.
It is reasonable, then, to define first the O2 range at which
cells optimally operate as normoxia (homeostasis). It is widely
reported that cellular normoxia ranges between 10 and 2%
(76–15.2 mmHg), hypoxia would be between 2 and 0.5% of
O2 tension (15.2–3.8 mmHg) and anoxia would be below
0.5% (<3.8 mmHg). However, this is a generalization as each
tissue possesses a different threshold for hypoxia at which
the molecular machinery is activated to compensate for the
bioenergetics of the cell. For example, the carotid body,
a peripheral chemoreceptor that signals to the medulla to
regulate ventilation, senses hypoxia when the O2 tension falls
below 8% (<60 mmHg) by the chemosensitive glomus cells
in mammals (42, 43). Conversely, O2 tension in bone tissue
under physiological conditions (physioxia) ranges from 0.6 to
3% (∼4.5–23 mmHg) depending on the regional vasculature
in the bone (44). Decreased bone oxygenation by disruption
of blood delivery, as happens in fractures, activates bone mass
repair and growth (45). An extensive and well-documented
review on the oxygen distribution across all organs can be
found in (6). Moreover, acute, chronic, or intermittent changes
in tissue oxygenation modify the cells’ activity (46). Thus, the
threshold of each tissue to hypoxia is finely tuned by the tissue
vascularization, metabolism, function, and time of exposure to
low [O2]. Such complex regulation of cells in hypoxic states
has made it difficult to determine all the sensing mechanisms
involved in the threshold for the hypoxic response of each tissue.
Nevertheless HIFs, key regulators of the adaptive responses to
cellular hypoxia in physiologic and pathologic conditions in all
tissues, have improved our understanding of the oxygen sensing
mechanisms (47–50).

First discovered almost 3 decades ago, HIFs are transcription
factors expressed as heterodimers formed by one of three α

isoforms (HIF1-3α), with HIF-1α being the most universally
expressed (51), and a β subunit [also known as aryl hydrocarbon
receptor nuclear translocator (ARNT)] constitutively expressed
in all tissues (52). During normoxia, the HIFα subunits undergo
post-translational hydroxylation by the dioxygenase family of
enzymes to regulate the activity and accumulation of HIFα. The
activity of HIFα is dampened, on one hand, by the hydroxylation
of an asparagine residue in its C-terminal by the dioxygenase
Factor Inhibiting HIF (FIH). This specific hydroxylation blocks
the interaction with the nuclear coactivators p300/Creb binding
protein (CBP) (53). The production of HIFα, on the other hand,
is regulated by the hydroxylation of specific proline residues by
prolyl hydroxylases (PHDs). The hydroxylated prolines enable
the interaction with the von Hippel-Lindau tumor suppressor
(pVHL), an E3 ubiquitin ligase, that ultimately recruits the HIFα
subunits to the proteasome for degradation (Figure 2) (54–56).

Out of the 3 isoforms of PHDs (PHD1-3), PHD2 is the most
abundant and relevant in hypoxia (57, 58).

The catalytic activity of both dioxygenases FIH and PHDs are
dependent on the intracellular [O2]. Dioxygenases also use 2-
oxoglutarate (2-OG), a product of the TCA cyclemetabolism, and
Iron, a sensitive redox element highly reactive to O2, as cofactors
to hydroxylate HIFα (59). Together with the intracellular [O2],
the reduced Iron (Fe2+) is required at the catalytic site for
the oxygen sensing activity of dioxygenases (60). The reducing
agent ascorbate, another product of the TCA cycle, is responsible
for the constant reduction of Iron, thus, keeping dioxygenases
active. In hypoxia, however, lower ascorbate production by the
TCA cycle modifies Iron redox equilibrium to an oxidized
state (Fe3+) that, ultimately, decrease Fe2+ bioavailability to
activate PHD and FIH. Moreover, ascorbate and 2-OG as
intermediates of the TCA cycle could be the link between the
aerobic metabolic activity and HIF activity in hypoxia as their
production is decreased under hypoxic states (61, 62). The
previously described biochemical process is thought to be the
mechanism by which oxygen is sensed by dioxygenases in cells
(63). Thus, dioxygenases are the true O2 sensors whereas HIFs
are the activation signal that induces an effect.

Other O2 sensing mechanisms have been proposed to
regulate cellular function (64). Of particular interest are the
mitochondrial-produced ROS as determinants of HIF activity.
Some data suggest that the increase in ROS during hypoxia
stabilizes HIF-1α and−2α (65).Moreover, elevated ROS increases
HIF-1 levels that favor tumorigenesis under hypoxia (66).
Finally, there is evidence that PHD inhibition and subsequent
HIF-1α stabilization is mediated by ROS increments during
normoxia and hypoxia (67). These data, altogether, suggest ROS
as part of the O2 sensing mechanisms of the cells. However,
conflicting evidence do not favor this hypothesis [reviewed by
Movafagh et al. (68)]. Whatever the case might be, is clear
that O2 availability influences both systems, ROS formation
and HIF activity. Thus, is reasonable to infer that multiple
sensors have been developed by the cells for a tight regulation
of intracellular [O2] and alterations of these sensor systems in
hypoxic conditions can lead to disease.

Inactivation of dioxygenases by hypoxia allows HIFα
subunits to stabilize, translocate and accumulate in the nuclei
to dimerize with the HIFβ subunit (69). The HIF dimer
recognizes and binds to the targeted DNA sequences within
the Hypoxia Response Element (HRE) and recruits p300/CBP
coactivators to begin transcription (Figure 2). More than a
thousand genes involved in a myriad of functions such as
erythropoiesis, glucose transport, angiogenesis, glycolytic
metabolism, ROS handling, cell proliferation and survival
among others, are directly transactivated by HIFs, particularly
HIF-1 (70, 71). Such versatility of HIFs to activate genes
for multiple tasks underline the importance of HIFs as a
regulator in hypoxia. Moreover, other insults commonly
observed in CV diseases, such as inflammation, can further
activate HIFs and downstream genes. We will now discuss the
relevance of HIFs and its most relevant target genes related
to specific CV related pathologies. For this, we have classified
CV diseases based on the duration of the hypoxic insult (acute
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FIGURE 2 | Hypoxia Inducible Factors (HIFs) under normoxia and hypoxia. During normoxia proline residues 402 and 564 (P402, P564) of HIF-α (blue wave) are

hydroxylated by prolyl-hydroxylase 1 and 2 (PHD1, PHD2), whereas PHD3 hydroxylates only P564. The factor inhibitor of HIF (FIH) hydroxylates asparagine residue

A803, which inhibits binding of nuclear protein CREB (CREB) and p300 s. PHDs and FIH are dependent on oxygen (O2) and 2-Oxoglutarate (2-OG) concentrations.

