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Abstract: Efficient authentication and key agreement protocols between two entities are required
in many application areas. In particular, for client–server type of architectures, the client is mostly
represented by a constrained device and thus highly efficient protocols are needed. We propose in this
paper two protocols enabling the construction of a mutual authenticated key ensuring anonymity and
unlinkability of the client and resisting the most well known attacks. The main difference between
the two proposed protocols is in the storage requirements on the server side. The innovation of
our protocols relies on the fact that, thanks to the usage of the sponge construction, available in
the newly proposed SHA3 standard with underlying Keccak design, the computation cost can be
reduced to only one hash operation on the client side in case of the protocol with storage and two
hash operations for the protocol without storage and thus leads to a very efficient solution.

Keywords: authentication protocol; anonymity; symmetric key based; Keccak

1. Introduction

There are many devices participating in wireless communications that are constrained in nature,
for instance, sensors from wireless body area networks (WBANs), sensors and actuators in smart
homes, IoT (Internet of things) devices in Industrial IoT (IIoT), Radio-frequency identification (RFID)
tags, smart meters, etc. [1]. In all these settings, in order to ensure secure communication, a common
shared key should be first negotiated between the device and a more powerful entity like gateway or
server. During this key agreement protocol, it is important to also offer anonymity and unlinkability as
otherwise location tracking of a particular device becomes possible and thus might lead to privacy
intrusion, especially when the device is linked to a certain user like in WBANs. Moreover, as these
devices are mostly battery powered, it is very important to handle the process as efficiently as possible
in order to extend the battery life as long as possible. Current proposals in literature on key agreement
protocols are based on hash operations, symmetric key, and public key based mechanisms. Hash
operations are in general the most efficient [2] and, as we aim for the most efficient approach, we limit
our proposed protocols to only hash based constructions and investigate new methods to decrease
this number of hash operations. In particular, we exploit the nice feature of the variable output length
of the Keccak hash function, which has been standardized in 2015 as the new hash function SHA3.
At the moment, this hash function has not the best performance compared to other hash functions in
literature, but it has a well proven security strength and the first implementations on chip are already
available on the market, resulting in a better overall performance.

We propose two key agreement protocols. In the first protocol, key material is explicitly stored on
the server side, resulting in high storage requirements and a lot of overhead for each new registration
of device. In addition, during the protocol run, the server needs to look up the particular device into its
database in order to find the corresponding key material, which limits the scalability of the system. In
the second protocol, there is no storage required on the server side and still the same security features
can be obtained, but at some additional communication and computation cost as now the lengths
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of the transmitted messages are longer and there is one additional hash operation required. In this
scheme, the scalability is much larger as now the server only needs to verify if the client belongs to
the list of revoked devices, which is typically much shorter compared to the whole set of registered
devices. The protocol is proven in the random oracle model, where the hash function is replaced by a
random oracle. This type of proof is typically used when no weaker assumptions on the cryptographic
hash can be made.

The paper is outlined as follows. In Section 2, we give an overview of relevant related work.
Section 3 deals with preliminaries. In Section 4, we present our protocols. The security strength of
both protocols, together with a comparison with other related protocols in literature, is discussed
in Section 5. The comparison in performance between our proposed protocols and related work is
provided in Section 6. Finally, we end the paper with some conclusions in Section 7.

2. Related Work

There is a huge amount of papers on authentication and key agreement protocols in a client–server
based architecture, both for general settings and application specific domains. In order to limit the
related work, we focus on the most recently proposed symmetric key based protocols, consisting of
two types of devices able to operate without user interaction. Note that also many schemes exist in
literature where password and biometrics related information is required in order to get access to the
secret information stored in the device [3,4].

In the domain of smart home automation, the scheme of [5] in 2017 was the first to enable mutual
authentication and key agreement between sensors on the one hand and home gateway on the other
hand in an anonymous way and without linkability using solely symmetric key based operations. The
system is based on asymmetric key distribution between sensors and home gateway in the scheme.
The scheme is not resistant against known session temporary specific information because the whole
security on the sensor side depends on the knowledge of the random value generated in the beginning
of the protocol. It requires the usage of hash functions, symmetric key encryptions, and xor operations.

In the area of Industrial IoT applications, we can distinguish the recent work of [6] in which a
lightweight authentication and key distribution (LAKD) scheme has been proposed built of only hash
functions, xoring, addition, and subtraction. Their work was inspired on the protocol of [7] in which
several weaknesses have been identified by [8–10], being a lack of protection against tracking, offline
identity guessing, impersonation, and replay attacks. Their scheme [6] consists of four communication
phases and a lot of hash calls should be made at the sensor node. It is not clear in their protocol how
the gateway remains synchronized with the sensor node and how it can resist synchronization attacks.
They show that their scheme outperforms other related work in literature [11–14] with respect to
computational performance. Only [7] is slightly more efficient. In addition, the communication cost
of [6] is still lower compared to [12–14], but slightly higher than [7,11,14]. However, it has also been
clearly shown that all of the schemes [7,11–14] suffer significant weaknesses with respect to attacks
like for instance tracking attack [7,11,13,14], offline identity guessing attack [7,11,12,14], impersonation
attack [7,14], denial of service attack [7,11–14], etc.

