
Journal of

Clinical Medicine

Review

Bioresorbable Magnesium-Based Alloys as Novel Biomaterials
in Oral Bone Regeneration: General Review and Clinical Perspectives

Valentin Herber 1,2,* , Begüm Okutan 2 , Georgios Antonoglou 1, Nicole G. Sommer 2 and Michael Payer 1

����������
�������

Citation: Herber, V.; Okutan, B.;

Antonoglou, G.; Sommer, N.G.; Payer,

M. Bioresorbable Magnesium-Based

Alloys as Novel Biomaterials in Oral

Bone Regeneration: General Review

and Clinical Perspectives. J. Clin. Med.

2021, 10, 1842. https://doi.org/

10.3390/jcm10091842

Academic Editor: Matthias Karl

Received: 29 March 2021

Accepted: 19 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics,
Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; antonoglou.georgios@gmail.com (G.A.);
mi.payer@medunigraz.at (M.P.)

2 Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6,
8036 Graz, Austria; beguem.okutan@medunigraz.at (B.O.); nicole.sommer@medunigraz.at (N.G.S.)

* Correspondence: valentin.herber@medunigraz.at

Abstract: Bone preservation and primary regeneration is a daily challenge in the field of dental
medicine. In recent years, bioresorbable metals based on magnesium (Mg) have been widely inves-
tigated due to their bone-like modulus of elasticity, their high biocompatibility, antimicrobial, and
osteoconductive properties. Synthetic Mg-based biomaterials are promising candidates for bone
regeneration in comparison with other currently available pure synthetic materials. Different alloys
based on Mg were developed to fit clinical requirements. In parallel, advances in additive manufac-
turing offer the possibility to fabricate experimentally bioresorbable metallic porous scaffolds. This
review describes the promising clinical results of resorbable Mg-based biomaterials for bone repair in
osteosynthetic application and discusses the perspectives of use in oral bone regeneration.

Keywords: magnesium; alloy; biomaterial; bone regeneration

1. Introduction
1.1. Introduction to Magnesium

Magnesium (Mg) is the lightest structural metal and increased interest within automo-
bile and aerospace industries since the late 1990s with the requirement of weight-saving
metals [1]. In electric and informatic industries, Mg-based alloys have been widely used
due to their advantages, e.g., the high specific strength, environmental friendliness, and
good thermal and electrical conductivity [2].

Mg is the fourth most abundant cation element found within the human body, and
involved in more than 300 known cell enzymatic reactions [3]. Mg plays an important
role in mitochondrial activity, protein, and nucleic synthesis, and therefore in energy
metabolism and cell proliferation [4,5]. With approximately 21 g to 28 g of Mg in a healthy
adult, over 50% is stored in the bone [4]. Mg balance depends on the storage in bone, the
intestinal uptake, and the renal excretion [6]. The kidney is the principal organ responsible
in Mg homeostasis [7]. A disrupted Mg homeostasis in associated with severe pathological
conditions, such as hypo- or hypermagnesemia [8].

Mg and its alloys have gained interest in the field of medicine due to their high
bioresorbability, as well as their bone-liked elastic modulus to bone. A clear advantage
of bioresorbable materials in daily clinics is the avoidance of second stage surgeries and
reduction of associated comorbidities. Mg corrodes in the physiological environment and
releases species such as Mg2+ ions (Mg2+), alloying elements, H2 gas, and OH− [9]. In an
alkaline environment, magnesium hydroxide Mg(OH)2 is deposited on the Mg matrix and
forms a protective layer [10]. If the corrosive environment contains more than 30 mmol·L−1

of chlorides (Cl−), Mg(OH)2 is converted to magnesium chloride (MgCl2), which is highly
soluble [11]. The intermediate corrosion products can be absorbed in the physiological
environment or digested by macrophages [12]. During the corrosion of Mg, H2 is released
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in the surrounding tissues. Song considered that a H2 evolution rate of 0.01 mL/cm2/day
can be tolerated by the human body [13]. Liu et al. recently showed that H2 have a
positive effect on bone regeneration while inhibiting the osteoclastogenesis of mouse bone
marrow mononuclear cells [14]. Mg2+ are physiologically present in the human body and
participate in metabolic reactions and biological mechanisms. No critical toxic limits have
been reported concerning released Mg2+ as their excess is easily excreted via urine [15].

The corrosion of Mg and its alloys depends on several factors. The heterogeneity,
metal purity and microstructure of the alloy will influence the corrosion [16]. Additionally,
mechanical loads can form stress corrosion cracking and/or corrosion fatigue that can
lead to implant failure [17]. After implantation, the pH of the surrounding tissues and the
vascularization of the peri-implant zones are factors influencing Mg corrosion [18]. Some
corrosion conditions such as pH values of 7.4–7.6 and high Cl− concentration leads to a fast
corrosion of the Mg-based materials. Uncontrolled Mg corrosion possibility generates (i) an
increase of the local pH by releasing OH− ions, (ii) changes of the mechanical behaviour,
as well as (iii) the release of H2 in the surrounding tissue [19,20]. In this way, the controlled
corrosion of Mg is the key for further clinical application.

This article focusses on the future application of bioresorbable Mg-based materials
in oral bone regeneration. To understand the interest of Mg in this use, we first describe
the need of bioresorbable materials and review Mg and Mg-based alloys already inves-
tigated in clinical trials. To have an overview on the effectiveness and safety of Mg, we
discuss previous clinical trials evaluating Mg and its alloy upon bone repair in the field
of orthopaedic and orthognathic surgeries. The limitations of pure synthetic material for
bone regeneration and the advantages of Mg are also discussed. Finally, perspectives of
Mg’s application in oral bone regeneration are exposed.