Hydroxylated HIF-1α is ubiquitinated by von Hippel Landau (VHL) ubiquitin ligase complex for proteasomal degradation. Under hypoxia, PHDs and FIH become

inactive, allowing HIF-α stabilization and translocation to the nuclei. Here, HIF-α dimerizes with HIF-1β (green wave). The dimer is then termed HIF-1/2/3 and binds to

the hypoxia response elements (HRE) of specific genes in the DNA to transcribe thousands of genes.

vs. chronic) to better understand the timely differences of
HIFs regulation.

ACUTE PATHOLOGIC HYPOXIC STATES

Acute pathologic hypoxic states are produced by a sudden
reduction of blood flow to a tissue that can last minutes to
days. Several mechanisms, including increased oxygen transport
and delivery as well as increased blood flow, are triggered to
compensate for the hypoxic state. If hypoxia prevails over the
compensatory mechanisms, irreversible damage is generated
(Figure 3). The compensatory, and later maladaptive, cellular
mechanisms involving HIFs and its targeted genes in these acute
hypoxic pathologies suggests the importance of such molecules
in the origin and evolution of these CV diseases. Moreover, the
role of HIFs in acute hypoxic states reveals possible mechanisms
that can be targeted to avoid irreversible damage. This section
focuses on the involvement of HIF under acute hypoxia present
in the selected CV pathologies of stroke, sepsis/septic shock, and
coronary artery disease/ischemic heart disease. Understanding

HIFs relationship with CV pathophysiology could lead to the
development of new therapeutic strategies to reduce morbidity
and mortality.

Stroke
Stroke is the second cause of death worldwide. Ischemic stroke is
the most prevalent type representing around 85% of cases (72).
One out of five stroke patients have a recurrent stroke within
the next 5 years and half of the survivors remain disabled (73).
Moreover, the cause of stroke is unknown in around 30% of
patients (72, 73), which directly affects the diagnostic capacity to
avert increasedmorbidity andmortality. Thrombolysis continues
to be the treatment of choice for ischemic stroke. However,
the window-time of treatment is up to 4.5 h after the onset
of ischemic stroke. If thrombolysis is delayed, ischemic stroke
transforms into hemorrhagic stroke, with mortality reaching
80% (74).

The trigger of the ischemic stroke cascade is tissue hypoxia,
caused by the occlusion of a cerebral artery, and shows multiple
damage degrees in part based on the tissue ATP levels. For
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FIGURE 3 | Theoretical schematic representation of the temporal expression of HIFs and the impact of hypoxia in CV diseases across time. The left 2 panels show

acute hypoxic states [i.e., Stroke, myocardial infarction (MI) and Septic Shock] lasting minutes to days. A rapid decrease in O2 (first panel) induces severe

hypoxia/anoxia and irreversible damage in minutes to hours leading to death or permanent disability (purple dashed line). The second panel represents septic shock

as the hypoxic state that lasts days. Under these acute hypoxic states, HIF-1α is stabilized, translocated to the nucleus and bound to HIF-1β to form a dimer termed

HIF-1. HIF-1 activates the transcription of multiple genes as an adaptation response. Eventually, HIF-1α expression is switched to other HIFs; HIF-2α and HIF-3α in

chronic hypoxic states. On the right 2 panels the chronic hypoxic states [i.e., Hypertension (HTN), Pulmonary Arterial Hypertension (PAH) and Heart Failure (HF)] are

represented. Here, the sustained mild hypoxia induces long-term adaptive mechanisms triggered by HIFs that, ultimately, become detrimental and lead to death.

Expression of HIF and HIF-dependent genes (represented by yellow lines with empty circles) are observed in the early stages of CV diseases. Detection of such genes

at an opportune time might allow for the early treatment and recovery of the patient (dashed green curves).

example, the ischemic core has an ATP reduction of around
85%, whereas the area around ischemic core, the penumbra, ATP
drops 30–50%. Penumbra tissue, although affected, is potentially
salvageable (73, 75) if hypoxia is reversed in time. Estimations
on necrosis volume across time show an increase of 20% in the
necrotic area within 3 h of blood flow interruption (76).

The role of HIFs in the pathophysiology of cerebral ischemia
is known since the 90s (77). However, there is controversy
to whether HIF induction has negative or positive effects on
stroke. For instance, neuronal HIF-1α knockout mice show
neuroprotection in a model of stroke (78). Similarly, HIF-
1α/-2α double knockout mice under medial cerebral artery
ischemia/reperfusion show decreased infarct volume, cerebral
edema, and expression of anti-survival genes (i.e., BNIP3,
BNIP3L, and PMAIP1), 24 h after reperfusion. However, no
protective effects are shown in these mice when reperfusion
period is extended to 72 h (79). This suggests that early activation
of HIFs have deleterious effects on cerebral ischemia, whereas late

activation could be beneficial. Accordingly, rats submitted to 2 h
of middle cerebral artery and carotid occlusion were transplanted
with bone mesenchymal stem cells (BMSC) overexpressing
HIF-1α at 24 h after reperfusion. This approach reduced the
infarct volume and improved neurological function (80). Other
studies, using a limb remote ischemic preconditioning model
in rats [previously proven to increase HIF-1α systemically (81)]
as a prior stimulus to modulate brain HIF-1α/-2α expression
during stroke, observed a decreased inflammatory response and
brain injury (82). Similarly, using PHD inhibitors for HIF-
1α stabilization 6 h prior to stroke was neuroprotective (83).
These studies demonstrate the relevance of HIFs, particularly
HIF-1α, as the key regulators in the evolution of stroke across
time. Consistently, stroke patients recently admitted to the
hospital showed a high expression of HIF-1α. This expression
was strongly positively correlated with the National Institute
of Health Stroke Scale (widely used scale to quantify stroke
severity based on a clinical assessment) (84). Thus, it seems that
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the detrimental physiological effects observed by the increased
expression of HIF-1α during the early stage of stroke is similar in
rodents and humans.