In [15], another privacy enabled authentication and key agreement scheme for wearable sensors
in wireless body area networks has been proposed, consisting of only xor and hash operations. The
scheme is an improvement of [16] in which offline identity guessing, node impersonation, and hub
node spoofing attacks have been identified. However, the scheme is not resistant against known
session temporary specific information as if the random generated data rn of the tag is known, the
identity can be derived of the tag. If the session data of the reader is also retrieved, the whole system
is broken. The scheme consists of three hash calls at the side of the sensor. They show that their
scheme is more performant with respect to other related schemes in literature [16–19]. Only the scheme
of [20] is more performant but does not offer anonymity and and unlinkability and is not resistant
against insider and impersonation attacks. In addition, the scheme of [18] also offers no anonymity
and unlinkability. The scheme of [17] suffers from insider attacks.
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A recent authentication and key agreement scheme for RFID use cases has been proposed in [21],
in which an improvement is made on [22] as it has been shown to not be resistant against collision,
denial of service, and stolen verifier attacks. However, their scheme is also not resistant against known
session temporary attacks and synchronization attacks. In addition, replay attacks are also possible as
the timestamp in the first message is not included in the verification hash of the message and thus can
be easily modified and replayed. They compare their scheme with [23–26] and find that their scheme
outperforms the schemes satisfying anonymity [22,25] and are slightly worse than the schemes without
anonymity [23,24,26]. Moreover, in all these schemes, several security related problems have been identified.

In order to finally compare our scheme with related work, we will thus focus on the schemes
of [5,6,15,21], which represent the latest state-of-the art in the field satisfying the most relevant security
features and have already a very good efficiency compared to other work in their respectively
application fields.

3. Preliminaries

We first discuss the security architecture, attack model, and security features addressed in this scheme.
Then, we shortly describe the Keccak hash function and the corresponding security strength that it offers.

3.1. Security Architecture

The set-up of the system is very simple and consists solely of three entities, being a service provider,
a more constrained client, being typically the sensor and a more powerful server being responsible for
the authentication. The service provider plays only a role in the initialization phase of the process. The
actual authentication and key agreement is between the last two entities. The server is typically split
up in two entities with a secure channel in between. One part is responsible for the handling of the
authentication requests and the other part for the storage. To ease the notations and explanations, we
consider them here as one entity. Note that we define a generic scheme such that, in our scheme, the
client can be any type of sensor or even RFID tag, depending on the use case of smart home, industrial
IoT, etc., as mentioned before in related work. From now on, we call it sensor and server, respectively.

3.2. Attack Model and Security Features

First of all, we consider the service provider, responsible for the initial sharing of key material
between server and sensor, to be completely honest and trustworthy. Moreover, after the initialization
process, it removes all generated data out of its memory. Therefore, the initialization process is not
included in the security analysis.

3.2.1. Attack Model

The execution of attacks by the adversary is limited to the communication channel between sensor
and server. We consider an adversary A that satisfies the following listed characteristics. For each
characteristic, the type of attack linked to it is also mentioned.

• The adversary can be a passive or active attacker, and thus is able to listen and collect data
on the one hand or actively intercept, modify, or replay data on the other hand. As a
consequence, protection should be obtained against replay, impersonation, man-in-the-middle,
desynchronization, and denial of service attacks.

• The attacker is able to get access to the session specific variables by means of timing attacks, both
on the server and sensor sides. As a consequence, protection must be offered against the known
session specific temporary information attack.

• The adversary can capture any sensor and is able to retrieve the data stored on the sensor by
means of power analysis techniques. Consequently, perfect forward secrecy is a very important
security feature to be addressed since it avoids the attacker to be able to reveal the previously
generated session keys.
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3.2.2. Assumptions

Note that we do not consider an adversary to get access to the secret key data of the server. This is
a reasonable assumption as the server typically is more powerful to be able to offer strong protection.
However, in the first protocol with storage, the amount of data to protect is much larger, compared to
the second protocol, where the secret key material is only presented by one parameter.

3.2.3. Goals of the Attacker/Security Features

As the ultimate goal of the attacker is to reveal the common shared key generated in the protocol,
it is important to construct this key through a mutual authenticated process, where both server and
sensor participate in the construction.

The attacker can also be interested in revealing the identity of the sensor in order to provide for
instance location tracking of its owner. Therefore, in the latest generation of the schemes, anonymity
and unlinkability are two other security features which are often included. In particular, unlinkability
avoids activity tracking of its users and is closely related to anonymity.

