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The nematode Caenorhabditis elegans explores the environment using a combination of different movement patterns, which include
straight movement, reversal, and turns. We propose to quantify C. elegans movement behavior using a computer vision approach
based on run-length encoding of step-length data. In this approach, the path of C. elegans is encoded as a string of characters, where
each character represents a path segment of a specific type of movement. With these encoded string data, we perform k-means clus-
ter analysis to distinguish movement behaviors resulting from different genotypes and food availability. We found that shallow and
sharp turns are the most critical factors in distinguishing the differences among the movement behaviors. To validate our approach,
we examined the movement behavior of tph-1 mutants that lack an enzyme responsible for serotonin biosynthesis. A k-means cluster
analysis with the path string-encoded data showed that tph-I movement behavior on food is similar to that of wild-type animals

off food. We suggest that this run-length encoding approach is applicable to trajectory data in animal or human mobility data.

1. Introduction

C. elegans is an important genetic model organism relevant
to human biology and disease, as its genome is surprisingly
similar to that of humans (40% homologous) [1]. Genes
encoding tryptophan hydroxylase, which is the key enzyme
for serotonin biosynthesis, are conserved in human and C.
elegans [2]. The biogenic amine serotonin acts in C. elegans to
modulate behaviors such as egg-laying, pharyngeal pumping,
locomotion, and learning in response to changing environ-
mental cues [3]. Variants in human tryptophan hydroxylase
are associated with a spectrum of neuropsychiatric disorders,
including depression, bipolar disorders, and suicidality [4].
Therefore, by comparing the locomotory behaviors of C.
elegans wild-type and tph-1 animals under two different
conditions (in the presence and absence of food), we expect to
gain insights into understanding how certain genes influence
human emotional and congenital disorders.

C. elegans locomotory behavior can be recorded and
analyzed using computer vision and machine learning
approaches. Several worm trackers have been developed to

analyze worm behavior in different scenarios such as for
recording multiple worms at the same time [5], imaging of
specific neurons [6-8], and recording of single animals that
are freshly removed from bacterial food, particularly over a
long period of time [9]. Video data recorded with the trackers
can be further analyzed by quantifying the differences in the
worm body and movement characteristics. The differences in
these characteristics allow comparing food search behavior
across different types of worms and understanding what
genetic mutation produces a certain defect in the worm
movement. In this study, we (1) quantify the path of a worm as
a string of symbols where each symbol represents a segment
of a certain type of movement (shallow or sharp turn) and (2)
learn the similarities and differences in C. elegans locomotory
behaviors by comparing their string-encoded path data.
Previous C. elegans studies on the neurotransmitter sero-
tonin focus on its role in the regulation of mating, egg-laying,
fat storage, reproductive lifespan longevity, and locomotory
rate. For example, C. elegans males with reduced serotonin
levels exhibited defects in tail-curling behavior during mating
[10]. A similar observation was made in wild-type males in
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FIGURE 1: Run-length encoding descriptor extraction: (a) video data for one worm tracking recording; (b) segmented images with worm
body pixels shown in white; (c) worm body centroid extraction; (d) step-length, angle, and speed feature extraction; (e) movement pattern
discovery (1 and 2 symbols represent the encoding of the path using clustering); (f) extraction of run-length encoding descriptors.

which serotonergic neurons were ablated. Serotonin signaling
in C. elegans regulates the function of serotonergic motor
neurons that stimulate egg-laying behavior [11]. In particular,
serotonin was hypothesized to control a switch between two
distinct on/oft states of egg-laying behavior [12]. Further,
serotonin modulates C. elegans locomotory rate in response
to bacterial food differently for the well-fed and food-
deprived wild-type animals [13]. It is also known that well-
ted tph-1 mutants exhibit changes in behavioral and metabolic
processes similar to those caused by starvation: slower rates
of egg-laying and pharyngeal pumping, dauer larval arrest,
increased fat storage, and an extended reproductive lifespan
[2]. Furthermore, a recent study showed that serotonin
signaling regulates on food explorative behavior; lack of
serotonin signaling increases roaming and decreases dwelling
[14]. However, it is still not clear how wild-type and tph-1
mutant animals compare in off food conditions, particularly
with respect to their overall movement paths.