Regulation of HIF-1α in Stroke by miRNA
Several microRNAs (miRNAs), known for their post-
transcriptional regulation of gene expression, have been
associated with stroke, influencing neural cell survival, and
regulating brain inflammation though the stimulation or
inhibition of HIFs (85). Ischemic preconditioning (IPC) consists
in submitting a subject to short hypoxic episodes before a
severe ischemic event, in order to reduce the negative effects
of subsequent hypoxia. The family of miRNAs-200s increase
in the cerebral cortex of mice submitted to IPC before cerebral
ischemia (86). This family of miRNA inhibit PHD expression
which increases the stability and activity of HIF-1α. Particularly,
stroke patients showed better outcomes when higher miRNA-210
levels were detected in blood within 7 days after stroke (87). Thus,
the high miRNA-210 levels produce a type of preconditioning
event that allows for neuroprotection in stroke patients.

Sepsis/Septic Shock
According to the Third International Consensus Task Force
(Sepsis-3) sepsis is defined as a life-threating organ dysfunction
caused by a dysregulated host response to infection, whereas
septic shock is a subset of sepsis in which profound circulatory,
cellular and metabolic abnormalities are associated with greater
risk of mortality than sepsis (88). Septic shock remains the
leading cause of death in critically ill patients with 30% of patients
dying within the first 3 days (7). A recent meta-analysis further
showed that the average mortality of septic-shock was 34.7 and
38.5% at 30 and 90 days, respectively. This mortality rate has
been almost the same in the last 10 years (89). Thus, it is critical
to better understand the molecular mechanisms involved in this
pathology to improve our detection methods of regional hypoxia
and develop greater prognostic value.

The pathophysiologic features (i.e., immune response,
hemodynamic, and metabolic states) that define septic shock
across time are paradoxically opposite during the early vs. the
late phase. The early phase is characterized by a hyperdynamic
vascular response, together with high pro-inflammatory
cytokine release and a shift from oxidative to aerobic glycolytic
metabolism (Warburg effect). Conversely, the late phase is
defined by a hypodynamic vascular response, anti-inflammatory
cytokine release and a hypometabolic state (90). Recent evidence
on the metabolism of multiple immune cells, the main mediators
of inflammation in sepsis and septic shock, shows the Warburg
effect at the crossroads between inflammation and metabolism
(91, 92). First discovered in cancerous cells (93), the Warburg
effect refers to the switch of energy production from oxidative
phosphorylation in the mitochondria to glycolysis with rapid
formation of lactate even in non-hypoxic conditions (94). In
multiple immune cells, including T cells, neutrophils, dendritic
cells, natural killer cells and macrophages (95–98), the Warburg
effect is observed after activation of toll like receptor 4 (TLR4)
by lipopolysaccharide (LPS), the main antigen that induces
sepsis (99, 100). This ensures faster ATP generation at the

expense of less efficiency to provide for intermediates for cell
growth and proliferation (101) that, ultimately, allow for a
fast and strong inflammatory response by the immune system
to pathogens. Moreover, multiple studies show HIF-1α as an
important mediator of theWarburg effect. HIF-1α is activated by
LPS in normoxic conditions (102), regulates cytokine expression
(103, 104) and leads to a metabolic reprogramming of immune
cells (105). Under the metabolic switch during infection,
accumulation of the TCA cycle intermediate, succinate, is
transported to the cytoplasm and stabilizes HIF-1α (106, 107).
Thus, the metabolic changes in the immune system during
sepsis as well as the inflammatory response in septic shock are
tightly regulated by HIF-1α. Accordingly, deletion of HIF-1α
in the myeloid lineage protects mice against LPS-induced
mortality blocking the inflammatory response, hypotension
and hypothermia (102, 108). Similarly, HIF-1α deletion in T
cells increase survival in a rodent model of sepsis (109). Finally,
increased HIF-1α activity by PHD3 deletion decreased survival
by an overwhelming innate immune response in a rodent model
of abdominal sepsis (110). Altogether, this evidence suggests that
increased HIF-1α levels in the early phase of sepsis/septic shock
is detrimental for survival.

In humans, Textoris et al. (111) observed an increase in
HIF-1α mRNA from whole blood samples of patients ongoing
septic shock for the first 3 h after diagnosis. Conversely, HIF-
1α mRNA levels in blood and protein expression in leukocytes
were decreased in patients with severe sepsis (112). This study
further showed that the low HIF-1α expression was dependent
on the exposure time to LPS in human monocytes: high HIF-
1α expression in the acute administration (likely resembling
the early phase of sepsis) and low HIF-1α expression under
prolonged stimulation. Furthermore, cytokine gene expression
was maintained even after the HIF-1α mRNA expression was
reduced. Therefore, the increased expression of HIF-1α might
initially favor the inflammatory response observed in patients
with septic shock which, in the long term becomes maladaptive
by mediating a prolonged inflammatory response and increasing
the severity of the disease.

Coronary Artery Disease/Ischemic Heart
Disease
The coronary arteries are the main suppliers of blood and O2 to
the myocardial tissue. Atheroma formation on the endothelial
layer of the coronary walls reduce perfusion to the heart [i.e.,
coronary artery disease (CAD)]. Increased cardiac performance
when coronary atherosclerotic lesions are present can induce
ischemia in the cardiac tissue leading to decreased blood
flow and O2 delivery and accumulation of toxic metabolites.
This disorder is known as ischemic heart disease (IHD). The
characteristic symptom of chest pain induced by the ischemic
heart is referred to as angina pectoris and episodes are
commonly produced by intense exercise and emotional stressors.
Rupture of the atheroma plaque can produce a thrombus that
causes intermittent coronary occlusion leading to episodes of
unstable angina at rest. Alternatively, severe stenosis from an
atherosclerotic plaque or thrombus that obliterates the lumen of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 August 2021 | Volume 8 | Article 709509

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Lucero García Rojas et al. HIFs in CV Diseases

the vessel can result in a myocardial infarction (MI). In IHD, the
formation of atherosclerotic plaques usually takes decades and,
the slow progression of the pathology is reflected as a higher
prevalence with age (113). During the plaque development,
several episodes of silent ischemia can occur in at least in 50% of
the affected population where the cardiac hypoxic tissue activates
the transcription of angiogenic genes to stimulate collateral vessel
formation (114). This is a compensatory mechanism mediated
by HIFs to keep optimal O2 delivery to the myocardial tissue.
Collateral vessel formation limits the size of infarction and
increases survival of patients with MI (115, 116). Therefore,
identification of the mechanisms related to the progression of
the disease, such as HIFs and downstream targeted genes, can be
useful for the development of new therapeutic targets that reduce
adverse clinical outcomes and increase survival.