Furthermore, we also show that our proposed protocols offer perfect forward secrecy and
resistance against replay, desynchronization, denial of service, and specific temporary information
attacks. Moreover, they do not need synchronized clocks to obtain these features.

3.3. SHA3-Keccak

In our scheme, we will limit the usage of operations to xor operations and hashing. For the hash
function, we make use of the latest SHA3 standard from 2015 and more in particular the underlying Keccak
scheme [27]. SHA3 has been developed in the course of an open call for new hash functions, launched by
NIST, due to the fact that the previous variant SHA1 was broken. However, the other previous variant
SHA2 is not yet broken, and SHA3 has the main strength that it is open source and the complete design
rationale is specified, in contrast to SHA2 which was developed behind closed doors at NSA.

Keccak is based on the interesting concept of sponge construction introduced by its inventors [28].
In this type of construction, any amount of data are first absorbed into the sponge, and then any
amount of data are squeezed out without loss in security strength. This last feature in particular will
be exploited in our scheme. Figure 1 illustrates the process in the sponge construction.

Figure 1. Message M is broken into n consecutive r bit pieces M1, ..., Mn. The output, after applying
the permutation f several rounds, is denoted by c1, c2, .... The size of the state on which the function f
works, is called the rate r, while the capacity c denotes the size of the part that is untouched by input or
output [29].

One of the standardized versions is the SHAKE128(M, d) function on message M with variable
input size and variable output size d. It has been shown that this function has a resistance of at least
min(2d/2, 128) on collision attacks, preimage, and second preimage attacks. As a consequence, even if
the output length is larger than 256, the resistance will still be at least 128 bits. Note that the security
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strength of a hash function is independent of the input length M. For ease of notation, we denote
SHAKE128(M, d) as H(M).

4. Proposed Protocol

We propose two protocols with similar underlying structure and building blocks. The first one
requires permanent storage and update of the key material on the server side, while the second one
does not need any storage of individual key material but has a slightly higher communication cost. We
distinguish in both protocols an initialization phase and an actual authentication and key agreement
phase of the session key SK. Both protocols are also illustrated in Figures 2 and 3.

server - (IDn, Kn, IDn+1, Kn+1)n Sensor - (IDn, Kn)
Choose R1

R1−−→

Choose R2
H(R1, R2, IDn, Kn) = (c1, c2, c3, c4, c5)

IDn ,R2,c3←−−−−−−−−−

Look up IDn, Kn or IDn+1, Kn+1
H(R1, R2, IDn, Kn) = (c∗1 , c∗2 , c∗3 , c∗4 , c∗5)

1. If c∗3 = c3 and IDn, Kn, then
IDn+1 ← IDn, Kn+1 ← Kn, IDn ← c∗1 , Kn ← c∗2
2. If c∗3 = c3 and IDn+1, Kn+1, then
IDn ← c∗1 , Kn ← c∗2
3. If c∗3 6= c3, then abort.
SK = c∗4 ⊕ c∗5

c∗4−−→

Check c∗4 == c4. If OK, IDn ← c∗1 , Kn ← c∗2
SK = c4 ⊕ c5

Figure 2. Steps and computations in the proposed authentication and key agreement scheme with storage.

Server - Km, (IDn)R Sensor - (IDn, N, an, bn = H(an, Km) = (bn1, bn2))
Choose R1

R1−−→

Choose R2
Rn

2 = (N, R2)

d1 = Rn
2 ⊕ bn = (N ⊕ bn1, R2 ⊕ bn2)

H(an, IDn, R1, R2) = (c1, c2, c3, c4, c5)
an ,d1,c3←−−−−−−−

H(an, Km) = b∗n = (b∗n1, b∗n2)

(N∗, R∗2) = (b∗n1 ⊕ d1,1, b∗n2 ⊕ dd1,2)

Check freshness of R∗2
ID∗n = H(N∗, Km)

Check if ID∗n 6∈ (IDn)R, else abort
H(an, ID∗n, R1, R∗2) = (c∗1 , c∗2 , c∗3 , c∗4 , c∗5)

If c∗3 6= c3, then abort, else
bn+1 = (bn+1,1, bn+1,2) = H(c∗1 , Km)

d2 = (d2,1, d2,2) = (bn+1,1 ⊕ c∗4 , bn+1,2 ⊕ c∗5)
d3 = H(bn+1, c∗1 , c∗2)
SK = c∗2

d2,d3−−−−→

bn = (bn1, bn2)← (d2,1 ⊕ c4, d2,2 ⊕ c5)

Check d3 = H(bn+1, c1, c2). If OK, SK ← c2, an ← c1

Figure 3. Steps and computations in the proposed authentication and key agreement scheme without storage.
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4.1. With Storage

4.1.1. Initialization Phase

In this phase, each sensor receives an identity IDn and a secret key Kn. These values are stored on
the sensor. The index n refers to the n-th update of identity and key related material. In the database
at the server’s side, there are four columns containing the values corresponding with the parameters
IDn, Kn, IDn+1, Kn+1. For each new registration of the sensor at the server, the first two columns
are completed. The other columns are completed after the first successful authentication and key
agreement phase.