The study of C. elegans movement paths is focused on
foraging speed, tail motion, crawling, and a specific posture in
the movement of the worm. For example, Padmanabhan et al.
studied bends during reversing [15], while Gray et al. focused
on omega turns [16]. To date, there has been no research
focusing on encoding and analyzing the whole path of C.
elegans. In our paper, we propose to encode the path using
run-length encoding, which is a data compression algorithm
for sequences of data developed by Duda et al. [17] and extract
a set of features that will quantify the characteristics of the
path. Run-length encoding has been used in 2D and 3D image
texture analysis to quantify texture information and improve

image classification accuracy. For examples, Tang [18], Xu
et al. [19], and Martinez [20] have also applied run-length
encoding in data compression, such as the compression of
images, sound, and program code.

Path analysis can be also used to find patterns in human
mobility. For example, human flight length can be recorded
and calculated from GPS services; Rhee et al. showed that the
analysis of the distribution of the flight lengths of a walking
path shows that human walk patterns contain statistically
similar features observed in Lévy walks [21]. In our paper,
by encoding the path with the clustering sequence on three
feature variables derived from each video, we are able to
generate features for each worm for further analysis. These
results can be generalized to human locomotion, as well as
technological advances such as self-driving cars.

2. Materials and Methods

Our proposed methodology is based on both computer vision
and machine learning components to quantify and compare
C. elegans locomotory behavior. The raw data consists of
image frames from the videos we record with our in-house
built worm tracker [9]. The path of each worm is generated
from the worm body centroid location in each frame. We
propose to (1) encode each path as a string of movement pat-
terns detected using clustering, (2) compress each path string
using run-length encoding, (3) extract run-length descriptors
that characterize the frequency and order of the detected
movement patterns, and (4) use the run-length descriptors
to understand the similarities in the locomotory behavior of
wild-type N2 and tph-I worm data. Figure 1 illustrates the
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FIGURE 2: Path similarity: clustering is applied on the worm data in which each video is encoded as a set of run-length encoding descriptors.

The result consists of groups of worms that follow similar paths.

process of extracting the run-length encoding descriptors
and Figure 2 illustrates the path similarity approach based on
these descriptors.

2.1. C. elegans Data and Feature Extraction. Two types of C.
elegans worm data, N2 and tph-1, are collected using our in-
house built tracker, which records the movements of single
animals at 30 frames per second [9], under three different
conditions: on food (N2_f and tph-1_f), off food (N2_nf and
tph-1_nf), and previously starved when placed on a plate
without food (N2_nnf; the last condition was experimented
for N2 wild-type worms only). Section 3 presents our findings
based on 57 video recordings: 4 N2_f; 33 N2_nf, 2 N2_nnf; 13
tph-1f, and 5 tph-1_nf.

For each video (see example in Figures 1(a) and 1(b)),
the following features are extracted based on the worm body
centroid position data (C,, C,): step-length L (mm), angle o
(degree) between two steps, and speed v (mm/s) along the
step. Rather than working with all the centroid points on the
worm path, we divide the path into a series of line segments
called “steps” and use the step-length data to quantify the
path and infer patterns in search behavior. First, we sample
the centroid coordinates of the worm (C,, Cy) at a regular
time interval At = 1sec forming a dataset of [£;,C, ,C, ]
values (Figure 1(c)) where time t; = At * i and i denotes
the ith point on the sampled path at a time rate of At.
The sample time interval can be adjusted to balance noise
reduction and data fidelity. Second, a “turning event” (TE)
is identified at a specific [t;, C, , C,, ] if the current movement
heading deviates by more than some threshold angle ® from
the heading at the previous turning event. Studies show that
the head angles of wild-type animals moving in a straight
direction fluctuate between —30 and 30 degrees. We found
experimentally that an angle ® of 40 degrees is the best
tradeoff between the correct sampling of the path and the
predictive modeling power of the generated step-length data.

