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The immunopathology of type I diabetes (T1D) presents a complicated case in part
because of the multifactorial origin of this disease. Typically, T1D is thought to occur as a
result of autoimmunity toward islets of Langerhans, resulting in the destruction of insulin-
producing cells (b cells) and thus lifelong reliance on exogenous insulin. However, that
explanation obscures much of the underlying mechanism, and the actual precipitating
events along with the associated actors (latent viral infection, diverse immune cell types
and their roles) are not completely understood. Notably, there is a malfunctioning in the
regulation of cytotoxic CD8+ T cells that target endocrine cells through antigen-mediated
attack. Further examination has revealed the likelihood of an imbalance in distinct
subpopulations of tolerogenic and cytotoxic natural killer (NK) cells that may be the
catalyst of adaptive immune system malfunction. The contributions of components
outside the immune system, including environmental factors such as chronic viral
infection also need more consideration, and much of the recent literature investigating
the origins of this disease have focused on these factors. In this review, the details of the
immunopathology of T1D regarding NK cell disfunction is discussed, along with how
those mechanisms stand within the context of general autoimmune disorders. Finally, the
rarer cases of latent autoimmune, COVID-19 (viral), and immune checkpoint inhibitor (ICI)
induced diabetes are discussed as their exceptional pathology offers insight into the
evolution of the disease as a whole.
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INTRODUCTION

Type 1 Diabetes (T1D) is a debilitating autoimmune disease that affects at least 1.6 million people in
the US, accounting for ~5% of all diagnosed cases of diabetes, with an estimated 5 million people to
be diagnosed by 2050 (1). Worldwide, of the ~463 million people living with diabetes, up to 10%
have type 1 (2), representing an increasing incidence within an otherwise serious and increasing
epidemic (3). It is well-established at this point that T1D results from autoimmunity, potentially
involving both the innate and adaptive arms of the immune system. Indeed, most of the genes
associated with greater risk in developing T1D point toward such an origin (4). However, the exact
mechanism and the interplay between autoimmunity as well as the influence of environmental
factors are still debated and investigated. The primary conundrum is that our understanding of
these two components of the immune system is ever-evolving, and the conclusions made by
org August 2021 | Volume 12 | Article 7229791
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studying in vitro or in vivo models like the non-obese diabetic
mouse (NOD) or streptozotocin (STZ)-induced animals do not
necessarily correlate one-to-one to the pathophysiology in
humans. In addition, certain hypotheses involving multifactorial
origins of T1D are difficult to test experimentally and frequently
rely on correlative or epidemiological data rather than a discrete
causality. It is likely that there are multiple etiologies and
therefore, perhaps no two cases of T1D are the same necessarily.

At its core, T1D is a chronic autoimmune disease caused by
destruction of the insulin-producing islet b cells, therefore
rendering patients with the requirement of lifetime exogenous
insulin supplementation (5). Oftentimes, diagnosis occurs at an
early age, with clinical features indicative of hyperglycemia, such
as increased thirst and frequent urination. Decreased circulating
c-peptide levels and presence of autoantibodies, even prior to
clinical manifestation portends the underlying immune-
mediated attack. Early studies on autoimmunity focused on
identifying autoantibodies and characterizing the pathogenesis,
whereby autoreactive CD8+ T cells are the primary active
immune cell in b cell death (6, 7). Islet autoantibodies for
glutamic acid decarboxylase (GAD65), islet antigen 2A and
insulin suggests a role for B cells, but to a lesser extent than
the CD4+ T helper cells (e.g. Th1 and 2) thought to provide the
pro-inflammatory cytokine profile necessary for activation of
cytotoxic CD8+ T cells. More recent work suggests a more
complete picture with innate immunity involvement – either in
a destructive or regulatory role. Natural Killer cells (NK’s) are a
bridge between the adaptive and innate arms of the immune
system. They are capable of fighting pathogens or cancerous cells
directly, and yet also generate memory cells and respond via
antigen-mediated attack. They have long been associated with
autoimmune diseases, and studies of their concentration,
phenotype (frequency and function) and in vitro functionality
in peripheral blood and tissue are numerous.

In this review, the immunoregulatory role of natural killer
cells in the development of T1D will be presented, along with
discussion of viral etiology, genetic risk, environmental factors,
and even rare cases of T1D induced by cancer immunotherapy.
The primary points of discussion will be the phenotypic
character of pro-inflammatory and regulatory NK’s, their
interplay with viral mechanisms of T1D induction in human
and animal studies, and some alternative hypotheses involving
late onset autoimmune diabetes and gut microbiome health that
interweave nicely with the immunoregulatory role for NK’s. The
central takeaway being the breakdown of self-tolerance that leads
to T1D development is due ultimately to dysfunctional
peripheral tolerance mechanisms associated with natural
killer cells.
NATURAL KILLER CELLS AND DIABETES

Prior to the discussion of their role in the development of T1D, it
would be prudent to briefly introduce the nature and function of
natural killer cells (NKs), and to distinguish them from other
immune cell subtypes that also play a critical role in the
development of this disease, such as macrophages, T and B
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cells. Natural killer cells can be characterized as somewhat a
hybrid between the innate or adaptive arms of the immune
system. They mature from common lymphoid progenitor cells
(CLP), recognize MHC Class I molecules, and exhibit targeted
killing of virus-infected or transformed tumorigenic cells without
prior sensitization via “missing self”-directed pathways (8, 9).
They have a large cell body filled with cytolytic granules
(perforin, granzyme B) similar to CD8+ effector T cells, but
their activity is coordinated by a multitudinous array of both
inhibitory and activating receptor-ligand interactions that can
alter the NK cell status depending on levels of expression (9). It is
conceivable that the evolution of NKs is a response to viral
evasion of the adaptive immunity, thus giving rise to their innate
phenotype with adaptive genotypic signature (10).