A closer look into HIFs on the adverse outcomes of IHD
shows HIF-1α activity as essential for cardioprotection. This has
been explored using ischemia preconditioning (IPC) (described
in section Stroke) before inducing ischemia reperfusion injury
(IRI), a severe cardiac ischemic event observed in infarcted
patients that undergo thrombolysis, percutaneous coronary
intervention or coronary bypass grafting (117). In rodents, IPC
or ambient intermittent hypoxia (as a robust method to induce
cardiac hypoxia preconditioning) improved functional recovery
and limited infarct size and apoptosis in hearts submitted
to IRI. These myocardial protective effects were mediated by
HIF-1α as HIF-1α deletion abolished such responses (118–
120). Other studies have corroborated this finding by directly
overexpressing HIF-1α (121) or increasing HIF-1α stability by
cardiac deletion (122–126) or inhibition of PHDs (127–129).
These approaches consistently protected the heart against a
severe ischemic insult (i.e., MI) shown as decreased infarct size.
Additionally, other studies using remote IPC also showed HIF-
1α as cardioprotective when a prolonged cardiac ischemic event
is induced (130, 131). This protective hypoxic preconditioning
is also directly related to the cardiac proliferation of a small
subset of cardiac cells. This subset of cells, referred to as hypoxic
cardiomyocytes due to their hypoxic surrounding milieu, show
a constitutive stabilization of HIF-1α, downregulation of PHDs,
decreased ROS production as well as upregulated cyclin genes
that, under further hypoxic preconditioning, lead to mitosis
and, hence, cardiomyocyte proliferation (132, 133). A strikingly
similar cell phenotype with regenerative characteristics has also
been reported in humans under an alternative name, cardiac
stem/progenitor cells (CSCs) (134). Multiple reports show that
CSCs differentiate into cardiomyocytes, vascular or endothelial
cells. After cardiac injury, these cells reduce the infarction size by
decreasing cardiomyocyte apoptosis and oxidative DNA damage
(a marker for cardiac senescence) which favor cell cycle re-
entry, and/or by increasing angiogenesis (134, 135). Besides
the multiple cardioprotective mechanisms induced by HIF-1α
activation during heart ischemia [reviewed by Semenza (136)],
an increased capillary density also appears to be highly consistent
(121, 127–129). Interestingly, part of the cardioprotective events
elicited by the cardiac endothelial HIF-1α are mediated by at
least 2 mechanisms: Adenosine production and release (137) and
Angiopoietin (124) signaling. All this evidence together shows

HIF-1α as an acute regulator, beneficial for the survival response
of the heart during harmful ischemic insults.

Analysis of genetic polymorphisms in the human HIF1A
locus has shown that CAD patients with a single-nucleotide
polymorphism (P582S) showed increased collateral vessel
formation (138). Moreover, an initial clinical assessment of
patients with CAD showed stable angina as more prevalent
in subjects with multiple single nucleotide polymorphisms in
the HIF1A locus compared to patients that suffered an MI
(139, 140). The stable angina group was also associated with
increased coronary collaterals (140, 141). This data shows
that polymorphisms activating HIF-1α in humans also mediate
cardioprotection. It is important to note that HIF-1α expression
is decreased with age (142, 143) and, hence, the cardiac protective
effect of patients with CAD undergoing IPC (144) is lost in the
aged hearts (145).

There is also plenty of evidence linking adenosine with HIF-
1α and its relevance in the pathophysiology of CAD as we will
describe next.

Adenosine
This purine nucleoside composed by adenine attached
to a ribose is critical for the regulation of coronary
circulation (146). Adenosine is the metabolic product of
ATP dephosphorylation by two enzymes highly expressed in the
endothelial vasculature: CD39, also known as ectonucleoside
triphosphate diphosphohydrolase, and CD73, also known as ecto
5′-nucleotidase. In a process known as auto-regulation (147),
during an ischemic event, these enzymes are overexpressed
and favor the rapid metabolism of ATP to produce adenosine
(148, 149). The vascular activity of adenosine is then mediated
by adenosine receptors (AR). Four AR have been characterized:
A1, A2A, A2B, and A3 (150). Interestingly, A2B, as well as
CD73 and CD39, gene transcription is targeted by HIF-1α,
thus, establishing the adenosine system essential for survival in
ischemic events. Like CD39 and CD73, A2B is predominantly
expressed in coronary endothelial cells and activates vasodilatory
mechanisms after adenosine binding (151). Mice lacking
endothelial HIF-1α lose the cardioprotective effect induced by
IPC. This feature is rescued by the administration of adenosine
(137). Other studies have also observed loss of cardio-protection
by deleting any of the HIF-1α-dependent components related
to the adenosine system: CD39, CD73 or A2B (120, 148, 149).
This data suggests that the enzymatic machinery to produce
adenosine as well as the interaction with the A2B is necessary to
increase O2 delivery to the heart by increasing blood flow during
hypoxia. Increased expression of these components appears to
be a compensatory mechanism for cardio-protection during
ischemic events. In humans, adenosine levels have been inversely
correlated with the presence of obstructive CAD and advanced
age (152), perhaps by the age-dependent decrease of HIF-1α.
Finally, other small study showed a decrease in adenosine levels
after percutaneous transluminal coronary angioplasty in patients
with CAD (153). Altogether, the evidence shows the relevance
of adenosine production and vasodilatory function in coronary
arteries in patients with CAD.
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CHRONIC HYPOXIC STATES