4.1.2. Authentication and Key Agreement Phase

To start the process, the sensor sends a triggering request to the server. This is replied by the
server with a Hello message, containing a random value R1. Note that, in the context of RFID based
schemes, the server (reader) starts the communication and this triggering event is not required.

Upon reception of this value, the sensor first derives a new random value R2 and computes

H(R1, R2, IDn, Kn) = (c1, c2, c3, c4, c5)

The sensor then stores these values temporary in its memory. Next, it sends M1 = {IDn, R2, c3} to
the server.

After receiving M1, the server checks the existence of IDn in its database in the columns of IDn or
IDn+1. If so, it takes the corresponding variable K∗n, being either Kn or Kn+1 in order to also compute

H(R1, R2, IDn, K∗n) = (c∗1 , c∗2 , c∗3 , c∗4 , c∗5)

There are now three options.

• If c∗3 = c3 and ID∗n = IDn, the table contents are updated as follows: IDn+1 ← IDn, Kn+1 ←
Kn, IDn ← c∗1 , Kn ← c∗2 . The session key is defined as SK = c∗4 ⊕ c∗5 . The server sends c∗4 to
the sensor.

• If c∗3 = c3 and ID∗n = IDn+1, only the following table contents need to be updated IDn ←
c∗1 , Kn ← c∗2 and SK = c∗4 ⊕ c∗5 . The server sends c∗4 to the sensor.

• If c∗3 is different from c3, the server aborts the process.

When c∗4 arrives at the sensor, it checks if this value corresponds with the stored value. If so, it
also updates its key material IDn ← c1, Kn ← c2 and derives the session key as SK = c4 ⊕ c5.

4.2. Without Storage

4.2.1. Initialization Phase

In this scheme, the server only stores a list of revoked sensors (IDn)R with static identity IDn.
The server possesses a master key Km.

The sensor needs to store the parameters an, bn, IDn, N. The parameter an represents a random
nonce and is unique for each sensor. The parameter bn = H(an, Km) = (bn1, bn2) is thus split up into
two parts. Finally, the fixed identity of each sensor is defined by IDn = H(N, Km), with N a unique
nonce and Km the master key of the server.

4.2.2. Authentication and Key Agreement Phase

The protocol starts again with a Hello message from the server containing the random value R1

after a triggering request of the sensor.
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Next, the sensor chooses its own random value R2 and defines Rn
2 = (N, R2). It computes

d1 = (d1,1, d1,2) = Rn
2 ⊕ bn = (N ⊕ bn1, R2 ⊕ bn2) and

H(an, IDn, R1, R2) = (c1, c2, c3, c4, c5)

The values (c1, c2, c3, c4, c5) are stored in the sensor before sending M1 = {an, d1, c3} to the server.
The server first defines H(an, Km) = b∗n and derives from d1 both N∗, R∗2 , resulting also in

ID∗n = H(N∗, Km). Then, the server checks the freshness of R∗2 . For instance, suppose that it uses in a
given interval the same R1, then all received values R∗2 should be fresh. Next, if ID∗n does not belong to
the list of revoked sensors, the process continues; otherwise, the protocol stops. Next, the server can
also compute

H(an, ID∗n, R1, R∗2) = (c∗1 , c∗2 , c∗3 , c∗4 , c∗5)

There are now two possibilities. In case c3 6= c∗3 , the server aborts the process. Otherwise, the
server defines

SK = c∗2
bn+1 = (bn+1,1, bn+1,2) = H(c∗1 , Km)

d2 = (d2,1, d2,2) = (bn+1,1 ⊕ c∗4 , bn+1,2 ⊕ c∗5)

d3 = H(bn+1, c∗1 , c∗2)

The message M2 = {d2, d3} is sent to the sensor.
Finally, the sensor derives bn ← (d2,1 ⊕ c∗4 , d2,2 ⊕ c∗5) using the stored values (c1, c2, c3, c4, c5).

Next, it checks the validity of d3 by computing H(bn+1, c∗1 , c∗2). If not correct, it aborts the process.
Otherwise, the variable an ← c1 is updated and the common shared secret key SK = c2.

Note that we kept the same flow for both protocols in order to be able to easily switch from one
to another and to use the same type of proof structure. It is very easy to reshape the protocol into a
2-phase protocol using similar ideas.

5. Security Evaluation

First of all, we give a formal proof of the protocol under the random oracle model for the
adversary A defined in Section 3. Based on this proof, we discuss the design choice of the lengths of
the parameters in order to obtain a security strength of 128 bits. Then, we define the strength of both
protocols in an informal way with respect to the main security attacks and security features. Finally, we
compare our protocol from a security point of view with respect to other related and recent protocols
as mentioned in Section 2.