Distinct populations have been described for both mouse and
human lineages, where they perform a Janus-type role of
pleiotropic pro-inflammatory and regulatory functions (11,
12), somewhat analogous to the macrophage subtypes M1 and
M2s (2a,b,c,d). They are the bone marrow-derived, thymus-
independent third arm of the lymphocyte lineage that
comprise 5-15% of peripheral blood mononuclear cells
(PBMC’s) and take up residency canonically in the spleen and
liver with small tissue-resident populations elsewhere (e.g. skin,
liver, uterus). There are also subpopulations of NK cells that are
capable of secreting anti-inflammatory cytokines (e.g. IL-10, IL-13,
IL-27, TGF-b, IL-23) (13). Conversely, the more conventional
populations can perform antigen-mediated cell lysis and
apoptosis in addition to rapidly producing large quantities of
inflammatory or directly cytotoxic molecules [principally IFN-g
(14), also TNF, GM-CSF, IL-5, IL-13, IL-22, and macrophage
inflammatory proteins (MIP)] (15–17). Therefore, their role in
immune system homeostasis is critical. Phenotypically, they carry
quite a large array of distinguishing biomarkers, but in a simplified
form, they are CD45+/CD3-, CD56+ (dimor bright), andCD16+/-
depending on maturity. Some important receptors they carry
involved in innate activation include the killer cell lectin-like
receptors NKG2D and KLRG1, and natural cytotoxicity receptors
(NCRs) NKp30, NKp44, and NKp46, while on the other hand
receptors like the CD94/NKG2A dimer and the killer cell
immunoglobulin receptors (KIRs in humans, Ly49 in mice) are
usually inhibitory (18, 19). What is particularly interesting in the
context of adaptive immunity, is how NK cells interplay with the
activity of CD8+ cytotoxic T cells and CD4+ helper T cells (20, 21).
It has been asserted that NKs act as initiators, mediators, and a
hybrid of both, for which other reviews are available (22). Needless
to say, they have a well-documented ability to prevent and control
the CD8+ effector cytotoxic T cell response implicated in
autoimmunity (21). As a results, they are frequently hypothesized
as having an outsized role in the development of several
autoimmune conditions (13, 23, 24), as they are the first in line in
termsof developing an inappropriate response to a “self”-antigenor
lack of sufficient presentation.

Tissue-Resident Natural Killer Cells
The populations of NK cells resident within tissue (trNKs) (16)
may possess more than just superficial phenotypic differences,
perhaps even forming distinct lineages from NKs circulating
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within peripheral blood (cNKs) (16, 25, 26). The NKs that reside
in the liver and skin are distinct from those in the blood and
thymus, and from those that are intimately involved in
preventing maternal rejection of the fetus within the uterus
during pregnancy [uterine or decidual NK cells (16, 27–29)].
The exact function of these tissue-resident immune cells is
unclear, but from an observational point of view, it is more
nuanced than just cytotoxic mediators in the early stages of viral
infection or tumor development and they are recruited for
reasons outside of localized inflammation. It seems that they
play a role in tissue homeostasis, and dysfunction or imbalances
here could lead to several disease states, including autoimmunity.
Resident NKs have been found in the pancreas of both diabetes-
prone and normal mice (30), and possess an activated phenotype
distinct from cNKs. It was also observed that they accumulate in
the pancreas long before T cells and illustrate an exhausted and
hyporesponsive state during later stages of disease (30). A similar
effect was confirmed in a model for the autoimmune disease
myasthenia gravis (EAMG) where the NK cells degenerated
during the progression of disease and were mediated through
an IL-21-dependent pathway by autoreactive CD4+ T cells (31).
These observations are important to keep in mind during the
interpretation of results from human studies where NK
populations are decreased or non-functional.