Under this subset of pathologic conditions there is a reduced
oxygen delivery to tissues that can last days to years. We
have chosen to discuss systemic and pulmonary hypertension,
as well as heart failure as examples of diseases characterized
by chronic hypoxic states. The long-term exposure to hypoxia
induces a series of genetic adaptations mediated by HIF
activation, that can potentially lead to adverse pathologic
conditions even in healthy humans living at high altitude.
Indeed, sojourners (acclimated lowlanders) and native residents
of cities with altitudes >2,500m above sea level, show increased
blood viscosity and high pulmonary vascular resistance as the
adaptive response to chronic hypoxemia (154). These adaptive
responses are related to increased expression of erythropoietin
(EPO) and Cu-uptake transporter1 (CTR1) genes, respectively.
The chronic upregulation of such genes can, then, favor
the development of pulmonary hypertension (155–157). Other
maladaptive conditions are seen in newborns where birthweight
is inversely related to the altitude (the higher the altitude,
lower the birthweight), and the higher prevalence of maternal
hypertension and preeclampsia in highlanders (158–160). These
maladaptive mechanisms have been partially circumvented by
gene polymorphisms unique to populations (i.e., Tibetans and
Ethiopians) exposed to chronic hypoxic conditions for tens of
thousands of years. At least 2 genes, EPAS1 (codes for HIF-
2α) and ARNT2 (codes for HIF-1β), in the Amhara ethnic
group in Ethiopia, and the EPAS1 and EGLN1 (codes for PHD2)
genes in Tibetans, have polymorphisms responsible for such
true adaptive mechanisms. This is translated as normal levels
of hemoglobin despite the hypoxic conditions at high altitude
(154, 161). Overall, the current evidence shows that chronic
hypoxia is detrimental for most of the population and can lead
to CV pathologies mediated by HIF-dependent gene expression.
Moreover, each tissue is under a different gene regulation scheme
by HIFs, creating specific patterns of expression depending
on the affected hypoxic tissue (Figure 3). Therefore, in this
section we focus on the CV pathologies most affected by chronic
hypoxia: systemic hypertension, pulmonary hypertension and
heart failure, and their HIF-dependent genetic expression as a
mechanism underlying the pathophysiology of these diseases.

Systemic Hypertension
Known as the silent killer, systemic hypertension (HTN) is
currently defined as a systolic blood pressure (SBP)≥ 130 mmHg
and/or a diastolic blood pressure (DBP)≥ 80 mmHg. The overall
prevalence among the US adults aged ≥ 20 is 45.4% (162).
Several epidemiologic studies have pinpointed sleep apnea, either
obstructive or central, as one of the causes for systemic HTN
(163, 164). Certainly, the severity of the apnea has been correlated
with the development of HTN in the subsequent 4 years after
diagnosis (165). Lack of ventilation (apnea) for up to 45 s comes
with oxygen desaturation (SO2 ≈ 80%). These single events are
repeated dozens to hundreds of times per night leading to chronic
intermittent hypoxia (CIH) (166). The resultant hypoxemia is
detected by glomus cells, the primary chemosensitive transducers
in the carotid body, as small drops in oxygen tension (PaO2

≤ 70 mmHg) that promote a HIF-mediated response (167,
168). Repetitive stimuli by CIH increases the sensitivity of the
glomus cells to detect low O2 tension as well as enhances the
coupling mechanism between hypoxia and the elicited response
in a phenomenon called sensory long-term facilitation (LTF). In
turn, the cardiorespiratory center in the brainstem, through the
nucleus tractus solitarius and the rostral ventrolateral medulla,
increase the vascular tone by boosting the sympathetic activity
(169, 170). The sympathetic hyperactivity, translated as increased
catecholamine release from the sympathetic system, is a central
factor in the development of high blood pressure (171). Together
with the CIH, the sympathetic hyperactivity affects all the cellular
components of the circulatory system amplifying the severity and
complexity of the disease leading to vascular disfunction and
low-grade proinflammatory responses. Such complex scenarios
have challenged our ability to identify the primary nature of
the disease and delay an accurate and timely treatment for
hypertensive patients. Yet, in light of the recently characterized
HIF pathway and its central relationship with HTN, we speculate
that molecules involved in such pathways are deeply related to
the pathogenesis of HTN and potentially useful for the early
detection of the CV risks in HTN.

The HIF Pathway in the Pathophysiology of HTN
Expression of HIF-1α in the carotid body is reduced during
normoxia and gradually increases as the PaO2 decreases.
Conversely, HIF-2α is highly expressed in the same tissue under
normoxia and decreases under CIH (172). Moreover, HIF-1α
heterozygous-null mice (hif1a+/−) do not develop HTN when
exposed to CIH (173), whereas hif2a+/− mice show hypertension
and high norepinephrine plasma levels in normoxic conditions
(174). This implies that HIF-2α and/or downstream targeted
genes are needed for blood pressure regulation to physiologic
levels. Conversely, HIF-1α and/or specific downstream targeted
genes induce the development and perpetuation of hypertension.
Thus, the overall differential regulation of both HIFα subunits
in CIH could be interpreted as a ratio (HIF-1α/-2α) where the
higher the value, higher the severity of the disease and, thus,
increased the risk for CV events.

Prolyl hydroxylase 3 (PHD3) is also involved in blood pressure
regulation. As previously mentioned, the increased levels of
HIF-1α during hypoxia induce PHD3 expression (175). High
PHD3 expression has been observed in the cardiovascular tissue
in a HIF-dependent way under hypoxia (176). Since PHD3
activity contributes more to the regulation of HIF-2α than to
the regulation of HIF-1α (177), a possible switch mechanism
mediated by PHD3 during hypoxia might play a main role in
blood pressure regulation. The relevance of PHD3 in blood
pressure regulation was demonstrated in mice lacking PHD3
(PHD3−/−) that showed enlarged sympathetic ganglia partially
mediated by HIF-2α expression. Moreover, PHD3−/− mice had
decreased innervation to targeted tissues, with dysfunctional
sympathetic responses and hypotension (178). Thus, PHD3 is a
fundamental enzyme for the normal development and function
of the sympathoadrenal tissue. Subtle changes in either the
activity or expression of PHD3, or HIF-2α expression, modify
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the sympathetic regulation and catecholamine secretion, central
to the HTN pathology.