5.1. Security Strength and Concrete Parameters

Let us denote the minimum output length of the hash function by nd and the minimum output
length of a variable by nv. We now prove the security of our proposed protocols in the random oracle
model, following the method described in [30] and applied in e.g., [31] with an adversary A as defined
in Section 3. We focus on the actual key agreement and not on the initialization phase, as we consider
the service provider to be a fully trusted entity.

The participants U in the scheme are the Sensor T and server R on the one hand and a random
oracle O on the other hand, i.e., U = {R, T, O}. Taking into account the properties of the adversary, we
assume that the attacker can run the following queries:

• Hash queries H(m). If m already exists in the list LH , the value H(m) will be returned. Otherwise,
a random value will be generated, added to the list LH , and returned.
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• Send queries. These queries simulate active attacks, where an adversary can modify the
transmitted messages. As a result, a corresponding reply will be generated:

– Send(0, R). First, a random variable R1 is chosen and sent to the sensor.
– Send(R1,T). In addition, a random variable R2 is chosen. A message M1 containing the

outcome of the hash function on the random data, identity and key related data and also
information to identify the sensor and corresponding key material is generated and sent to
the server. The outcome of the hash function is stored by the sensor.

– Send(M1,R). The correctness of the message M1 can be verified by checking the outcome
of the hash value. For that, the server should look up or derive the identity related data of
the sensor and the corresponding key material. If correct, the session key is defined. In the
protocol without storage, also new identity related data are defined and masked in order
to send it to the sensor. Finally, message M2, based also on the output of the hash function
derived in the previous step, is sent to the sensor.

– Send(M2,T). The received values of M2 are checked for correctness using the stored values of
the hash function. If correct, the session key is also computed and the key agreement protocol
has been successfully ended.

• Execute queries. These queries simulate the passive attacks, where an adversary can eavesdrop
onto the channel and collect the transmitted messages. There are three different execute queries
resulting from the first three send queries defined above.

• Session specific state reveal queries (SSReveal). According to the adversary model of A, the
attacker is able to retrieve session specific state information, derived by the T and R, respectively.
For the protocol with storage, no more information already available from the execute queries,
can be found in this way. For the protocol without storage, R2 is revealed, since it is hidden in the
variable d1 of M1.

• Corrupt queries. These queries give the secret key material of the entity as result and need to be
added to prove the perfect forward security feature. Note that only Corrupt (T) is defined in the
adversary model A. As the service provider is considered to be a trusted entity and not included
in the security model, there are no corrupt queries with regard to the service provider.

• Session key reveal query (SKReveal). In this query, the established symmetric SK between T,R is
returned if it has been successfully generated.

• Test query. In this query, either the established SK or a random value is returned, dependent on
the output c = 1 or c = 0 respectively of a flipped coin c. Note that the test query cannot be issued
when SKReveal or corrupt queries have been executed.

In order to prove the semantic security of the scheme, we consider the following two definitions:

• The entities T and R are partners if they are able to successfully derive in a mutual authenticated
way a common shared SK.

• The established shared secret key is said to be fresh if the SK has been established without
SKReveal queries by the adversary or Corrupt queries of T.

The final goal of the adversary A is to successfully predict the outcome of the test query, defined
above. Consequently, a successful attacker is able to distinguish the difference between a real secret
session key and a random value. The advantage of the adversary A in breaking the semantic security
of the proposed scheme equals to Adv(A) = |2Pr[succ]− 1|, with Pr(succ) being the probability that
the adversary has success. As a result, we can say that the proposed protocols offer semantic security
under the random oracle model for adversaries A if Adv(A) ≤ ε, for any sufficiently small ε >0.

In the proof below, we make use of the following difference lemma, defined in [32].

Lemma 1. (Difference Lemma) Let E1, E2 be the events of winning Game 1 and Game 2. Denote an error event
by E, such that E1|¬E occurs if and only if E2|¬E. Then, |Pr[E1]− Pr[E2]| ≤ Pr[E].
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Theorem 1. Let A be a polynomial time adversary against the semantic security, which makes a maximum
of qs Send queries, qe Execute queries and qh Hash queries. The advantage of A is bounded by Adv(A) ≤
O(qs+qe)2

2nv+1 + O(qh)
2

2nd + O(qs)2

2nd+1 .

Proof. We proof the theorem by means of game hopping [32] and by applying Lemma 1. As a
consequence, we exploit the fact that an attacker’s success probability only increases by a negligible
amount when moving between the games. Five games {GM0,GM1,GM2,GM3,GM4} are defined and
their corresponding probability of the attacker winning the game is denoted by succi for 0 ≤ i ≤ 4.