Natural Killer Cell Receptors
and Their Ligands
The activity of natural killer cells is dictated by a balance between
activating and inhibitory receptor-ligand interactions, some of
which are immunoregulatory and therefore critical in the
development of autoimmune disease. The NKG2D receptor is
expressed by NKs among other immune cell subtypes in both
human and mouse, binding to induced-self antigens of the MHC
Class I polypeptide-related sequence (MIC) A/B which are
overexpressed in infected (32) or otherwise transformed cells
(e.g. tumorigenic) (33, 34). However, they have been reported to
be constitutively expressed at low levels in many tissues
including the pancreas (35). It is part of the greater NKG2
family of C-type lectin-like receptors. Unlike the CD94/NKG2A
receptor dimer which also binds to MHC-I ligands (i.e. HLA-E),
NKG2D is involved in activation/stimulation rather than
inhibition and is costimulatory with CD8+ T cells (36).
Effector status of NKs depends critically on the frequency and
expression levels of this receptor (37, 38) and is therefore
involved in regulating the activity of CD8+ T cells (36). The
expression of NKG2D and, by extension, the activity of NK cells
can be controlled by regulatory T cells (Treg) through a TGF-b
mediated pathway (39), where Tregs are thought to down
regulate its expression – leading to deleterious effects in the
context of tumor surveillance but a pathway to understanding
autoimmunity (40, 41). Although its ligands MIC A/B are
normally expressed at sub-activating levels, NKG2D can accept
a diverse array of ligands (42), one of which is retinoic acid early
inducible 1 (RAE1, or ULBP in human), which is also
constitutively expressed by pancreatic b cells and whose
transcription is upregulated during viral infection in mice (25,
43, 44). This results in a precarious balance in the context of
Frontiers in Immunology | www.frontiersin.org 3
pancreatic trNKs, with both activating and inhibitory ligands
being expressed constitutively. The activating NCR receptor
NKp46 (NCR1 in mice) is considered especially important in
the context of NKs and T1D since it is almost exclusively
expressed by nearly all NKs (43, 45). Its function is also critical
in terms of effective immunity toward viral infection, as noted by
lethal influenza infection in NCR1 knockout mice (46). However,
its ligands are yet to be fully characterized (47) and cross-
reactivity toward molecular mimics is possible (45). Pancreatic
b cells are thought to express from early development a yet
unknown ligand for this receptor (48). This exposes these cells to
potential NK attack if immunoregulatory/inhibitory receptors or
ligands are insufficiently expressed. Regarding inhibitory
receptors, the dimeric CD94/NKG2A serves an important role
since it recognizes “self” antigens in the MHC-I family, including
the non-classical HLA-E molecule. The expression of HLA-E is
regulated by a complex set of processes but can be reduced or
masked by some viral infections, which will be discussed more
below. A related molecule in the non-classical MHC-I family is
HLA-G, a ligand involved with immune protection/tolerance
from NKs in the fetal trophoblast and anterior eye cell layers. It
happens to be expressed by pancreatic b cells, which is
hypothesized to be tied in with their insulin secretory activity
as exocytosis exposes the extracellular space to myriad potential
autoantigens (49). Its associated gene locus has naturally low-
level polymorphism, suggesting small mutations could easily lead
to a breakdown of immune tolerance, and there is some evidence
from genetic studies correlating that region of the genome
toward T1D susceptibility (50). Another set of inhibitory
receptors in the killer cell lectin-like receptor subfamily (KLRs)
include KLRG1 and KLRB1 (aka CD161) which are considered
markers for activation (51) and senescent (52) phenotypes,
respectively, but may play a role in regulating both cytolytic
NK and T cell activity, potentiated by expression levels of its
ligand lectin-like transcript 1 (LLT1) (53). The relationship
between these receptors and T1D will be discussed at various
points throughout the review. The importance of their role in
disease etiology is a frequent point of contention, but regardless,
they are ubiquitous throughout the literature.

NK Observations in Humans
Early reports on NK cells from the peripheral blood mononuclear
cells (PBMCs) of T1D patients showed a significant decrease in
their proportion when compared to healthy individuals (54),
which in one case was proposed as a possible explanation for
higher occurrence of neoplastic tumors (54). Also among these
early studies were reports from Negishi et al. that showed
significantly decreased direct cytotoxicity versus relevant control
samples against the K562 cell line with simultaneous increase in
directed islet toxicity (55, 56). Some authors hypothesized
aberrant NKG2D signaling in addition to decreased NK cell
number as the primary driver for T1D development (57).
However, the NKs present in peripheral blood only tell part of
the story, as sequestered cNKs or potentially trNKs that are
localized to the pancreas – where the important events unfold –
may account for that deficit. Also, the functionality of these NKs
from primarily long-standing patients may not be relevant to
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recent onset patients early in disease progression, as they are likely
entering a ‘hyporesponsive’ phenotype (25, 31). The only
consistent trend between NK populations and T1D in human
patients is that the population in the peripheral blood is typically
lower when compared to age/sex matched controls. In an analysis
of the immune cell infiltrates of post-mortem pancreas samples of
T1D patients, the most abundant cell type was CD8+ T cells, with
very little NK detection (7). However, when an analysis of the
tissue-resident immune cells of the pancreas of non-diabetic
donors was performed (58), the majority of cells were also
CD8+ T cells expressing markers for resident memory cells
(CD69 and CD103). Here, NK’s represented only ~3% of the
lymphocyte infiltrates. Given the similarity in distribution during
healthy and diseased patients, it seems that what is being captured
during this post-mortem examination may not be representative
of critical phases in disease progression. That is where
longitudinal studies such as those being carried out by the
JDRF network of Pancreatic Organ Donors (nPOD) will be
more revealing in terms of the evolution of immunophenotype at
various timepoints alongdisease progression (59, 60).Other studies
have stressed the importance of the natural cytotoxicity receptor
(NCR) NKp46 expression on NK cells of diabetic patients (43, 61)
which will be discussed from a mechanistic standpoint in animal
modelsmore below. In a study of isolated primary human islets, the
presence of a ligand specific for the activating receptor was
implicated in the NK cell mediated destruction of b cells, in vitro.
Itwas found that thebinding site on the receptor specific for itsb cell
ligand also binds viral and tumor associated proteins (48, 62). A
takeaway lesson from these human studies is that the timing and
nature of the sampling process is important when interpreting the
results, as the peripheral blood cells of long-standing T1D patients
may not provide the most accurate snapshot of the initial immune
system alterations and dysfunction.