Pulmonary Arterial Hypertension
Contrary to the dilatory response in the systemic circulation
under acute hypoxia, pulmonary arteries constrict as a
mechanism to optimize flow to the most ventilated areas of the
lungs (179). Prolonged periods of hypoxia, as in high altitude or
chronic lung diseases, results in pulmonary vascular remodeling
and increased arterial wall stiffness. The structural modifications
of the vasculature in such conditions are pulmonary artery
smooth muscle cell (PASMC) remodeling, including hyperplasia
and hypertrophy, as well as unregulated proliferation of
endothelial cells causing plexiform lesions that occlude the
vessel lumen. Other changes such as increased vascular tone
and decreased reactivity to vasodilators are also present. These
progressive changes increase the pulmonary vascular resistance
(PVR) and mean pulmonary arterial pressure (mPAP) until
pulmonary arterial hypertension (PAH) is developed (i.e., mPAP
≥ 25 mmHg) (180). The development of these pathologic events
is clinically translated into dyspnea, chest pain and syncope;
very unspecific signs and symptoms that makes the diagnose
difficult in early stages. Late detection of PAH increases the risk
of mortality with decompensated right heart failure as the most
common cause of death (181, 182). Thus, it is important to
understand the pathogenic mechanisms which can then be used
for early detection of PAH. Next, we discuss recent findings on
the crucial influence of HIFs, its modulators, and downstream
molecules in the early development of the disease.

HIFs in PAH Pathogenesis
Mounting evidence is supporting HIF-1α and HIF-2α as
independent factors that contribute synergistically to PAH
development. For instance, in vitro studies showed HIF-1α
highly expressed in human PASMC only under hypoxia, whereas
hypoxia-dependent HIF-2α overexpression was only observed
in pulmonary artery endothelial cells (PAEC) (183–186). The
same pattern was detected in biopsies from patients with PAH
compared to healthy controls (184, 187, 188). Studies in other
mammals (i.e., rodents) are also consistent with these findings.
hif1a+/− mice are protected from left ventricular hypertrophy
and right ventricular pressure elevation under hypoxia (189).
Importantly, hif2a+/− mice were devoid of the pulmonary
hypertensive response to hypoxia (190). Altogether, the evidence
suggest that the high expression of both HIF isoforms indicate
disease severity. This contrasts with systemic hypertension where
CIH induces overexpression of HIF-1α while inhibiting HIF-
2α expression, making the elevation of both HIFs specific to
PAH. In an effort to categorize the events downstream of HIF
activation and their relevance in PAH we will divide them as
occurring in the smooth muscle cells (SMC) and/or occurring in
the endothelial cells.

Pulmonary Artery Smooth Muscle Cells
The pathologic events of vascular remodeling in the smooth
muscle are predominantly mediated by HIF-1α (191). Ball et al.
(192) using a model of chronic hypoxia, observed a decrease

in wall thickness and muscularization in small pulmonary
arteries of mice with specific deletion of HIF-1α in SMC.
These effects attenuated the increased PVR and pulmonary
hypertension. Accordingly, HIF-1α overexpression increased
proliferation in human PASMC (193) suggesting that HIF-1α
downstream effectors of vascular proliferation are involved in the
development of PH.

The activation of the renin angiotensin system (RAS)
has been associated with muscularization of the PASMC.
Specifically, angiotensin converting enzyme (ACE) is responsible
of transforming Angiotensin (Ang) I into Ang II, a hormone
that stimulates proliferation and migration in the pulmonary
vasculature (194). Conversely, ACE2 confers a compensatory
mechanism by transforming Ang II in Ang1-7, a vasoprotective
peptide with the opposite effects (i.e., antiproliferation,
vasodilation) of Ang II. During hypoxia, ACE is directly
upregulated, whereas ACE2 is indirectly downregulated by HIF-
1α in PASMC (195). Therefore, the ratio between the expression
and/or activity of both enzymes may show the severity of PAH.
In support of this, patients with primary PH show increased
activity of the RAS including ACE (196). Conversely, a negative
correlation between the mPAP of patients with PAH and serum
ACE2 has been described (197).

Gene expression of several components of the VEGF family
including VEGF, PIGF, and its receptors (Flt-1 and Flk-1)
are also dependent on HIF-1α activity. This family of growth
factors is known for their proangiogenic and proliferative effects
in multiple tissues including the lung (198, 199). Thus, the
regulation of such factors in chronic hypoxic states determine
the proliferative state and early evolution of PAH. For example,
a functional polymorphism (rs833061T>C) that increases VEGF
gene expression has been associated with an increased risk of
developing PAH in the Chinese population (200). Accordingly,
VEGF can exert its proliferative action in PASMC and LVEC
contributing to the development and worsening of PAH (199,
201). The soluble receptor of the VEGF family, sFlt-1, and
PIGF are also elevated in PAH patients and predicted survival
(202, 203). Based on such findings, sFlt-1 and PIGF are proposed
by Malhotra et al. as biomarkers elevated in the early phase of
the disease.

Another important regulator of vascular tone, proliferation
and survival dependent on HIF activity is endothelin 1 (ET-1).
ET-1 can bind to ETA receptors, mostly present in PASMC, and
ETB receptors which are predominantly expressed in endothelial
cells. Some evidence has underpinned the relevance of ET-
1 in the PASMC. For example, autocrine signaling of ET-
1 appears to contribute to the muscularization and survival
of human PASMCs (204). Moreover, a positive feedback loop
between HIF-1α and ET-1 has been described in PASMCs.
Chronic hypoxia increases ET-1 levels and upregulates HIF-1α
synthesis while decreases degradation by PHD2 further favoring
the HIF-1α-dependent expression of ET-1 (205). This suggests
a maladaptation mechanism that perpetuates increased tone,
proliferation, and survival of PASMC during chronic hypoxia.
Perhaps thismechanism is aminor contributor in PAHpathology
as the major production of ET-1 is located at the endothelial cells.
The main effector of hypoxia in the pulmonary endothelium is
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HIF-2α (191) and partial deletion of HIF-2α in mice dampens
ET-1 expression (190). Overall, ET-1 is deeply ingrained in
PAH pathology and is finely regulated by both HIF subunits
depending on the cell type. The importance of ET-1 in PAH
is further revealed by clinical observations where PAH patients
show increased ET-1 concentrations as the disease progresses
(206–208). In fact, plasma levels of ET-1 are an independent
predictor of the severity of PAH in the long-term (207, 209).