1.2. First Clinical Implantation of Mg for Orthopaedic Surgery

Since the 19th century, Mg attracted attention from biomedical researchers and clin-
icians. The first clinical evaluation of Mg was performed in 1900 in Europe. Payr et al.
proposed and investigated Mg as bioresorbable material for musculoskeletal surgical appli-
cation [21,22]. Then, in 1906 in France, Albin Lambotte and Jean Verbrugge investigated
the clinical use of pure Mg for osteosynthesis by implanting pure Mg discs associated
with steel screws into the fibula. They reported post-operative massive subcutaneous
gas formations and local swelling resulting from the formation of gas accelerated by the
steel screws, which have a higher corrosion potential than Mg [23,24]. After this failure,
Lambotte and Verbrugge inserted pure Mg nails to fix supracondylar fractures of children
with uncomplicated functional restoration of the joint [25]. The first alloying system based
on Mg, zinc, and aluminium, was pre-clinically and clinically investigated for children
transdiaphyseal humerus fracture approximately two decades after the first use of Mg by
the French researchers [23]. Around 1938, McBride who firstly criticized the use of Mg
plates for bone reconstruction, suggested and highlighted new surgical approaches with
Mg screws, including bone drilling before screw insertion [26]. A few years later, Maier
reported two clinical cases with humerus fractures treated with spindle shaped pins which
were associated with promising clinical outcomes [27]. In 1948, Troitskii (Трoицкий) and
Tsitrin (Цитрин) communicated the successful use of screws and plates based on Mg and
a small amount of cadmium in cases of pseudarthrosis [28]. Znamenskii also alloyed Mg
with a small amount of aluminium, and reported good clinical outcomes [29].

From the middle of the 19th century to the beginning of the 20th, no clinical trials
were reported in the literature. This lack of interest could be explained by the introduction
and successful use of non-absorbable materials such as titanium alloys (Ti), which exhibit
excellent osteoconductive, mechanical, and biocompatible properties. Nonetheless, in the
last decade, and in parallel to the development of new and active biomaterials, interest has
been renewed in Mg.



J. Clin. Med. 2021, 10, 1842 3 of 19

1.3. Clinical Need of Bioresorbable SYNTHETIC Materials in the Field of Oral Bone Regeneration

Different physiological and pathological situations such as tooth extraction, injuries,
diseases, use of certain drugs, including bisphosphonates, or surgeries can lead to vertical
and/or horizontal bony defects. Despite the natural healing process, bone augmentation is
essential in many situations to allow implant placement and subsequent dental reconstruc-
tion. Just after blood transfusion, bone grafting procedures are the second most frequent
tissue transplantation [30]. Bone graft represents more than two million surgical procedures
annually in the world with a market size valued at USD 2.78 billion in 2020 [31,32].

Autogenous bone is still considered gold standard for bone repair, since the graft
is harvested from the same patient and no complications of the immune system may be
expected [33]. However, important bone resorption has been reported after the clinical
use of autogenous grafts [34,35]. Intraoral block grafts are commonly taken from the
mandibular symphysis or ramus and are associated with less donor site morbidities com-
pared with those extraorally harvested. However, a limited volume of intraoral grafts has
to be considered when reconstructing large intraoral defects [36–38]. To avoid a second
surgical site and reduce possible patient discomfort, three other classes of grafts were
differentiated and developed: allografts, xenografts, and the synthetic grafts (alloplasts).
Allografts are harvested from genetically non-identical members of the same species [39].
The risk of disease transmission exists, but is negligible and, as an example, is estimated
at 1 in 1.6 million for the human immunodeficiency virus (HIV) [40]. Xenografts, derived
from non-human species, mainly bovine, are also osteoconductive and are widely used
in daily practice [39]. Bovine-derived bone substitutes (particulate and blocks) have suc-
cessfully been documented in clinical application for the treatment of bone defects and
ridge augmentation procedures [41–43]. However, due to the origin of xenografts, patients’
religious beliefs as well as dietary restrictions have catalysed the search for alternative
materials [44]. In this context, synthetic resorbable bone substitutes that are partially or
completely replaced after the healing process by newly formed bone and are devoid of
biological material (either collagen or protein) have gained interest in research.

In cases of guided bone regeneration (GBR) and guided tissue regeneration (GTR)
which are widely used to treat alveolar bone defects, bioresorbable membranes aim to
interfere the ingrowth of soft tissue or epithelium into the defect site and promote peri-
odontal tissue or bone regeneration without removal of the membrane [45,46]. However,
even nowadays in the reconstruction of severe critical size defects the application of non-
resorbable membranes and/or synthesis, screws or plates may still be seen in daily clinics.
Thus, there still seems to be an urgent clinical need for research and reliable data on biore-
sorbable materials used in GBR/GTR procedures, as they do not require any second stage
surgery and may reduce related-costs [47].

In addition, after orthognathic surgery, metallic fixation biomaterials are commonly
made of Ti. Although these devices offer superior mechanical properties, they are bioinert,
and permanently remain as a foreign material in the body. Surgical site infections (SSI)
occur in 1.4% to 33.4% of all cases [48].