Animal Model and Mechanistic Studies
Early studies on animal models yielded mostly conflicting results,
albeit with some support of observed NK depletion (4, 63). For
instance, a paper published in 1991 reported lower incidence of
diabetes in a streptozotocin (STZ) mouse model when an NK
specific antibody was administered before the first does of STZ,
versus saline and non-specific Ig controls (64). However, just as
early from Ellerman et al., it was demonstrated that in the BB/
Wor rat model of diabetes, knocking down the population of
peripheral NK cells with a 3.2.3 monoclonal antibody (mAb) did
not prevent or delay diabetes onset, even though their critical
role was hypothesized (63). Recent animal model work has
demonstrated that after infection of rat insulin promoter RIP-
GP mice with LCMV, induction of diabetes resulting from T cell
activation (LCMV-gp) was regulated by NK cell levels and
expression (20). Counterintuitively, the pancreatic tissue
destruction was much worse in mice that were injected with
low dosage virus (103 plaque-forming units) when compared to
high dosage virus (65). The observed effect correlated with much
greater NK cell activation and lower levels of tissue antigen-
specific CD8+ T cells when high dosage of virus was used. When
taken from high dose blood samples, those NK cells were directly
cytotoxic toward autoreactive CD8+ T cells in vitro. The exact
Frontiers in Immunology | www.frontiersin.org 4
mechanism appears to be dependent on the expression of the
NCR1 (NKp46) receptor in these NK cells, which was
upregulated only in the case of high dosage, whereas expression
of the receptor NKG2D was upregulated comparably in both viral
dosages. A study in NCR1 knockout mice infected with LCMV
confirms the observed mechanism of CD8+ T cell regulation (21).
Strangely, this is in contradiction to previous observations in
which NCR1 (NKp46) deficient mice were observed to have
reduced T1D development (43), and where treatment of NOD
mice with anti-NKG2D antibody prior to disease onset halted
progression altogether (66, 67). Simultaneously, NKG2D ligands
seem to be upregulated on target cells of diabetic model
organisms (57). What role the NKp46 and NKG2D receptors
play in T1D animal models is therefore a matter of contention,
but may be resolved by considering the expression levels, the
location of their respective ligands, the strength of the inhibitory
signaling, and finally the longitudinal time of analysis, since NK
effector status is always dictated by this balance. In the mice given
high viral doses, the upregulation of NKp46 may have reflected its
role in NK attack of CD8+ T cells with concomitant halting of
disease progression. When b cell destruction is mediated through
an antigen-specific process (aka after viral infection, discussed
below), it follows that NKs targeting those T cells would inhibit
that process. If there is an alternative pathway for the
development of T1D, potentially via innate autoimmunity, the
converse might be true, as in a case of NK activation viaNKG2D/
NKp46 ligand expression on b cells. The NKp46 receptor itself
can be probed directly for its role in T1D development. Two
separate studies from Mandelboim et al. showed that NCR1/
NKp46 recognizes ligands expressed on mouse and human
pancreatic b cells that specifically induce NK degranulation and
subsequent cytotoxicity (43). Treatment of NOD mice via direct
injection of a monoclonal antibody raised against the murine
NCR1 receptor down-regulated its surface expression (68). This
in turn led to a lower overall incidence in T1D development
compared to appropriate controls, also observed in NCR1
knockout mice treated with STZ to induce diabetes (43). These
animal models – while important for studying potential
mechanisms – may lead to specious conclusions if the results
from human studies are disregarded. Nonetheless, they still
demonstrate the important role for NK activating receptors as
well as their respective ligand interactions in both inflammatory
and regulatory processes.

Natural Killer T Cells
Not to be confused with natural killer cells, invariant natural killer
T cells (iNKT) may also play a role in the autoimmune regulation
and development of T1D (69). iNKT’s are tissue-resident innate-
like immune cells whose defining quality is the expression of an
invariant T cell receptor a-chain, and their recognition of CD1b.
CD1b is an antigen-presenting molecule (MHC-I class-like)
associated with dendritic cells (and some other APC’s) that
displays lipid and glycolipid antigens of invading microbial
pathogens. Although they do express cell surface markers of
NK, such as CD161 (aka KLRB1) in humans, the expression of
T cell receptors puts them distinctly into the latter class of immune
cells descendent from the common lymphoid progenitor. They are
August 2021 | Volume 12 | Article 722979
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primarily involved in defense against invading pathogens, tumor
growth, and metastasis, but also play a regulatory role and can
quickly release large amounts of cytokines like IL-4 and IFN-g.
Several studies using NOD mice have confirmed their effect on
reducing the likelihood of diabetes development, which has been
reviewed elsewhere (69). Suffice it to say, a similar effect as
described above in the LCMV treated mice was also attributed
to activation of NKT cells where they indirectly mediate CD8+
cytotoxic T cells via induction of TGF-b-producing Tregs (70).
However, contradictory results in the number and type of NKT’s
in human studies, in part due to very low number (~0.1%) in the
peripheral blood and variable frequency in the general population
makes it difficult to form definitive conclusions about their role in
disease. This redundancy in the immune system reflects the
hypothetical ease by which an autoimmune reaction could
become problematic.
GENETIC RISK FACTORS
AND AUTOIMMUNITY