Therefore, a new subsample of centroids (Figure 1(d))
is generated from the sampled path, containing only the
centroid locations for the turning events [TE;, C, ,C, ]. Note
that the first centroid location of the worm [£},C, ,C, ] is

considered to be the initial turning event [TE,,C, ,C, ].

Xg°

Once the turning events are identified, a step is defined
as a line segment between two consecutive turning events
[TEj_l, iji1 s CyH] and [TEj, ij, Cyj]. The step-length is the
displacement between the two turning events forming that
step. The angle feature oc between two steps is defined as the
degree between two movement steps joining three successive
turning events, and the speed is calculated by taking the
displacement between the two consecutive turning events
forming the step and dividing by the interval of time taken
to travel that step.

At the end of this feature extraction stage (Figures 1(a)-
1(d)), each worm path is represented as a sequence of steps of
different lengths that form different angles and are traveled
at different speeds. A min-max normalization approach is
further applied on the feature data to ensure that all variables
have equal importance in determining the patterns along the
worm path.

2.2. Worm Path Encoding as a String of Movement Patterns.
To further quantify the worm path, we investigated the
similarity among the steps in terms of their lengths, angles
they form, and the speed at which they are traveled. We
applied k-means clustering approach [17] with the Euclidian
distance as the similarity measure and then analyzed the
obtained clusters to find insights about any existing pattern
characteristics of the worm paths. We varied k, the number of
clusters, from 2 to 5 and chose the one that generated the best
classification results where each cluster was associated with a
class of movement patterns. The classification and regression
trees (CR&T) approach [22] was applied to validate the choice
of k using a holdout partitioning to divide the data into
training and testing.

Our results showed no difference in the classification
accuracy when varying k and, therefore, we hypothesize that
the path discretized through steps can be simply further
encoded as a string of two symbols, where each symbol
represents a cluster of a certain movement pattern (Fig-
ure 1(e)). A test of significance was then applied to verify the
differences between the two clusters with respect to the step
data. The angle oc between two steps was found to be the most
significant in differentiating the clusters (Table 1): cluster “1”
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TABLE 1: String symbols definitions resulting from k-means clustering (k = 2).
Cluster symbol Cluster name Significant feature Movement pattern path encoding
1 Sharp turn o < 90 See Figure 4
2 Shallow turn oc > 90°
TaBLE 2: Four run-length encoding matrices.
Matrix Example (using N2_fI)
1 2 3 45 7 89 10 11 12 13 14 15 16 17 18 19 20 21
IMF 1119 71 19 135 3 1 00 0 0 0 0 0 0 0 0 0 0 0 O
2176 66 29 20 9 14 6 1 012 01O0O0O0T1 01
1 2 3 4 5 6 78 91011213 14 15 16 17 18 19 20 21 22 --- 37
AMF 17119 71 19 13 5 3 1 00 0 0 0 0O 0 O O O O O O O O O O
2176 66 29 209 146411 01 2 01 00 O0T1 01 0 0 O
1 2 3 4 567
BAMEF 11119 71 19 22 0 0 O
2176 66 29 53 6 2 0
1 2 3 6 13 22 36
BAAMF 1/119 71 19 22 0 0 0
2176 66 29 53 6 2 0

was representative for angles smaller than 90 degrees and
revealed the “sharp turn” movement pattern while cluster “2”
was representative for angles larger than 90 degrees which
corresponded to “shallow turn” movement patterns.