2. Mg and Its Alloys

The degradation rate of Mg and its alloys is the main limitation in the clinical field.
This degradation rate of implants should match with bone healing rate. To improve
corrosion resistance of Mg-based implants, purification and material alloying are useful
methods. Several Mg-based alloys (i.e., Mg-Ca alloy, Mg-Zn alloy, Mg-Si alloy, Mg-REE
alloy) have been investigated in vitro and in vivo to be used for clinical applications.

The following section will review widely used Mg-based biomaterials in clinics,
including their composition, mechanical properties, and pre-clinical studies. The detailed
pre-clinical studies of these alloys were summarized in Table 1.
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Table 1. Representative pre-clinical studies of Mg-based biomaterials.

Type of Material Designed Material Animals and Implantation Site Time Period Calculated In Vivo Degradation Rate

Pure Mg (99.99 wt.%) [49] plate and screw Rabbit ulnae 8 and 16 weeks 0.40 ± 0.04 mm/y (8 weeks)

Pure Mg (99.99 wt.%) [50] screw Rabbit femoral bones 4, 8, 16, 24 weeks 1.38 ± 0.03 mm/y(4 weeks) 0.57 ± 0.03 mm/y
(24 weeks)

Pure Mg (99.99 wt.%) [51] pin Rat femoral bones 1, 4 and 12 weeks 0.2–0.4 mm/y
Pure Mg (99.99 wt.%) [52] pin Rat femoral bones 7 days 0.15 ± 0.03 mm/y

26Mg enriched (>99 wt.%) [53] pin Rat femoral bones 4, 24, 52 weeks 16 ± 5 µm/y
Pure Mg high pressure (99.98 Mg in wt.%) [54] disk Rat femoral bones 24 weeks 0.41 ± 0.02 mm/y

WE43 (>92.0 Mg in wt.%) [55] plates and screw Dogs-LeFort I osteotomy 4, 12, and 24 weeks NA 1

WE43 (>92.0 Mg in wt.%) [56] screw Rabbit tibiae 4, 8, 12 and 16 weeks NA 1

WE43 (>92.0 Mg in wt.%) [57] pin Rat tibiae 52 weeks NA 1

WE43/WE43T5 (>92.0 Mg in wt.%) [58] screw Sheep mandibule 6 and 24 weeks NA 1

MgYREZr (>92.0 Mg in wt.%) [59] screw Rabbit femoral bones 1, 12, and 52 weeks NA 1

JDBM (>95.0 Mg in wt.%) [60] screw Rabbit mandible bones 1, 4, and 7 months 0.161 ± 0.025 mm/y (1 month), 00.218 ± 0.030 mm/y
(7 months)

NZK (>96.0 Mg in wt.%) [61] rod Rabbit femoral bones 28 and 56 days 0.66 mm/y (28 days) and 0.48 mm/y (56 days)
Mg-Zn (94.0 Mg in wt.%) [62] rod Rabbit femoral bones 14 weeks 2.32 mm/y
ZX00 (>99.0 Mg in wt.%) [63] pin Rat femoral bones and sheep tibiae 6, 12 and 24weeks 0.08 mm/y (rat) and 0.045 mm/y (sheep)
ZX00 (>99.0 Mg in wt.%) [64] screw Sheep tibiae 3, 6 and 12 weeks NA 1

1 NA: non-applicable for the degradation rate in mm/year. JDBM, Jiaoda BioMg, denoted as JDBM; NZK, Mg-Nd-Zn-Zr alloy.
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2.1. Pure Mg

Pure Mg is the simplest form of material among all other bioresorbable materials.
Since Mg has a fast corrosion rate when compared to other metals, alloying pure Mg with
other elements can increase the galvanic corrosion of Mg-based alloy [50,65]. Additionally,
degradation rate of pure Mg is influenced by impurities (i.e., Fe, Ni, Cu) [50]. Therefore, the
corrosion rate of high-purity (HP) Mg (99.99%), which has very low amounts of impurities,
is lower than many other Mg-based alloys [50]. Low mechanical strength limits the usage
of these biomaterials as heavy load-bearing implants. Although it can limit the usage
of pure Mg implants, many pre-clinical studies confirmed that pure Mg can promote
new bone tissue formation, which makes them a great candidate for low load bearing
implants [49,50,66].

Han et al. conducted in vitro and in vivo studies on high-purity Mg (HP Mg) that
shows a great potential as internal fixation devices for femoral intracondylar fractures.
In vitro analysis indicated that HP Mg had uniform corrosion behaviour and promoted
the expression level of osteogenic related genes (i.e., osteopontin, alkaline phosphatase,
RUNX2). Similarly, good osseointegration and fracture healing were observed in surround-
ing HP Mg screws in rabbit femurs 8 weeks after implantation [50]. In another pre-clinical
study, HP Mg screws were applied in the rabbit model of anterior cruciate ligament (ACL)
reconstruction and compared to Ti screws. Biomechanical properties of HP Mg screws
were comparable with Ti screws. Histological analysis revealed formation of distinct fibro-
cartilage transition zones at the tendon-bone interface within the HP Mg group, whereas a
disorganized fibrocartilage layer was observed in Ti group 12 weeks after implantation.
Moreover, gene expression analysis showed increased BMP-2 and VEGF levels in the HP
Mg group compared to Ti group. These results indicated that Mg2+ ions released from
HP Mg promoted fibrocartilaginous enthuses regeneration [67]. Besides the effect on bone
healing, Zhang et al. investigated in vivo degradation and histocompatibility of pure Mg
and Mg-6Zn wt.% alloy into the bladders of Wistar rats. Both implant materials exhibited
good histocompatibility and no adverse effect was found in bladder, liver, and kidney
tissues 2 weeks after implantation. In terms of degradation, pure Mg degraded slower than
the Mg-based alloy in both in vitro and in vivo [68].