• Game GM0. This is the original and real game defined in the semantic security framework and is
defined as

Adv(A) = |2Pr[succ0]− 1|. (1)

• Game GM1. In GM1, the random oracle simulates the different queries and outputs the
corresponding results in the lists. Following the definition of random oracle model, we have that

Pr[succ1] = Pr[succ0]. (2)

• Game GM2. In this game, all oracles are also simulated, but now with avoiding collisions in
the output of the hash function and the selection of random values R1, R2 among the different
sessions. Consequently, due to the difference lemma and birthday attacks, it holds that

|Pr[Succ2]− Pr[Succ1]| ≤
O(qs + qe)2

2nv+1 +
O(qh)

2

2nd+1 . (3)

• Game GM3. In this game, the adversary A is able to find the hash value (c∗3 or d3 for protocol with
and without storage respectively) without input of the random oracle Send queries. In this case,
the scheme is simply stopped. Consequently, GM2 and GM3 are indistinguishable, except when
the T rejects this value. Thus, by applying the difference lemma, we have that

|Pr[Succ3]− Pr[Succ2]| ≤
O(qs)2

2nd+1 . (4)

• Game GM4. In this game, we consider the specific adversary model in which either the
session state variables (corresponding to SKReveal query) can be revealed or the secret variables
(corresponding to Corrupt query) at T. The adversary can perform Execute and Hash queries in
order to find the SK:

– In the case of SKReveal(T) and SKReveal(R), the SK can still not be retrieved if the hash
function is secure for collision and preimage attacks as it is constructed based on the output
of the hash function, which includes both session state variables and secret key variables of
both entities as input.

– If Corrupt(T) is applied, the previously generated session keys cannot be retrieved as they
require the secret key information, which are the input of a hash function with the new key
material as output. Again, the usage of a hash function resistant for collision and preimage
attacks avoids the success of this attack.

Consequently, the difference between GM3 and GM4 is negligible as long as the hash function is
secure for collision and preimage attacks. Therefore,

|Pr[Succ4]− Pr[Succ3]| ≤
O(qh)

2

2nd+1 . (5)
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Finally, applying Lemma 1 on the games GM0, GM1, GM2, GM3, and GM4, taking into account
Equations (1), (2), (4), and (5), results in the final proof of the theorem.

Theorem 2. In order to obtain 128 bits of security in the protocol without storage,
|IDn|, |Kn|, |R1|, |R2|, |SK| ≥ 128 bits and |c3| ≥ 256 bits.

Proof. From Theorem 1, we should avoid collisions in the hash output and thus |c3| ≥ 256 bits. As
also collisions in the random variables and resistance against exhaustive search should be offered, it
follows that |IDn|, |Kn|, |R1|, |R2| ≥ 128 bits.

Theorem 3. In order to obtain 128-bit of security in the protocol with storage,
|Km|, |R1|, |R2|, |SK|, |N|, |bn2|, |d2,2| ≥ 128 bits and |IDn|, |bn|, |d1|, |c3|, |d2|, |d3|, |bn1|, |d2,1| ≥ 256 bits.

Proof. From Theorem 1, we should avoid collisions in the hash output and thus clarifies the restrictions
on the sizes of IDn, d1, c3, d3. Since we also need to protect against the session reveal attacks, it follows
that bn1, d2,1 should also both have the same restriction.

The size of the other variables Km, R1, R2, N, SK, bn2, d2,2 are chosen in such a way that they avoid
collisions and exhaustive search and thus clarify the minimum size of 128 bits.

5.2. Informal Security Analysis

Table 1 summarizes the security strength for both protocols with respect to the most important
and relevant security features and attacks.

The protection against replay attacks, session specific temporary information attacks and denial
of service attacks is similar as both protocols rely on the same building blocks and structure. In
addition, in order to obtain mutual authentication, the strength of the Keccak protocol is exploited in
the two protocols.

Dynamic identities of the sensor are used in both protocols to obtain anonymity and unlinkability.
However, the process how to construct these identities is completely different in the two protocols.
In the protocol with storage, a synchronized version needs to be stored and updated at the server
side, and the sensor is able to update its key material independent of additional input of the server.
In the protocol without storage, the identity of the sensor should be updated using additional data
of the server as its master key is involved in the construction. Consequently, protection against
desynchronization attacks is different for the two protocols. While this protection naturally follows
from the derivation of the key material in the protocol without storage, it requires additional storage
of the previous identity and key of the sensor at the server for the protocol with storage.

Both protocols offer perfect forward secrecy of the sensor, but not for the server. For the protocol
without storage, only one parameter needs to be perfectly protected in order to avoid this attack. If
this master key is revealed, all previous session keys and identities can be retrieved. In the protocol
with storage, the devastating consequences are less as only at most two last session keys per sensor
can be revealed, but it also requires the protection of the whole database containing this identity and
secret key material of the sensors.
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Table 1. Informal security analysis of both protocols.

Characteristic Protocol with Storage Protocol without Storage
Mutual
authentication

Only the entities knowing the secret key Kn
or Kn+1 can derive the correct authentication
values c3 and c4 respectively. Note that
thanks to this feature, also protection against
impersonation and man-in-the-middle attacks
is offered.