Although an auto-immune disorder of multifactorial origin, T1D
does have associated genetic risk markers, suggesting a possible
inherited risk. The observations of imbalance in population and
aberrant behavior of NK cells in T1D patients certainly suggests a
possible causal relationship in terms of islet cell destruction but
this does not elucidate the related immune system malfunction,
or, as in the case of viral infection, b cell susceptibility. Therefore,
the associated genetic polymorphisms may be useful in
identifying a link. Out of the >60 genes or loci that have been
linked to a greater risk of developing T1D, the strongest
correlations have been found with the HLA genes, specifically
the class II alleles (71–74). This family of alleles is intimately
involved in antigen presentation and recognition, a pathway
involving APCs, B cells, and CD4+ T helper cells. Although
adaptive immune response is important to the ultimate
progression of disease, and abnormalities in the presentation of
antigenic peptides by HLA molecules clearly may affect outcome,
these correlations are not very useful in identifying the genetic
role in the early precipitating events. This further supports the
potentially larger role of environmental factors like viral
infection relative to genetic predisposition towards a
breakdown of central tolerance. It is likely that both are
necessary for disease development with an environmental
trigger that is amplified by genetic predispositions that
manifest in defective immune response phenotypes. A fact
supported by the tepid genetic linkage between T1D and other
autoimmune disorders that are non-endocrine in origin (75). It
has also been hypothesized that there exists a correlation between
another allele, MHC Class I chain-related A (MICA), and risk for
T1D, which similarly is involved in cell-cell communication and
is a ligand for the activating receptor NKG2D. However, when a
meta-analysis of ~5,000 patients with and without T1D was
performed, variants of the MHC Class I chain-related A
(MICA) were not found to be significantly correlated to T1D
occurrence (76). Finally, the insulin molecule itself has been
Frontiers in Immunology | www.frontiersin.org 5
implicated in genetic predisposition (77), with some evidence to
suggest CD8+ reactivity toward a pre-proinsulin epitope (78),
which would fit in well with a disease progression that culminates
with a primed adaptive immune system but still not explaining
instigating events. In many of these studies, it is difficult to provide
associative risk with absolute certainty due to the complexity in
both the techniques used, and their accompanying analysis.
However, emerging evidence in studies that look deeper than
simple genetic mutation have revealed that even single nucleotide
polymorphisms (SNPs) can alter how immunoregulatory genes
are expressed (79), meaning the underlying genetic associations
and/or susceptibilities have a complicated role in defining risk.
Finding a concrete genetic link may be obscured underlying
epigenetic factors that influence disease development. The role
of microRNAs (or miRNA) in autoimmune disease in general has
seen a tremendous surge in research effort (80, 81), and there is
reason to suspect involvement in the development of type 1
diabetes (82). MicroRNA’s are involved in post-transcriptional
regulation, in most cases silencing translation of target mRNAs,
which in the context of autoimmune disease and T1D could mean
a multitude of potential regulatory checkpoints. In addition, the
discovery of circulating miRNAs associated with T1D could lead
to their use as biomarkers for early detection or to identify at-risk
individuals (83). Among the profile of miRNAs identified in
exosomes isolated from human blood samples in one study,
seven were differentially expressed in patients with diabetes (84).
VIRAL-MEDIATED TYPE 1 DIABETES

Viral infections are hypothesized to be involved in myriad
autoimmune diseases (85, 86). As alluded to above, viruses
play a critical role in the onset or potential for acquiring T1D
reflected by their prevalence in animal model studies (87, 88).
Their use in eliciting the understanding of disease progression
with regard to NK cells is invaluable, as the two are inexorably
linked (28, 89). The etiology suggests that enteroviruses (90, 91)
(e.g. CV-B4) or those belonging to the Herpes family (92, 93) are
the most likely contributors in humans, as many recent-onset
patients show enteroviral nucleic acid or other viral biomarkers
like viral capsid protein and IgM indicative of recent infection.
Conversely, the prevalence of viral biomarkers in control
populations of healthy individuals is significantly lower (88, 90,
94, 95). Due to improved detection and sampling methods, only
recently has a definitive link been established (96, 97). However,
it is not completely clear whether the presence of virus indicates
causality or is a result of diminished ability to fight off viral
infection due to reasons like suppressed/altered NK levels or
dysfunctional adaptive immunity. The role for virally-mediated
development of T1D has been reviewed in great detail elsewhere
(89, 98–101), and therefore only the relevant material will be
discussed here.