2.2. Mg-REE Alloy

In order to decrease the degradation rate of pure Mg, rare earth elements (REE) are
predominantly added to improve the corrosion resistance and mechanical strength of
Mg-based biomaterials. Yttrium (Y), scandium (Sc), gadolinium (Gd), zirconium (Zr), and
neodymium (Nd) are intensively studied. WE43 alloy (Mg-3.5% Y-2.3% Nd-0.5% Zr, wt.%
and trace amount of other REEs) has been used in many medical applications as pins,
screws, and cardiovascular stents [69].

Oshibe et al. investigated degradation and biocompatibility of the anodized and
monolithic cylindrical WE43 implants in Sprague Dawley rats. Therefore, WE43 was
implanted into the tibia and evaluated over a one-year long-term follow-up period. One
year after surgery, bone maturation progressed, and lamellar bone structure developed
around the implant in both groups. The WE43 implants showed good long-term stability
and biocompatibility in bone tissue [57]. Besides, Levorova et al. implanted WE43 and Ti
screws into the tibia of rabbits. A significant volume loss of WE43 screws was observed
between the 12th and 16th weeks after implantation. Histological analysis demonstrated
comparable bone healing around the WE43 and Ti screws without any adverse effect [56].
Moreover, biocompatibility and mechanical properties of WE43 are still being improved
and tested in many preclinical studies. For instance, Torrini et al. compared biological
response and degradation pattern of WE43 (as-cast) and artificially aged Mg alloy (WE43-
T5) in an intraosseous mandible sheep model. As control, Ti screws were used. At 24 weeks,
histomorphological analysis showed that WE43-T5 alloy had higher degradation rate and
enhanced bone remodelling compared to WE43 (as-cast). Therefore, the developed WE43-
T5 alloy is a suitable candidate as an endosteal bone screw [58]. Another in vivo study
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carried out by Byun et al. concluded that extruded WE43 was suitable to be used for
mid-facial application. Extrusion technique improved the mechanical strength of WE43
and promoted the new bone tissue formation around the plates and screws [55].

MgYREZr alloy is the first clinically approved Mg-based biomaterial similar to the
WE43 alloy. Many in vivo studies confirmed that this alloy type has good biocompati-
bility [59,70]. Waizy et al. implanted MgYREZr screws into the bone marrow cavity of
rabbit femoral bones (New Zealand White rabbit) to investigate the local effects on bone
tissue and systemic reactions 1-, 12-, and 52-weeks after implantation. Histological analysis
revealed moderate bone formation around screws without a fibrous capsule. There were
no adverse effects on lung, liver, intestine, kidneys, pancreas, and spleen tissue samples
according to histopathological evaluations. This study revealed that MgYREZr alloy have
good biocompatibility and osteoconductivity [59].

Mg-Nd-Zn-Zr alloy (Jiaoda BioMg, denoted as JDBM) is another Mg-REE based
alloy produced by Zhang et al. [71]. Developed new type Mg-REE based alloy has better
mechanical properties as well as sufficient corrosion resistance. Therefore, this alloy type
is investigated in many pre-clinical studies as well [72,73]. Guan et al. coated Mg-Nd-
Zn-Zr (JDBM) with brushite and tested for mandibular bone repair both in vitro and
in vivo. Brushite-coated JDBM screws were implanted into mandible bones of rabbits
for 1, 4, and 7 months, respectively, using 316 L stainless steel screws as a control group.
This coated alloy not only showed a slow degradation rate at an early stage but also
induced osteogenesis of the mandibular bone, indicating a great potential for mandibular
repair [60,61]. Another designed Mg-Nd-Zn-Zr alloy (NZK) was investigated to analyse
degradation behaviour and biocompatibility at early time points. Alloys were implanted
into the New Zealand white rabbit’s femur and compared with Ti alloy and sham-operated
group as controls. A good biocompatibility was observed, and the degradation rate was
calculated as 0.66 and 0.48 mm/year at 28 and 56 days, respectively. Wang et al. suggested
that designed NZK alloy can degrade gradually in rabbit femur [61].

Despite the promising preclinical results, some questions remain concerning the safety
of REE. In fact, these elements do not naturally exist in the body, and their long-term
effects are still unknown. Some negative in vitro effects were shown on effects on murine
fibroblast and osteoblast cells [74], and on human cell lines [75]. To date, no biocompatible
complications were shown in vivo, maybe due to the relatively small amount of REE
present in these alloys.

2.3. Mg-Ca-Zn Alloy

Compared to previous alloys, alloys made with Mg, these alloys are mainly focusing
on nutrient elements, such as calcium (Ca) and zinc (Zn). Ca is one of the main elements in
the human body, especially for bone and teeth, and plays an important role in many cellular
signalling pathways. Moreover, many studies revealed that Ca can promote bone healing;
therefore, alloying Mg and Ca might be a positive effect on bone healing [76]. On the
other hand, Zn, which is an essential trace element in the human body, takes part in many
biological processes such as wound healing, catabolism of carbohydrates, immunological
response, bone development, and growth [77]. Moreover, Zn can improve the mechanical
strength of Mg alloys depending on Zn concentration. Cai et al. revealed that up to 5%
of Zn can increase the strength of Mg based alloys. Therefore, approximately 4% of Zn
showed best mechanical properties among other concentrations [78].