Pulmonary Artery Endothelial Cells
Even more relevant to the development and progression of
PAH under hypoxia are the PAECs. The characteristic plexiform
lesions in PAH that occlude the lumen of the pulmonary
vessels are partly because of the deregulated proliferation of
endothelial cells (210). HIF-2α is a key regulator of proliferation
of PAECs in hypoxia as well as in normoxia when HIF-2α
is artificially overexpressed (191). Endothelial-to-mesenchymal
transition (EndoMT) is one of the mechanisms by which HIF-
2α induce vascular remodeling and proliferation of PAEC in
hypoxia-induced PAH (184). Moreover, in hif2a+/− mice as well
as in specific HIF-2α Knockout mice in PAECs the hypoxia-
induced PAH is abolished (184, 190, 211). Accordingly, the
deletion PHD2 in PAEC promotes vascular remodeling, enhances
EndoMT and worsens the PAH (184, 212, 213). Thus, HIF-2α
expression as well as its regulation by PHD2 are determinant
factors for the development of PAH. This is consistent with
genomic studies in humans living at high altitude where
polymorphisms in both genes, EPAS-1 for HIF-2α, and EGLN1
for PHD2, are somewhat protecting from developing PAH in
such hypoxic conditions (214–216).

Another important regulator of HIF-2α degradation is pVHL.
In humans with Chuvash polycythemia, a single nucleotide
polymorphism of pVHL (Arg200Trp) decreases the affinity for
the hydroxylated HIF-α and impairs HIF degradation, thus,
increasing HIF-2α accumulation and inducing the expression
of other downstream effectors (217). Patients with Chuvash
polycythemia show pulmonary vascular hyperresponsiveness to
hypoxia and are at greater risk to develop PAH (218, 219). A
murine model of Chuvash polycythemia spontaneously develops
PAH mediated by HIF-2α and partial deletion of HIF-2α
protected mice against the development of PAH (220). Thus,
the lack of pVHL activity favors the development of PAH by
increasing HIF-2α expression.

Finally, data is emerging describing a relationship of PAHwith
anemia (i.e., decreased red blood cell count and/or hemoglobin
production), and iron deficiency. The hormone erythropoietin
produced in the kidneys regulates red blood cell production.
Iron homeostasis is dependent on several proteins for absorption,
handling, and metabolism by the gastrointestinal system. A
common link between both systems and PAH appears to be HIF-
2α. On one hand, HIF-2α targets the EPO gene that encodes
for erythropoietin under hypoxia (48, 221). Moreover, extrarenal
HIF-2α is sufficient to stimulate erythropoietin production (221),
suggesting that erythropoietin production might be stimulated
by the overexpressed HIF-2α in hypertensive lungs. Accordingly,
patients with PAH show high erythropoietin pulmonary levels
that were associated with specific mitogenic effects in both

PASMC and PAEC (222), independent of erythrocytosis (223).
On the other hand, Iron regulation is intrinsically connected
with oxygen transport and sensing as hemoglobin and PHDs,
respectively, depend on Iron to function properly (described
in section Oxygen Sensing). HIF-2α can regulate the key
hormone of Iron homeostasis, hepcidin, produced in the liver,
as well as be regulated by Iron regulatory proteins (IRPs),
respectively (224, 225); a detailed review on this regulatory
mechanism can be found in (226). Iron deficiency induced by
the dysregulation of these factors ends in development of PAH
(224, 227). Moreover, the Iron chelator agent deferrioxamine
mimics hypoxia and rises the pulmonary arterial pressure in
humans (228). Iron supplementation attenuated the normal
pulmonary vasoconstrictive response to hypoxia and improved
some functional measures in PAH patients (229, 230). Thus,
regulation of Iron homeostasis and erythropoietin by HIF-2α
can be collective determinants of PAH progression and severity
as they indirectly reflect the activity of HIF-2α in other organs.
Proof of this, is the inverse correlation of erythropoietin and Iron
homeostasis in patients with PAH that was further associated
with disease severity and poor clinical outcome (231, 232).

Heart Failure
The primordial function of the heart is to ensure the constant
supply of nutrients and oxygen to all tissues by continuously
pumping blood to the system. Chronic impairments of cardiac
contractility and load lead to heart failure (HF) and is often the
pathologic result of multiple CV disorders (i.e., hypertension,
coronary artery disease, valvulopathies, etc.; with the most
common cause being cardiac damage from a myocardial
infarction). HF has a complex pathophysiology that depends
on the etiology and keeps evolving as more data emerges on
the multiple molecular mechanisms involved in the process.
Nevertheless, a somewhat simple classification of HF is according
to the contractile performance of the heart and is used
clinically; HF with reduced ejection Fraction (HFrEF) and HF
with preserved ejection fraction (HFpEF), previously known as
systolic and diastolic disfunction, respectively. In both cases, the
chronic (mal)adaptive mechanisms of HF induce left ventricular
(LV) remodeling further perpetuate the already impaired oxygen
delivery to the heart and periphery (233, 234). Evidence on
the regulation of the HIF pathway and downstream effectors
by chronic hypoxia during HF is starting to emerge, making
HIFs important players in the pathophysiology of HF. Here we
focus on the growing evidence of the HIFs activity during the
development of HF.

HIFs in Heart Failure
As previously described for other tissues, the regulation of HIFs
in the heart is finely tuned by the duration of hypoxia. On
one hand, chronic HIF-1α expression, measured using direct
[overexpression (235, 236)] or indirect [PHD or VHL deletion
(237, 238)] methods, shows HIF-1α induces cardiomyopathy
in normoxic states and sudden cardiac decompensation when
exposed to stressors such as pressure overload (236). On the
other hand, specific deletion of HIF-1α in cardiomyocytes of
mice show systolic and diastolic decompensation (239) and
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maladaptive hypertrophy with decreased angiogenesis when
exposed to pressure overload (240). This seeming discrepancy,
first, underlines the crucial role of HIF-1α regulation on
the development of pathology and adaptation of the heart.
Second, this evidence suggests that the activity of HIF-1α under
pathologic conditions is limited to the early adaptive stage of
chronic hypoxia as sustained expression beyond early adaptation,
or complete absence of HIF-1α, is detrimental. Evidence in
humans with HF is also consistent with such conclusions.
Patients predominantly in the early stages of HF, based on the
New York Heart Association (NYHA), functional class I/II, show
increased expression of HIF-1α (236), whereas patients in end-
stageHF (III/IVNYHA class), show decreasedHIF-1α and PHD1
(241). Interestingly, HIF-3α and PHD3 were elevated in such
patients suggesting that the orchestration of gene expression by
chronic hypoxia is shifted toHIF-3α in the heart. Othermammals
(i.e., sheep) exposed to years of chronic hypoxia have shown a
similar reciprocal pattern in the heart where HIF-1α and HIF-
3α are down- and upregulated, respectively (242). The regulation
between both HIFs has been characterized in other tissues (243–
246) and is consistent with a study in human cardiomyocytes
where overexpression of HIF-3α inhibits HIF-1α expression and
induces apoptosis (247). Thus, the expression of HIF-1α and
HIF-3α is inversely proportional during HF.