Identifying and quantifying these two types of turns
are important in a variety of behaviors in the presence
and absence of any external stimuli since the worm uses
shallow turns to follow sensory information effectively [23-
25]. However, only few studies have experimentally and
theoretically characterized the shallow turns and quantified
their occurrences [26].

2.3. Run-Length Encoding Description of C. elegans Movement
Path. The symbol-based encoded path is further quanti-
fied based on a run-length encoding approach [18] that
quantifies the frequency of symbols as well as the order in
which they appear. For example, for a sequence of sym-
bols “22122221222...,” the run-length encoding will be a
sequence of pairs “(2,2)(1,1)(2,4)(1,1)(2,3)....”
Based on the run-length encoding results for each video,
a run-length encoding matrix is generated:
P (i, j)i:y--k,j:lmp = frequency (i, ). 6))
The rows i represent the symbols, columns j represent the
unique frequencies that symbol i shows up in the sequence,
and P(i, j) is the count of how many times symbol i shows
up for j consecutive times in the sequence. Matrix P(i, j)
can be generated in different ways depending on how the
maximum value of j, denoted by p, is calculated: (1) p is the
Maximum Frequency for Individual video data (Matrix IMF);
(2) Maximum Frequency across All videos (Matrix AMF); (3)

Binned and Maximum Frequency across All videos (Matrix
BAMF), and (4) Binned, Averaged, and Maximum Frequency
across All videos (Matrix BAAMEF). Table 2 shows an example
of these four matrices for one of the worm paths.

The four run-length encoding matrices are Row I:
size(IMF) = 2 x 21 (21 is the length of the longest sequence
of symbols for one worm path); Row 2: size(AMF) = 2 x 37
(37 is the length of the longest sequence of symbols across all
worm paths); Row 3: size(BAMF) = 2 x 7 (7 is the number
of bins in which the lengths were discretized: 1 =1, 2 = 2,
3=3,4=4--8,5=9---16, 6 =17---32, and 7 = 33---37);
Row 4: size(BAMF) = size(BAAMF) rather than representing
j as the next available index; here it is represented by the
average length within the corresponding bin. The benefit of
having AMF versus IMF is that it takes into account the fact
that videos have different lengths of time. Furthermore, by
binning the lengths, we reduce the sparsity of the run-length
encoding matrices as sequences with higher lengths will have
less frequency values.

The run-length encoding matrix is further used to extract
descriptors using an approach similar to [18] rather than
encoding the texture information of an image we propose
to encode the frequencies and orders of pattern movements
(symbols) of a worm path. The definition of the proposed
path descriptors (Table 3) involves four important concepts:
short run, long run, low angle level, and high angle level.

Short run encoding (SRE) means that the same symbol
is repeated shortly and quickly changes into another value;
long run encoding (LRE) means the same symbol is repeated
for a long time before changing into another value; low angle
encoding (LAE) means the angle between two steps is less
than 90 degrees (represented by cluster “1” and defined as
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TABLE 3: Run-length encoding descriptors.

Formula

Description
M N D (i, 7)
Z Z 7 Short run encoding (SRE) measures the distribution of short runs
n, i= 1 ] 1
LRE = ZP (ij)* j° Long run encoding (LRE) measures the distribution of long runs
n, i=1 j=

1
M N

LARE = — ZZP )
]1

711

Low angle run encoding (LARE) measures the distribution of the small angles

HARE = ZP i, j) = i° High angle run encoding (HARE) measures the distribution of the large angles
n, i=1 ] 1
SRLAE = ZZ Pz (i ) Short run low angle encoding (SRLAE) measures the joint distribution of short runs and sharp
r11]1’ * 2 turns
M N
SRHAE = Z z P (i, ] ) * i Short run high angle encoding (SRHAE) measures the joint distribution of short runs and shallow
n T4 turns
M Np(;

LRLAE = ZZ

711]1

Large run low angle encoding (LRLAE) measures the joint distribution of large runs and sharp
turns

Large run low angle encoding (LRHAE) measures the joint distribution of large runs and shallow