Wong et al. studied the biocompatibility and osteogenic capacity of Mg60Zn35Ca5
bulk metallic glass in a rabbit tendon–bone interference fixation model for a period of up to
24 weeks. Conventional Ti alloy (Ti6Al4V) and polylactic acid (PLA) were used as controls.
Results showed that this biomaterial had sufficient biocompatibility and promoted new
bone tissue formation after 24 weeks when compared to Ti and PLA groups [79]. ZX00
(MgZnCa; <0.5 wt.% Zn and <0.5 wt.% Ca) is recently developed Mg-Zn-Ca alloy system,
especially for children [80]. Grün et al. investigated ZX00 degradation and bone formation
in rat and sheep models. In both animal models, ZX00 exhibited homogenous degradation
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behaviour. New bone formation was observed around implants after 24 weeks in rat
femurs, and osseointegration was observed in both models [63]. In another study, ZX00
screws were implanted into a fractured bone of a growing sheep model and compared with
the non-fracture control group in terms of degradation behaviour and fracture healing.
Results revealed that fractures healed after a maximum of 12 weeks, and degradation
behaviour was comparable with control group [64]. Therefore, both studies confirmed that
ZX00 is a great candidate for bone-implant applications.

As summarized in Table 1, in vivo degradation rate can be calculated using volume
loss during the degradation of Mg. This rate varies depending on the type of alloys and
the type of animal model. For rats, the small animal model is widely used, it varies from
0.41 to 0.40 mm/year for pure Mg [52,54] and 0.08 mm/year for ZX00 [63].

2.4. Material Specificities for Oral Application

According to these preliminary results, Mg and its alloys exhibit excellent in vivo
biocompatibility, and gradual bioresorbability while promoting bone formation after im-
plantation. Biomaterials developed for oral bone regeneration have to deal with a specific
environment, e.g., through saliva during wound closure. Salivary fluids contain approxi-
mately 99% water, a variety of electrolytes (sodium, potassium, calcium, Cl−), proteins,
glucose, and nitrogenous products, such as urea and ammonia [81]. Saliva contains less
Cl− amounts than blood serum. According to the corrosion of Mg previously described,
Mg(OH)2 is deposited on the Mg matrix and forms a protective layer when Mg and its
alloys are in contact with salivary fluids. Additionally, the high number of electrolytes and
proteins present in the saliva interact with the Mg-based materials and influence the corro-
sion rate. A recent in vitro study demonstrates that prior artificial exposure significantly
decreases the corrosion rate and can act as a protective element directly after exposure in
the oral cavity [82]. Additional preclinical research has to be performed.

Oral and maxillofacial bioresorbable implants require a homogenous corrosion associ-
ated with a corrosion rate in accordance with the bone healing in order to prevent early
implant failure and negative side effects. According to Table 1, bioresorbable Mg-based al-
loys could be promising candidates for bone regeneration approaches within maxillo-facial
and dento-alveolar surgery.

3. Clinical Evaluation of Mg-Based Alloys

Mg and its alloys have been widely investigated in the last century in many fields
of applications such as orthopaedic, maxillo-facial, or vascular surgery. This review only
focuses on the recent clinical/functional outcomes of Mg in osteosynthetic applications.
Until now, no clinical trial reported the use of Mg and/or its alloys in oral bone regeneration.

3.1. Renewed Interest in the Use of Mg in Orthopaedic Surgery during the 20th Century

Metallic non-bioresorbable biomaterials such as Ti or cobalt-chromium are widely
used in orthopaedic surgery and provide a stable fixation for fracture fixation. Their wide
application is limited due to the stress conduction during bone healing, the need for a
second removal procedure, and the generation of toxic metallic ions [83,84].

As summarized in Table 2, Mg and its alloys was intensively investigated through
clinical orthopaedic trials including case reports, case series, retrospective observational
studies, and prospective controlled clinical trials from 2013 until now. Most of these trials
investigated the use of screws to stabilize unstable fractures.
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Table 2. Summary of the clinical studies using Mg-based implant in the field of orthopaedic surgery and traumatology.

Authors Type of Study Intervention Type of Alloy n Outcomes Complications

Windhagen et al. [85]
Randomized

controlled clinical
trial

Hallux valgus MgYREZr 26
(13 Mg and 13 Ti)

Fracture union without healing
disorders except for 2 patients

Wound healing delayed
in 2 patients with Mg

screws

Yu X et al. [86] Retrospective
observational study

Displaced femoral neck
fracture Pure Magnesium 19 17 patients with fracture union One patient with

non-union fracture

Lee et al. [87] Case series Radial styloid fracture Mg-5wt%Ca-
1wt%Zn 53 Fracture union, fracture healing,

retrieved function None

Plaass C et al. [88] Case series Hallux valgus MgYREZr 45 Fracture union, fracture healing,
retrieved function

One complication
(dorsal subluxation)

Zhao et al. [89]
Randomized

controlled clinical
trial

Hip-preserving surgery Pure Magnesium 48 Fracture union, fracture healing,
retrieved function None

Wichelhaus A et al. [90] Case report Scaphotrapeziotrapezoidal
fracture MgYREZr 1 / Screw breakage, pain,

paraesthesia

Biber R et al. [91] Case report Humeral capitelum
fracture MgYREZr 1 Fracture union, fracture healing,

retrieved function None

Biber R et al. [92] Case report Distal fibular fracture MgYREZr 1 Fracture union, fracture healing,
retrieved function None