Other Molecules downstream of HIF

B-Type Natriuretic Peptide
Currently one of the most widely used biomarkers for HF is
B type natriuretic peptide (BNP). The production of BNP is
predominantly stimulated by 3 main mechanisms: wall stretch,
hormones (i.e., ET-1, Ang II) and inflammation (i.e., TNF-
α, IL-6). The biologic activity of BNP is primarily mediated
by the natriuretic peptide receptor -A (NPR-A) to induce
diuresis, natriuresis, cell antiproliferation and antifibrotic effects,
(248, 249). BNP activity has shown beneficial to the heart
as an analog, nesiritide, improves the cardiac function of HF
patients (250). Similarly, inhibition of the breakdown of BNP
with a neprilysin inhibitor, sacubitril, attenuates cardiomyocyte
cell death, hypertrophy, and impaired myocyte contractility
(251). Emerging evidence has established hypoxia as another
important stimulus for BNP secretion in cardiomyocytes (252–
254). This secretion is dependent on HIF-1α binding to an
identified HRE region of the human BNP promoter (254).
Interestingly, the stretch-activated channels in cardiac myocytes,
besides augmenting BNP secretion as part of the wall stretch
mechanism (255), also increase HIF-1α even in normoxia (256),
and both are blocked by gadolinium, a mechanosensitive channel
inhibitor. Thus, the contribution of HIF on the release of BNP
not only depends on the hypoxic mechanism induced by stretch
but also by mechanical stretch directly, making BNP and HIF-
1α highly relevant to HF pathology. Accordingly, BNP levels
and the cleaved N-terminal of the prohormone BNP (NT-
proBNP) are currently used as the biomarkers of choice to
establish the chronicity and survival of HF patients as well
as fatality prognosis in acute decompensated HF (257, 258).
Another study positively correlated the BNP levels with HIF-1α
in plasma further supporting the concept of hypoxia as a major

mechanism of BNP release in patients with HFrEF (259). Thus,
the chronic exposure to cardiac hypoxia and mechanical stress
in HF favors BPN accumulation affecting the contractility of the
heart and reflects the well-established predictive value of BNP as
a biomarker.

Adrenomedullin
Originally discovered in pheochromocytoma tissue,
adrenomedullin (AM) is expressed in multiple other cells
including cardiomyocytes (260, 261) and coronary artery
endothelial cells (262). AM is a potent vasodilator with
antiapoptotic, diuretic and natriuretic properties (263). Similar
to BNP, cardiac AM secretion increases by volume or pressure
overload (264, 265). Hypoxia is also another important factor
for AM release in the heart (266). Accordingly, the promoter
region of the ADM gene in cardiomyocytes contains the HIF-1
consensus sites that respond to hypoxia (260). Furthermore,
hypoxia increases the protein expression of both endothelial PAS
domain-containing protein 1 (EPAS1), also known as HIF-2α,
and AM in cardiomyocytes in a similar time-dependent fashion.
When EPAS1 is overexpressed in normoxic conditions, AM
levels increase proportionately (261). Therefore, this suggests the
ADM gene is a target of HIFs. A more intricate interaction has
been shown where AM upregulation by a HIF-1α-independent
hypoxic mechanism enhances HIF-1α stabilization and activity
by inhibiting PHDs and inducing translocation of HIF-1α to the
nucleus in multiple human cell types (267, 268). Taken together,
this data suggests that AM and HIF-1 work together under a
positive feedback loop in hypoxic conditions. The relevance
of this mechanism in heart failure has not been explored. The
overlapping profile of AM with HIFs in HF is detrimental as
these patients show elevated AM that, (similar to BNP and HIF-
1α expression), positively correlate with the NYHA classification
(i.e., severity of the disease is proportional to the AM levels)
(269–271). Moreover, AM has been shown as an independent
predictor of prognosis in HF (272) suggesting that AM levels
in HF correlate well with the development and progression of
the disease.

CONCLUSIONS

The unique interaction of oxygen with eukaryotic cells has
made possible the formation of highly complex living organisms
by providing the means to increase energy production and
metabolism. The findings of Semenza, Ratcliffe, Kaelin, and
others about HIFs and its regulators, PHDs and VHL, during
hypoxia have paved the way to understand in greater depth
the mechanisms involved in fundamental cellular processes.
The versatility of these proteins to respond to hypoxia and
activate a set of genes in a particular tissue show a fine cellular
regulation for adaptation in acute vs. chronic settings. As our
understanding on the PHD/HIF-targeted gene-effect axis keeps
expanding we will be able to identify new pathologic processes
that accurately reflect the affected tissue in a CV disease and
provide targets for a better therapeutic approach. This is already
the case in a related illness, chronic kidney disease, where
one of the early complications is anemia due to lack of EPO
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production by kidney interstitial fibroblasts-like cells. Using a
PHD inhibitor, Roxadustat, in these patients allow HIFs to
accumulate and, thus, enhance EPO secretion and normalize
Iron homeostasis, breaking the vicious cycle of anemia that
affects other CV organs and increase the morbidity and mortality
rate in such patients (273, 274). As detailed in this review,
hypoxia is one of the main events that trigger multiple CV
diseases. The downstream mechanisms activated by hypoxia in
the CV system vary according to the affected organ/cell type and
the timespan of the ischemic insult. This in turn triggers the
expression of a particular set of genes from over a thousand HIF-
dependent genes. Identification of a unique set of HIF-dependent
genes affected by hypoxia in CV diseases could define the
patterns of gene expression per tissue [as illustrated by Semenza
(275)]. Accurate identification of such genes might reveal the
developmental stage of the disease and the gene “fingerprint”
of the most affected cell type(s). This could further allow us
to identify the injured tissue at earlier stages of the disease to

provide for early intervention and determination of the best
therapeutic choice for patients with CV diseases.
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