The server is the only entity, who is able
to derive bn and thus R2 from the received
value an. The sensor is ensured about the
authentication of the server by checking the
correctness of d3, which cannot be manipulated
without knowledge of Km. Consequently, the
protocol is also resistant for impersonation and
man-in-the-middle attacks.

Anonymity and
unlinkability

The identity IDn sent in the protocol is dynamic
and not linked to a certain static sensor. Its
content changes after each successful run of the
protocol and therefore no tracking of a specific
sensor can be obtained. In addition, the other
parameters sent in the protocol have no link
with identity related information.

The identity related information sent in the
protocol, an, d1 is dynamic and updated after
each successful run of the protocol. Without
knowledge of the secret key Km, the attacker is
not able to reveal the real identity of the sensor.
Moreover, as there is no relation between
consecutive parameters an, d1, an attacker
cannot perform location tracking attacks.

Perfect forward
secrecy of
sensor.

If an attacker captures the sensor and gets
access to (IDn, Kn), it will not be able to
generate the previous session keys as they were
built using the hash function of the previously
secure keys Kn−1, which are overwritten in
memory with the current version Kn.
Note that perfect forward secrecy does not hold
at the server side. If an attacker gets access
to the database, it is able to generate using
the collected random values sent in clear in
the transmission channel the last established
session keys.

If the secret information an, bn, IDn, N is
leaked from the sensor, the previous session
keys cannot be revealed as they require the
knowledge of the previous bn and also R2
values. Without knowledge of Km, this
data cannot be revealed from the transmitted
messages. In addition, the anonymity and
unlinkability features will still be valid as the
parameters an, d1 change after each successful
authentication. In addition, here, no perfect
forward secrecy on the server side is obtained
because if Km is retrieved, the values bn, IDn
can be derived from the message M1 sent by
the sensor, resulting in the derivation of SK.

Replay attacks The value R1 can be replayed, but randomness
will still be guaranteed by the generation of
the random value R2 by the sensor. Moreover,
as the parameters (IDn, Kn) change after each
protocol run and a synchronized version is kept
at the database, replay attacks are avoided.

In addition, here, R1 can be replayed, but
randomness will still be guaranteed by the
generation of the random value R2 by the
sensor, whose uniqueness is specifically tested
by the server. As a consequence, an attacker
cannot obtain two times the same outcome of
the hash value.

Desynchronization
attack

Suppose the message M1 is dropped by the
attacker. In this case, both server and sensor are
not updated. However, in case the last message
c∗4 is dropped, the server gets updated and not
the sensor. Therefore, in order to overcome
potential desynchronization in the next call
of the protocol, we need to store always the
previous values of identity and key material
too at the side of the server, which is considered
to be the most powerful device.

Due to the nature of the protocol by the specific
construction of the key material, there is no
synchronization required. In particular, the
usage of the static master key KM will always
lead to common shared key material.

Denial of
service attack

The only place where a potential denial of
service attack can appear is in the first step of
sending the random value R1. However, the
sensor can built in a mechanism to block in
case more than a threshold of invalid responses
are sent back. All the other messages can
be specifically verified for the correctness as
they include checks on the existence of the key
material. Consequently, as the protocol only
consists of three phases, the server can never be
blocked by having too many open sessions.

The same reasoning for protection against
the denial of service attack also holds in this
protocol.

Session specific
temporary
information

In this protocol, there is no additional session
specific temporary information that can be
revealed in order to be exploited for the
generation of the SK.

If also R2 is leaked, bn2 can be retrieved and
thus a collision attack on bn1 can be executed.
However, the size of bn1 is chosen in such a way
that it still offers 128-bit protection.
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5.3. Comparison of Security Features of Different Protocols

Table 2 compares the two proposed security protocols, with and without storage on the server side,
with the schemes proposed in [5,6,15,21]. Therefore, we take into account the different security features
mentioned in Table 1. Consequently, from Table 2, we can conclude that our proposed protocols
are able to offer most of the required security features. The only feature that is not addressed is the
perfect forward secrecy on the server side. The other schemes in literature without storage [5,15]
also do not satisfy this feature. However, in the schemes where the feature is addressed [6,21], there
is no protection against synchronization attacks. Note that recently, in [33], a symmetric key based
authentication scheme has been proposed which satisfies at the same time complete perfect forward
secrecy and a solution for potential desynchronization problems. However, this scheme does not
provide anonymity and consists of five phases with multiple hash functions.

In addition, we want to explicitly note that, for both protocols, there is no need for synchronized
clocks on both sensor and server side in order to resist for replay or synchronization attacks. This is
typically a very difficult requirement to realize in practice and in particular when constrained devices
are involved.