Meyer R and Panzica M [93] Case series Scaphoid fracture MgYREZr 5 /
Extensive cyst formation

and delayed
consolidation

Plaass C et al. [94]
Randomized

controlled clinical
trial

Hallux valgus MgYREZr 26
(13 Mg and 13 Ti)

Fracture union, fracture healing,
retrieved function None

Kose O et al. [95] Retrospective
observational study

Medial malleolar
fracture MgYREZr 11 Fracture union, fracture healing,

retrieved function None

Acar B. et al. [96] Retrospective
observational study Hallux valgus MgYREZr 31

(16 Mg and 15 Ti)
Fracture union, fracture healing,

retrieved function
One delayed wound
healing -Mg screw

Choo JT et al. [97]
Randomized

controlled clinical
trial

Hallux valgus MgYREZr 93
(24 Mg and 69 Ti)

Fracture union, fracture healing,
retrieved function

3 superficial cellulitis
and one neuropathic
operative site pain.

Klauser H. [98] Retrospective
observational study Hallux valgus MgYREZr

200
(100 Mg and 100

Ti)

Fracture union, fracture healing,
retrieved function None

Gigante A. et al. [99] Case series
Anterior cruciate
ligament avulsion

fracture
MgYREZr 3 Fracture union, fracture healing None

Acar B. et al. [100] Case report Lateral malleolar
fracture MgYREZr 1 Fracture union, fracture healing,

retrieved function None

Kim, Y.-K et al. [101] Retrospective
observational study

Meta-tarsal or midfoot
fractures Pure Magnesium 22 Fracture union, fracture healing 2 wound dehiscence



J. Clin. Med. 2021, 10, 1842 9 of 19

Table 2. Cont.

Authors Type of Study Intervention Type of Alloy n Outcomes Complications

Aktan C et al. [102] Case report Distal humerus
intra-articular fracture MgYREZr 1 Fracture union, fracture healing,

retrieved function None

Atkinson HD et al. [103]
Randomized

controlled clinical
trial

Hallux valgus MgYREZr 36
(11 Mg and 25 Ti)

Fracture union, fracture healing,
retrieved function None

Acar B et al. [104]
Randomized

controlled clinical
trial

Biplane chevron medial
malleolar osteotomy MgYREZr 22 Fracture union, fracture healing,

retrieved function None

Turan A. [105] Case report Radial styloid fracture MgYREZr 2 Fracture union, fracture healing,
retrieved function None

Chen L et al. [106] Case report Traumatic femoral head
necrosis Pure magnesium 1 Improvement of patient’s hip

function None

May H et al. [107] Retrospective
observational study

Medial malleolar
fracture MgYREZr 48

(25 Mg and 23 Ti)
Fracture union, fracture healing,

retrieved function None in the Mg group

Holweg et al. [108] Case series Medial malleolar
fracture

Mg-Zn0.45-Ca0.45, in
wt. (ZX00) 20 Fracture union, fracture healing,

retrieved function None

Xie K et al. [109] Case series Medial malleolar
fracture

Mg-Nd3.0-Zn0.2-
Zr0.5 in wt. and

coating
9 Fracture union, fracture healing,

retrieved function None

Jungesblut et al. [110] Retrospective
observational study

Osteochondritis
dissecans lesion MgYREZr 19 Fracture union, fracture healing One post-operative

implant failure
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3.1.1. Mg and Its Alloys Studied in Orthopaedic Surgery

Concerning the type of material, most of these trials investigated the use of MgYREZr
alloy. MgYREZr screws were initially investigated for hallux valgus and medial malleolar
fracture [85,88]. MgYREZr pins were evaluated for osteochondritis dissecans lesions and
displaced osteochondral fragments [102,110].

Despite the fast in vivo degradation, some trials investigated the use of pure Mg in
the femoral head [86,89,106] and in the metatarsus [101]. ZX00, a lean Mg-Ca-Zn was also
evaluated in a prospective pilot study for medial malleolar fractures [108]. Another alloy
made with Mg-Ca-Zn, was studied as bioresorbable Mg alloy screws for hand fractures
requiring internal fixation [87].

Recently, Xie et al. used calcium phosphate coated Mg-Nd-Zn-Zr screw for medial
malleolar fractures [109]. This was the first clinical trial investigating a coating on Mg implant.

3.1.2. Associated Complications

According to a recent systematic review and meta-analysis including eight studies
(three randomized clinical trials [85,89,94], one retrospective study [109], two case-control
studies [98,103], and two prospective studies [88,111]) and involving a total number of
230 patients, the estimated complication rate was 13.3% for the group treated with Mg
screw [112]. The meta-analysis did not show any significant difference for complications
between the use of Mg and Ti screws [112]. Additionally, one case series revealed an
extensive cystic lesion after Mg implantation in an unstable scaphoid fracture [93]. Wichel-
haus et al. described complications in one subject with a scaphoid fracture associated
with a scaphotrapezotrapezoidal arthritis treated with a MgYREZr screw [90]. The patient
complained about a painful paraesthesia in the dorsal thumb region and a subcutaneous
gas accumulation [90].