Viral-Mediated b Cell Destruction
The general mechanism by which viral infection can lead to
autoimmune disease is assumed to be the following: (1) infection
August 2021 | Volume 12 | Article 722979
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localized to some target organ first activates an innate immune
response (e.g. macrophages, NKs) (2) those cells become
cytotoxic toward the autologous infected cells causing tissue
damage beyond what is sufficient to clear infection
(3) subsequent antigen release/processing recruits an already
primed adaptive immunity in a runaway inflammatory cascade
leading to lasting or permanent damage of the tissue/organ.
Given the right mix of genetic risk and environmental factors,
the process can easily lead to an autoimmune disease state.
Viruses have evolved countless ways to outsmart adaptive
immunity designed to seek them out via modulation of the
expression of MHC class I peptide complexes (102, 103), which
underlines how important NK cell function is. NKs are the
principal defenders against viral invaders, secreting copious
IFN-g and inducing cytotoxicity in infected cells without the
need for a priming phase via the “missing-self”mechanism. This
leads to one hypothesis being that defective NKs result in viral-
induced T1D development, and that process can go one of two
ways. In the “pro-inflammatory” defective state, NKs are far too
aggressive in viral clearance and T cell recruitment. In an
“immunosuppressive” defective state, NKs do not respond
appropriately to viral infection, allowing for chronic or
persistent infection and/or b cell destruction by uncontrolled
cytotoxic adaptive T cells. As evidence for the pro-inflammatory
defect, one study showed that type I interferon (IFN-1)
transcriptional signatures are associated with an increased
activated innate immune response in patients pre-disposed to
developing T1D, and confirmed after a longitudinal study that
those with the strongest signature went on to develop the disease
(104). One of the genes identified with increased T1D risk,
IFIH1, encodes the MDA5 receptor that recognizes viral RNA
and induces IFN-1 signaling. Reduction of that receptor by >50%
(using a IFIH1 knockout) on an NOD mouse model protected
them from T1D development without diminished ability to clear
virus (105). Arguments for the overly immunosuppressive side
have been put forth as well. In their normal regulatory capacity,
NKs secrete IL-10, which has been observed to play a role in
immunosuppression during systemic infection but less so local
infection (106). An infection localized to the pancreas would be
unlikely to induce such expression, but it has been hypothesized
that infected islet cells can secrete IL-10 to avoid extensive T cell
recruitment (90). Perhaps in the context of b cell infection and
subsequent insulitis, NK cells are not appropriately activated and
do not secrete sufficient IFN-g to recruit effector CD8+ T cells to
efficiently clear virus, which has been demonstrated in a recent
study of RIP-GP mice at low levels of viral infection (20). It
would seem then that counterintuitively, NK cells in T1D
development are defective on two fronts – simultaneously
attacking b cells and producing pro-inflammatory cytokines
that lead to T cell recruitment, while unable to clear infection
which allows for persistent and destructive insulitis. Another
hypothesis which has been proffered could better explain this
etiology, centered on the reasoning that viral modulation of the
immune response causes defective NK-signaling. For example,
b cells could be particularly susceptible to specific viruses leading
to pervasive infection and improper clearance (65), or chronic
Frontiers in Immunology | www.frontiersin.org 6
infection and immune-evasive tactics of some viruses may
ultimately lead to destruction, as might be expected for viruses
undergoing lysogenic-lytic cycles. One interesting hypothesis
that has emerged is the role of reactivated human endogenous
retrovirus (HERV), whereby environmental or inflammatory
stimulus (e.g. other viral infection) allows for activation of
HERV transcription and gene expression that could once again
either cause direct damage to islet cells, or induces an
autoreactive immune response by affecting activating or
inhibitory receptor-ligand interactions (107). A hypothesis that
might aid in the understanding of this viral-mediated process is
the following (Figure 1). In a normal response, sentinel
pancreatic NK cells take on a regulatory phenotype after the
initial phases of innate activation leading to effector status
toward CD8+ T cells, thereby preventing b cell destruction and
T1D. However, in a dysfunctional response, one of two things (or
combined effect) occurs. Either (1) NKs become exhausted/
hyporesponsive, diminish in activity and number, and allow
for what is typically understood as the major mechanism for b
cell destruction, aka CD8+ T cell autoreactivity, (2) Viral
pathogens hijack mechanisms for immune modulation (like
over-expression of HLA-G and modulation of HLA-E) thereby
turning NK cells into a suppressive force that allows the adaptive
response to go unchecked. The regulatory or immunosuppressive
capacity of NKs has been demonstrated in both systemic (106)
and local (20, 21) infection, and it stands to reason that
dysregulation at this junction could be a deciding factor in
T1D development, perhaps reconciling the observations of
impaired T regulatory ability as well (108).

Sars-CoV-2 and Diabetes
Considering the recent pandemic, it would be appropriate to
examine the recent cases of T1D following COVID-19 infection.
Diabetes, especially type II, has been established as an associated
increased risk factor for developing severe disease, but does the
SARS-CoV-2 virus itself present as a possible cause of diabetes?
There have now been more than merely isolated cases of
hyperglycemia, lasting b cell damage and other severe
metabolic complications in COVID-19 patients, in some cases
remitting after a few weeks, but in others developing into lasting
disease (109, 110). The virus enters the cell via the angiotensin-
converting enzyme 2 (ACE2), a receptor expressed on multiple
cell types, including endocrine cells of the pancreas, making
SARS-CoV-2 a plausible case for COVID-19 induced diabetes.
Indeed, it is documented that coronaviruses can cause multi-
organ damage by entering through these receptors (111), and
in vitro pancreatic-like organoids derived from induced
pluripotent stem cells are susceptible to viral entry via a spike-
protein mediated attack (112). Curiously, in comparison to the
other cell types generated, the pancreatic organoids were much
more permissive to viral entry. In an analysis of post-mortem
COVID-19 patient samples and ex vivo islets, the presence of
SARS-CoV-2 protein colocalized with the NKX6.1 b cell marker
was confirmed. Interestingly, infection elicited an interferon
transcriptional signature reminiscent of that which proceeds
T1D (104, 113). Studies on the links between the latest
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coronavirus and new onset diabetes are nascent and ongoing,
and it remains to be seen if and how it fits in with the analysis
presented here.
UNIQUE CASES