Table 2. Comparison of security strength with related and recent literature with respect to the following
features: F1: Mutual authentication, F2: Anonymity and unlinkability, F3: Perfect forward secrecy,
F4: Resistance against replay attacks, F5: Resistance against desynchronization attacks, F6: Resistance
against denial of service attacks, F7: Resistance against specific temporary information, F8: No need for
synchronized clocks (Y: Yes, N: No).

Scheme (Authors+Year) F1 F2 F3 F4 F5 F6 F7 F8
Kumar et al., 2017 [5] Y Y Y Y(T) Y Y N N
Chen et al., 2018 [15] Y Y Y Y(T) Y Y N N
Mansoor et al., 2019 [21] Y Y Y N(T,R) N N N N
Lara et al., 2020 [6] Y Y Y Y(T,R) N Y Y N
With storage Y Y Y Y(T) Y Y Y Y
Without storage Y Y Y Y(T) Y Y Y Y

6. Performance

In this section, we will discuss the efficiency of our protocol with respect to both computational
and communicational costs and compare again with the related work of [5,6,15,21].

For the computational complexity, we restrict the analysis to the most constrained device
participating in the authentication and key agreement protocol, being the sensor. We also neglect
xor operations and other low cost operations like concatenations, comparisons, splitting, etc, since
their impact is negligible compared to the cost of a hash function and encryption operation. In all
protocols in order to achieve mutual authentication, one random value should be generated on the
sensor side. Therefore, we do not explicitly included this operation in Table 3, summarizing the
comparison of the performance of the different protocols. As a consequence, only the amount of
hashes and encryptions/decryptions is taken into account. From Table 3, we can conclude that our
two proposed protocols have the lowest amount of hash functions and thus the lowest computational
complexity, compared to state of the art related work. Only [21] has the same amount as hash functions
than our protocol without storage, but this protocol only offers limited security strength as shown in
Table 2.

To give an idea of the feasibility and performance of such hash operation on a device, we consider
the performance results of [34], where the efficiency of both SHA2 and SHA3 is analyzed on the
MAXREFDES]100 health sensor platform [35], which uses the MAX32620 96 MHz ARM Cortex-M4F
microcontroller consisting of 2 MB flash and 256 KB RAM. They measured a timing of 108 µs and 438
µs for one SHA2 and SHA3 call, respectively. Note that the maximum input size of the algorithms is
equal to 55B for SHA2 and 135B for SHA3. Taking these numbers into account, Table 3 shows that, in
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case of SHA2 implementation, Refs. [5,15] become more efficient than our protocol without storage
using SHA3. On the other hand, our protocol with storage is still the most efficient one. However, note
that researchers are actively working on the construction of more efficient sponge functions in hash
functions. Moreover, if SHA3 dedicated chips are used, these numbers would also drastically change
and thus it shows the importance of decreasing the number of hash operations to the maximum.

In order to compare the communicational complexity of our protocols with [5,6,15,21], we also
assume 128 bit security in these protocols thus resulting in output hashes of 256 bits in length. In
addition, we consider timestamps with length equal to 32 bits. Table 4 shows that our protocol with
storage on the server side behaves most optimally and has the lowest amount of sent and received bits
from the sensor. The protocol without storage behaves a bit worse than [5,21], but, as can be seen from
Table 1, offers also more security features.

Table 3. Comparison of computational cost with related and recent literature. NH equals the number
of hashes and Ne the number of encryption operations.

Scheme (Authors+Year) Nr of Operations With SHA2 (µs) With SHA3 (µs)
Kumar et al., 2017 [5] 2NH + 2NE 564 1116
Chen et al., 2018 [15] 5NH 1080 2190
Mansoor et al., 2019 [21] 2NH 540 786
Lara et al., 2020 [6] 9NH 1944 3942
With storage 1NH - 438
Without storage 2NH - 876

Table 4. Comparison of communication cost with related and recent literature.

Scheme (Authors+Year) Nr of Sent Bits Nr of Received Bits Total Sent+Received Bits
Kumar et al., 2017 [5] 704 416 1120
Chen et al., 2018 [15] 1056 1024 2080
Mansoor et al., 2019 [21] 672 416 1088
Lara et al., 2020 [6] 1088 1088 2176
With storage 512 384 896
Without storage 786 640 1426

7. Conclusions

In this paper, we have proposed two authentication and key agreement protocols to be applied
in any type of client–server architecture, which is in particular very interesting in case the client is
resource constrained. The protocols exploit the variable output length of the Keccak algorithm. The
security of the protocol is explicitly proven in the random oracle model, which also allows for deriving
the sizes of the different parameters used in the scheme. We have shown that our protocols outperform
the state of the art with respect to computational cost by requiring only one execution of the hash
function on the client side for the protocol with storage and two hash functions for the protocol without
storage. In addition, the communication cost is low compared to related work and takes into account
the available security features. It is still an open question how to include the perfect forward secrecy
from the server side in an efficient way into the schemes.
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