Upon resorption of Mg and its alloys, corrosion products such as H2 are released in the
local environment. This is characterized radiographically by the appearance of radiolucent
zones (Figure 1). These zones are localized around the screws and slightly increase during
the first 6 months after implantation. However, radiolucent zones decreased afterwards and
were not related to complications [85,87,90,93,101,105,107]. Physicians and surgeons have
to be aware of this radiographical aspect of product accumulation around the implanted
Mg-based material as well as the rare possibility of subcutaneous gas accumulation. This
last complication is infrequent and no case of subcutaneous gas accumulation was reported
in a systematic review including 230 Mg-based screws [112].

Upon resorption, Mg and its alloy release Mg2+ ions, which are either stored in
bone or released into the circulation, thereby potentially resulting in the manifestation
of hypermagnesemia. However, Holweg et al. demonstrated the normal range of Mg
concentration in the blood up to 12 weeks after Mg-based screw fixation in 20 patients [108].
This Mg blood level assessment was confirmed by two other trials [85,89].

3.1.3. Screw Removal

Hardware removal with non-resorbable Ti implants are frequent and estimated at
around 8% for hallux valgus surgeries [113] to approximately 80% in case of ankle frac-
tures [114,115]. Biber et al. reported the removal of one Mg screw 8 months after surgery
because of radiolucency around the screw. Yu et al. also communicated a hip replacement
one year after surgery due to the non-union of a femoral neck fracture stabilized with a
pure Mg screws [86].

According to these promising clinical results, the use of Mg as a bioresorbable material
may be an alternative to Ti for load bearing applications.

3.2. Application of Mg-Based Implants in the Field of Orthognathic Surgery

Implantation of Mg-based screws in the maxillo-facial region was investigated in
two clinical studies conducted by Leonhardt H et al. As exposed in Table 3, compressive
MgYREZr screws were used to treat condylar fractures [111,116]. The temporomandibular
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joint was well-restored in all patients with satisfactory improvement of the mandibular
movements (laterotrusion, protrusion). In one subject, one screw was removed after a
shock during an epileptic seizure [116]. In the most recent retrospective study, the screw
penetrated through the condylar surface in one patient. However, no screw removal was
necessary [111]. Radiolucent zones around the screws, due to the degradation products
(H2), were also found in the mandibular condyle after implantation without screw-related
complication [111,116].

Figure 1. (a) Anteroposterior and lateral ankle radiographs of a 49-year-old female patient with medial malleolar fracture
treated with Mg-based screws. (b) After 2 weeks: visible fracture line at the medial malleolus associated with small signs
of radiolucent zones within the bone surrounding the screws. (c) After 6 weeks: fracture consolidation with increase
of radiolucent zones within the bone surrounding the screws. (d) After 12 weeks, and (e) After 24 weeks: constant and
non-evolutive radiolucent zones. (f) CT scan at 52 weeks, decrease of radiolucent zones, increased endosteal bone mass,
and periosteal bone ingrowth at the screw head (white arrow). Reproduced from [108].

Table 3. Summary of the clinical studies investigating Mg-based implant in the field of maxillo-facial surgery.

Authors Type of
Study Intervention Type of

Device n Outcomes Complications

Leonhardt H
et al. [116] Case series Mandibular

fracture MgYREZr 5
Fracture healing, with

restored function of the
temporomandibular joint

One fracture of a screw

Leonhardt H
et al. [111]

Retrospective
observational

study

Mandibular
fracture MgYREZr 6

Fracture healing with
restored function of the

temporomandibular joint

Penetration of one screw tip
through the condylar surface

without screw removal
necessary

Mg and its alloys are promising materials for osteo-synthetic application and showed
very promising results concerning the effectiveness and the safety of their use. However,
the heterogeneity between the clinical trials is significant, with only a few clinical trials
such as randomized controlled trials with a high level of evidence.

4. Bioresorbable Synthetic Materials in Oral Bone Regeneration: Limitations and
Perspective Concepts
4.1. Use and Limitations of Current Synthetic Bioresorbable Materials in Bone Regeneration

Among synthetic biomaterials, synthetic bioceramics and polymers were widely
evaluated in the field of bone tissue engineering. Calcium phosphate, hydroxyapatite (HA),
alpha (α)- and beta (β)-tricalciumphosphates (TCP) classified into synthetic bioceramics
are well-documented as bone grafts because of their biocompatibility, bioresorbability, and
osteoconductivity [117,118]. Pure HA (C10(PO4)6(OH)2), a principal component of bone,
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is available in different forms. As solid block form, HA has a much higher modulus of
elasticity than bone and does not permit fibro-osseous ingrowth [119]. β-TCP is available in
porous or solid form, allowing a multitude of clinical applications [119]. The combination
of these two phases (TCP and HA), also called biphasic calcium phosphate, provides an
excellent biocompatible and osteoconductive potential, especially the form with 40% TCP
and 60% HA [120,121]. In parallel, bioceramics combined with additive manufacturing
procedures have been developed and have shown osteogenic properties while being
designated to match perfectly with the bone defect [122,123]. The main disadvantage of
synthetic bioceramics is the poor mechanical properties characterized by a fragility of
the material [124,125]. Additionally, the degradation rate of these alloplasts is difficult
to predict. Concerning β-TCP, a complete absorption is unpredictable associated with
some remaining ceramic residues [126,127]. Bioceramics are used commercially in various
applications like coatings for biomedical implants [128].