LADA
Latent autoimmune diabetes in adults (LADA) is
characterized by a pathological state that is clinically defined as
having characteristics of both Type 1, with the presence of
autoantibodies (GAD), and Type 2 diabetes with typically –
though not always – later onset (114, 115). In simple terms, age,
and insulin dependence at the time of diagnosis are considered
critical factors. However, LADA can be viewed as a milder or
slower moving case of T1D since autoantibodies and b cell reactive
T cells are still present and exogenous insulin supplementation is
usually required. Therefore, the disease allows for careful
longitudinal study of the progression of autoimmune diabetes.
As with recent onset T1D patients, individuals with recently
diagnosed LADA exhibit a decrease of NKs in the peripheral
blood when compared to healthy individuals (116). In one case of
recently diagnosed LADA patients, however, it was reported that
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NK frequency increased, especially of activated NKp46+ cells (61).
The expression of the activating receptor NKG2D and inhibitory
receptor KIR3DL1 was increased and decreased in these patients,
respectively, and a reduced frequency of CD4+CD25+ T regulatory
cells was observed (116, 117). Notably, a lower proportion of APC’s
and higher number of regulatory B cells (IL-35+) was observed in
LADA patients when compared to healthy control and T1D
patients (118). These combined observations lead to another
important inference about the phenotype of those with this form
of the disease. The immune cells and their receptors that are
ultimately responsible for activating/regulating the b cell
destructive CD8+ cytotoxic T cells are decreased/increased,
respectively in LADA compared to T1D. However, they are still
increased/decreased compared to healthy controls, representing an
intermediate immunophenotype. Whether this observation is a
result of disease pathology or is a causal agent has not been
elucidated. Still the correlation supports the notion that the
cytotoxic CD8+ T cell “finishes the job” after recruitment to the
target organ via NK-mediated pathways. It has been hypothesized
that the CD4+CD25+ regulatory T cells regulate NK cells’NKG2D
expression via a TGF-b-dependent pathway. A disruption of said
pathway may lead to the upregulation of this activating receptor
(40, 41). If this inhibitory signaling is outpaced, a clear imbalance
A

B

C

FIGURE 1 | Hypothetical process for NK mediated b cell destruction and subsequent autoimmune T cell reaction following viral infection in pancreatic tissue:
(A) Natural Killer cells express several activating (NKp46, NKG2D, some KIRs) and several inhibitory (CD94/NKG2A, KLRG1, KLRB1, some KIRs) receptors for
ligands which can be expressed at varying levels on b cells during normal stasis. Ligands include the inhibitory set of MHC-I molecules (e.g. HLA-E) and the
activating inducible MIC A/B molecules, constitutively expressed RAE-1/ULBP, and the unknown ligand for NKp46 (B) Viral infection leads to NK activation, cytokine
release, whereby adaptive immunity is recruited and NKs degranulate, killing infected cells (C) If the viral infection is at low-level, persistent, or the virus is able to use
evasive or immunosuppressive tactics, the NKs will not react appropriately and the immunoregulatory feedback does not occur, leading to exhausted or
hyporesponsive state and b cell destruction by autoimmunity.
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results. In developing cases of latent diabetes, therefore, a treatment
to prevent total islet destruction may be possible. For instance, the
monoclonal antibody drug Monalizumab, which targets the
inhibitory natural killer cell receptor NKG2A, is currently under
clinical investigation for use in the treatment of some cancers and
autoimmune conditions like RA (119). An analog targeting the
NKG2D receptor may be useful in terms of preventing the full
transition to insulin dependent type 1 diabetes when administered
early in disease progression. In a clinical trial evaluating
hematopoietic stem cell transplantation to treat T1D, patients
that required lower exogenous insulin saw increased TGF-b and
IL-10 immunoregulatory and decreased IFN-g, IL-2 inflammatory
cytokines (120).

Immune Checkpoint Inhibitor Diabetes
ICI chemotherapy (immunotherapy) is a recently approved
cancer treatment (121), but there are non-phenomenological
case reports and clinical reviews that definitively demonstrate
immune-relatedadverse events (IRAEs) leading to thedevelopment
of diabetes or at the very least diabetic ketoacidosis (122–125).
Although the cause of diabetes or other autoimmune side effects in
these cases does not coincide with the paradigm of normal
pathogenesis of the disease, it is worthwhile to briefly examine
how the two are related, especially within the context of
participating immune cells. In the case of programmed death-1
(PD-1) inhibitors, the prevailing therapy associated with these
outcomes (124), their mechanism of is to bind to the
transmembrane protein located on the surface of activated T cells
in order to block the “hand-shake” interaction with its associated
ligands, PDL-1/2. This interaction limits autoimmunity during
inflammatory responses. As a result, activated T cells can directly
target the proliferating tumor cells, and to the detriment of a very
small number of patients (~1%) act upon the b cells of the pancreas
leading to diabetes development. It is possible the susceptibility is
genetic and related toalteredor loweredPD-1expression that is also
observed in T1D patients (126–128). However, the fact that these
patients who developed diabetes only after immunotherapy
treatment were of relatively advanced age, and in many cases had
disease reversal upon cessation of treatment suggests that the PD-1
related susceptibility is not sufficient in and of itself for developing
disease. Once again, a role for regulatory immune cells, like theNKs
alluded to above, may prevent this effect from beingmore common
among ICI patients and treatments utilizing transformed NKs are
becoming more acceptable (129).

