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Abstract: Multicancer Early Detection (MCED) represents a new and exciting paradigm for the
early detection of cancer, which is the leading cause of death worldwide. Current screening tests,
recommended for only five cancer types (breast, lung, colon, cervical, and prostate), are limited by a
lack of complete adherence to guideline-based use and by the fact that they have cumulative high
false positive rates. MCED tests agnostically detect cancer signals in the blood with good sensitivity
and low false positive rates, can predict the cancer site of origin with high accuracy, can detect highly
lethal cancers that have no current screening tests, and promise to improve cancer screening by
improving efficiency and reducing the overall number needed to screen. Herein we outline this
promise and clarify several published misconceptions about this field.
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1. Introduction

Multicancer Early Detection (MCED) represents a new and exciting paradigm for
the early detection of cancer. We read with interest Pons-Belda et al.,’s [1] commentary
on the potential role of ctDNA as a test for early cancer detection. We share the authors’
enthusiasm for this technology and wish to clarify some of the points raised in their article.

2. Understanding Tumor Biology in the Context of MCED

The most important issue to be discussed is the lower limit of detectability of ctDNA
assays and whether this can be defined by mutant allele fraction (MAF) estimated from
tumor size. While the most important property and limiting factor for sensitivity of liquid
biopsies is the number of copies of tumor origin available in a sample for detection, it
is a fundamental error to use MAF alone as suggested by Pons-Belda to estimate cancer
target abundance because it ignores the reality that cfDNA is highly fragmented. The
authors err by assuming that cfDNA is composed of contiguous whole genomes, when in
fact individual haploid genomes generate millions of ∼160 bp fragments, each of which
may be sampled by the assay (Figure 1A). To assess the potential for an MCED to detect
cancer at low (10−4) tumor fraction, both the number of informative fragments and the
noise level of the fragments must be considered. The design of GRAIL’s commercial test,
Galleri, exploits cfDNA fragmentation by determining methylation patterns targeting
30,000 independently informative regions. Each region considers methylation patterns
across multiple differentially methylated CpGs. Galleri’s ability to detect tumor fractions
below 10−4 arises from this broad coverage of multiple targets, conferring both low noise
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levels and high specificity (Figure 1B,C). In fact, it is notable that no published MCED looks
at only one site in the genome to determine if a cancer signal is present.
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Figure 1. (A) cfDNA is composed of fragmented DNA, not individual genomes. (B) MCED surveys 
many sites enabling detection at or below a ctDNA tumor fraction of 10−4 from one blood tube. (C) 
Each MCED classifier feature covers multiple bases, typically with reinforcing methylation patterns 
across multiple CpGs. 

Beyond the consideration of fragmentation, while it may be true in general that 
smaller tumors shed less DNA, there are differences in detectable cfDNA levels that are 
determined by factors independent of tumor size. In a multivariate analysis of CCGA 
participants [2] that included mitotic and metabolic activity, grade, and lymph node 
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many sites enabling detection at or below a ctDNA tumor fraction of 10−4 from one blood tube.
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Beyond the consideration of fragmentation, while it may be true in general that smaller
tumors shed less DNA, there are differences in detectable cfDNA levels that are determined
by factors independent of tumor size. In a multivariate analysis of CCGA participants [2]
that included mitotic and metabolic activity, grade, and lymph node status, the results
show for breast and lung cancer that only tumor mitotic volume and metabolic activity,
and not tumor size, predicted for MAF. For colorectal cancer, the surface area of tumors
invading beyond the subserosa, and not tumor size, was the only factor that predicted
for MAF. We have also shown that while MAF increases with stage across cancer types, it
varies by orders of magnitude within a given type and stage [3]. Significant differences
in MAF are also observed among cancer types, with high-mortality cancers (esophageal,
gastric, hepatobiliary, lung, and pancreatic) having higher MAF than low-mortality cancers
within each stage. Finally, tumors not detected by Galleri have an improved prognosis over
tumors that are detected across all stages [4].

In Table 1 of the Pons-Belda commentary, the authors extrapolate MAF from nons-
mall cell lung cancer (their reference 36) and a theoretic article (their reference 37) that
highlights that the number of cells in each tumor volume varies across tumors because of
“ . . . deformation and variability of extracellular spaces modify the density of cell packings.
Furthermore, any tumor contains, in variable proportions, macrophages, lymphoid cells,
etc. Thus, any tabulation of definite tumor cell numbers per unit of tumor tissue volume is
likely to be misleading” [5]. They then go on, erroneously in our view, to compare these
estimates to the sensitivity of mammography, which of course detects a completely different
tumor type and has a cumulative 10-year false positive rate as high as 51% [6]. Certainly
no real conclusions can be drawn from such a spurious comparison.

It is apparent from these multiple observations that estimates of MAF based on tumor
size alone are insufficient to understand the complex biology of cfDNA, and as such relying
on such estimates leads to false conclusions of MCED performance.

3. Other Issues

Beyond these issues, there are several additional misunderstandings in the commen-
tary by Pons-Belda et al. that we would also like to address. First, Galleri is based on whole
genome methylation using a targeted assay that covers the most informative regions of
the genome for cancer detection and cancer signal origin prediction [7]. This approach
was chosen because it had the best performance for both cancer detection and cancer site
of origin (CSO) prediction after a head-to-head comparison to whole genome sequencing
and targeted mutation assays [8]. CSO prediction for the top two sites of cancer ranged
from 88–92% [7,9]. The authors have also significantly understated GRAIL’s commitment
to clinical evaluation of this MCED test, which includes a global effort across eight studies
totaling more than 300,000 participants using a variety of study designs (Figure 2).
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4. Conclusions

The current regimen of USPSTF-recommended screening tests have been adopted
because of their ability to reduce cancer mortality. Despite their widespread adoption,
there are still approximately 600,000 cancer-related deaths per year in the US alone [10].
MCED tests promise to mitigate many of the shortfalls of the current screening paradigm
which include:

• A total of 71% of all cancers are not found because of a lack of an established screening
test [11];

• Unscreened cancers account for ~70% of cancer-related deaths [11];
• Patients are more likely to be diagnosed with a different cancer than the one targeted

by screening [12];
• Adherence rates are suboptimum (5–80%) [13];
• Positive predictive value for single cancers is <10% [11];
• Cumulative false positive rates are very high (40–50%) [14,15].

A simple blood test that detects multiple cancer types (especially those that currently
lack any effective screening) is likely to improve both access and adherence and reduce the
death rate. Modeling studies, for example, have estimated that when used as an adjunct
to current screening tests, Galleri has the potential to avert more than a quarter of these
deaths [11]. MCED tests represent the future of cancer screening.
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