Synthetic polymers have promising properties to be used for bone tissue engineering
approaches due to their biodegradability and biomechanical properties. Poly-L-lactic
acid (PLLA) and co-polymers poly(lactic-co-glycolic acid) (PLGA), the most common
synthetic polymers, are degraded through hydrolysis of the ester bonds [129,130]. Due to
their inherent thermoplastic properties, these polymers can easily be tailored in different
shapes [131]. Despite the interesting possibility to release drugs such as antibiotics, their
degradation release acidic compounds which could be compromising on bone [132,133].
Additionally, some concerns have been reported concerning the osteoconductivity of
synthetic polymers and the local pH alterations during the degradation [134].

4.2. Advantages of Bioresorbable Mg-Based Alloys

Bioresorbable Mg-based alloys have some biomechanical primacy due to their human
bone-like mechanical strength, which offers an advantage to synthetic bioceramics and
polymers [135]. With a similar Young’s Modulus to that of bone, these alloys minimize
the stress shielding effect in load-bearing applications. This stress is a direct consequence
of the change in load to the bone after implant placement that triggers the resorption of
surrounding bone tissue according to Wolff’s laws [136]. Radiographically, this stress can
be highlighted by radiolucent areas.

Beside the favourable mechanical properties, Mg and its alloys aim to degrade in the
physiological environment while being mechanically stable at the early stage of implanta-
tion [62]. Alloys based on Mg have not only the property to degrade in the physiological
environment, these alloys manifest compatibility with living tissues without any toxic,
injurious, or immunologic response. As exposed, Mg-based alloys promote bone formation
after in vivo implantation in small and large animals.

One of the big disadvantages of the other synthetic polymers is the unpredictable
degradation rate. Recent advancement in alloy development, as well as the progress
on surface treatments and coatings, permit the reduction of corrosion rate. Mechanical
surface treatment such as laser peening, actively decrease the corrosion rate of Mg and it
alloys [137,138]. During the laser peening, expanding plasma induces deep compressive
residual stresses which increase fatigue strength and corrosion resistance of the mate-
rial [138]. Apart from that, other strategies such as surface modification using chemical
treatment or coatings by single layer or multilayers have been developed to control the
corrosion and degradation while keeping the biocompatibility of Mg [139].

Some Mg alloys were produced by forced molten Mg alloys into a mould cavity under
high pressure. This production is called casting, especially die-castings [1,2]. However,
cast alloys showed a defective microstructure associated to poor mechanical properties [2].
One attribute of Mg is its extrudability. Mg alloys have a low extrudability, i.e., extrusion is
possible under lower speeds and within a narrower range of extrusion temperatures [140].
Conventional and special shapes of the extruded Mg can be designed with considerable
freedom. Additionally, the extrusion process is easy to perform with a high surface quality
and microstructure [141]. Recently, advances in additive manufacturing (AM) commonly
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known as 3D printing, offer the possibility to fabricate porous Mg scaffolds with complex
shape and geometry. The benefit of AM is to fully control topological parameters and
thus to fabricate interconnected porous structures. A challenge which increases when the
desired size scale gets smaller [142]. AM production of Mg-based scaffold is still limited and
in development as only a small number of research groups are involved in this field [142].
As Mg is highly flammable, a major associated concern and challenge is the safety in
operation. During scaffold’s fabrication with the selective laser melting technique, which is
the most chosen AM technique to produce Mg scaffold, devices need a high-power laser to
melt the powder due to the high reflectivity of Mg [143].

Finally, Mg exhibits antimicrobial activity again Escherichia coli, Pseudomonas aeruginosa,
and Staphylococcus aureus, which are able to form biofilms and intrinsically linked with oral
infections [144–146].

4.3. Perspectives and Challenges

According to their, Mg-based alloys seem to be potential candidates for oral, maxillo-
facial trauma, and orthopaedic surgery approaches. Due to the excellent osteoconductivity
and biocompatibility, Mg and its alloys could be used as pure synthetic bone graft materials
as well as osteosythentic indication. As observed in pre-clinical studies, the material is
gradually replaced by newly formed bone [52,54,57,61,63,64]. In addition, recent efforts on
AM techniques permit the fabrication of porous scaffold made with Mg-based alloys. With
its advantages of rapid prototyping, digitalization, and customization, the AM technologies
can effectively meet the needs of personalized medical devices in oral bone regeneration
by matching the 3D printed implant with the bone defect. Customization to the scaffold
includes optimization of the inner structures to ameliorate the bone in-growth. Mg-based
alloys could be also used as a barrier membrane during the GBR/GTR procedures.

In the field of orthognathic surgery, bioresorbable screws were investigated in cases of
mandibular condyle fracture with promising clinical and functional outcomes [111,116].
Recently, preclinical study with miniature pigs model aimed to develop plates and screw
for mandibular, zygomatic, and orbital fracture treatment [147]. However, due to the
thickness and the surface of the devices necessary to permit a mechanical stability and
the pronounced H2 production for implants with large surface, released H2 may impact
their applicability.

5. Conclusions

Mg and its alloys demonstrate excellent bioresorbable, osteoconductive, and antibacte-
rial properties for an ideal future application in the field of oral bone regeneration. Clinical
evaluation in the field of orthopaedic and orthognathic surgeries demonstrates the effective-
ness and safety of Mg-based bioresorbable implants. For intra-oral use, additional variables
need to be understood, such as the effect of saliva on Mg. Finally, long-term pre-clinical
and clinical studies are warranted to understand (i) the time of complete degradation of
the bioresorbable devices, (ii) the associated clinical degradation rate, and (iii) the related
tissue replacement after the complete degradation.
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