Gut Microbiome
Although the implications of the health of gut microbiota
sometimes stretch further than what is empirically proven, it is
obvious that there is a potential role for the microbiome in
autoimmunity and even the development of T1D. Several
reviews poring over the mechanistic and genomic details that
underpin the relationship between the two are available (130–132).
For the sake of brevity, we highlight a few important studies that
complement the pathology described above. Some early evidence
exemplifying the role of environment and microbiome in animal
model studies was that the incidence of NOD mice developing
diabetes is drastically increased when raised in completely “germ-
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free” environmental conditions (133, 134). In a separate study,
NOD mice given an intraperitoneal administration of a bacterial
extract containing a cocktail of bacteria that cause respiratory tract
infections either prevented or delayed the onset of disease (135).
The effect was neutralized by administration of anti-TGF-b
antibody, suggesting a role for and potential increase in
concentration of this regulatory cytokine after extract
administration. It was suggested that the pathway would involve
NKT cells, but Cd1d-/NODmice did not showmuch difference in
their response. As mentioned above and in ref (40), it is thought
that TGF-b mediates the expression of NKG2D on natural killer
cells, naturally modulating their innate immune activity toward
potentially infected or transformed cells. This suggests the extract
may supplement natural TGF-b production needed to suppress
NKG2D receptor activation, attenuating NKs that may otherwise
target b cells. Further study should target NK deficient animal
models instead to pin down the culprit immune cell(s).
DISCUSSION

The development of autoimmune diabetes is generally thought to
progress as follows. A susceptible person has at most minor
abnormalities in the number and phenotype of immune cells
such as NKs as a result of genetic and/or environmental factors
(e.g. microbiome activity, endogenous virus, epigenetic regulation).
An external stimulus – most likely viral infection – is key in
precipitating a peripheral immune reaction that leads to
formation of autoreactive T cells and antibodies that ultimately
leads to the destruction of the functional pancreatic islet cells and
necessitation of insulin dependence. NKs are involved at an early
stage, where external stimulus takes place and peripheral tolerance
breaks down. The receptors aswell as their ligands that are involved
in NK activation are both aberrantly activated, and b cell attack
becomes inevitable. It should be emphasized that this represents the
collapse of a very fragile balance, where the combination of several
small factors exponentially precipitates into a catastrophic event.
The existence and rarity of late-onset autoimmune diabetes
exemplifies this fact, as avoiding the confluence of these small
events late into adulthood is highly unlikely.
IMPLICATIONS FOR TREATMENT
AND CONCLUDING REMARKS

Inmanyof the studiesdiscussedabove, thenatural assumptioncanbe
made that only preemptive surveillance and hypervigilance would
make it possible to prevent the development of T1D. After the initial
signs of b cell loss, it seems that there is little that can be done to
reverse its course outside of auto/allo-transplantation of functional
tissue under the blanket of systemic immunosuppression.
Unfortunately, that limits the clinical reach of T1D treatment to
patients with severe hypoglycemic unawareness. Refinements in
donor islet and stem-cell derived tissue implantation have come a
longway and increased the available tissue source.Additionally, there
is a concerted effort to eliminate systemic immunosuppression with
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efforts targeting localized delivery of immune modulatory agents
coupled with immune evasion through encapsulation and/or genetic
manipulation. While currently in their infancy, immune cell
therapies could one day play a role as well, still requiring further
study before clinical applications could be explored. Through a
detailed study and understanding of the progression to T1D onset,
it may be possible to develop prevention strategies without undue
burden of painstaking surveillance. Routine genetic screens are now
commonplace for many hereditary diseases and adding another
T1D-specific panel would not be prohibitively costly. Also, with
emerging scientific consensus on the importance of a healthy gut
microbiome as an environmental factor, strategies to improve gut
health would be easy to implement.

Although it is still a subject of ongoing investigation, the defining
picture of T1D autoimmunity is becoming clearer, albeit perhaps
more complex than originally thought. Conflicting results that arise
from a limited pool of samples, sample selection, stage of disease,
etc, and inappropriate in vitro or in vivo models have confounded
progress. However, recent research efforts to expand sample
availability and collaborative efforts, such as the JDRF-nPOD,
have accelerated discovery on many fronts. As it stands today, it
is becomingly increasingly obvious that the progression of T1D
occurs because of improper activation and dysregulation of the
immune system starting with natural killer cells and viral infection.
In this review, we focused on the topic from the standpoint that the
Frontiers in Immunology | www.frontiersin.org 9
primary breakdown occurs at peripheral immune tolerance, as
brought out by a dysfunctional set of primarily pro-inflammatory
natural killer cells that precipitates the adaptive response and auto-
immunity characterized by the disease. The reason for this
breakdown is hypothesized to be a combination of the
overexpression of activating receptors/ligands ascertained from
genetic risk factors, lack of immunosuppressive support from the
microenvironment, a likely viral triggering event. For the next steps,
a method by which to recognize the early signs of this action and
slow or halt its progression will be an ideal treatment to put an end
to this pandemic.
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