LRHAE = P(i, j) # i «
,21: JZ; ) 7 turns
M
1 -
ALN = n z (ZP (i.j )) Angle level nonuniformity (ALN) measures the similarity of angle level distributions
ri=1 \j=1
| N (M 2
RLN = n z <ZP (i, j )) Run length nonuniformity (RLN) measures the similarity of run length distributions
j=1 \i=1
n?’
RP = o Run Percentage (RP) measures the homogeneity of the distribution of runs
2

a sharp turn); and high angle encoding (HAE) means the
angle between two steps is more than 90 (represented by
cluster “2” and defined as a shallow turn). Using these
concepts, we extract eleven path descriptors quantifying the
turns and reversals’ frequencies and their orders. Table 3
provides the formulas and descriptions where M is the
number of symbols found using clustering (Section 3.2), N
is the maximum run length, n, is the total number of distinct
run lengths, and 7, is the number of total step-lengths.

2.4. Path Similarity Analysis. Once the path is decomposed
into the basic locomotory gaits and transitions between
them, the decomposition can be used to understand how
animals respond to their environment through movement. In
particular, since turning is a fundamental way by which C.
elegans reorients itself in response to the presence or absence
of external stimuli, we propose to use the RLE (run-length
encoding) descriptors associated with the symbol-encoded
paths to understand how C. elegans wild type and tph-1
behave in the presence and absence of food.

To find the similarities and differences among different
search behaviors, we apply k-means clustering approach on
the C. elegans data encoded using the set of eleven RLE
descriptors. Given the five different types of experiments
(N2_f, N2_nf, N2_nnf, tph-1f, and tph-I_nf), we began k-
means clustering with k = 5 and then gradually reduced the

value of k. The analysis of each cluster will then show which
C. elegans paths are similar as a function of turn type as well
as turn type’s frequency and order.

Table 4 shows examples of paths for either low or high
values of these descriptors to exemplify how the differences
in the descriptor values can help differentiate among different
worm paths. Since some of these descriptors are correlated
with each other, a data redundancy step is applied on the
descriptor data to diminish the effects of this redundancy on
the next stage of finding path similarities.

3. Results and Discussion

3.1. Encoding the Path as a Sequence of Symbols Using
Clustering of Step Data. The path was decomposed into steps
as described in Section 2.1, resulting in 30,125 steps across
all 57 videos for the two types of worms under different
food conditions. k-means algorithm was applied on the step
data (step length, turning angle, and speed along the step)
and the number of clusters k was varied from 2 to 5 (as
described in Section 3.2). Table 5 shows the characteristics of
the clusters for each value of k. While the values of the step-
length data overlap for length and speed across the clusters
for each value of k, the angle clearly differentiates between
the types of clusters. To validate the clustering results and
the selection of k, we performed a decision tree classification
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TABLE 4: Path sequences that illustrate different values for the RLE descriptors.

Example of paths Description

/2

Small Short Run Emphasis (SRE)
Large Long Run Emphasis (LRE)

Path subsequence: 1111---2222---22

Large Short Run Emphasis (SRE)

Small Long Run Emphasis (LRE)
Large Low Angle-Level Run Emphasis (LARE)
Small High Angle-Level Run Emphasis (HARE)

Small Short Run High Angle-Level Emphasis
(SRHAE)

Large Long Run Low Angle-Level Emphasis
(LRLAE)

Path subsequence: 121121121

TABLE 5: Step data ranges for clustering results when the number of clusters k is varied from 2 to 5.

Number of clusters Cluster ID Angle (degree) Step length (mm) Speed (mm/s)
k=2 Cluster 1 0~84.32 0~23.84 0~8.49
Cluster 2 82.64~180 0~32.21 0~1.94
Cluster 1 0~53.08 0~23.84 0~8.49
k=3 Cluster 2 52.16~116.87 0~32.21 0~6.56
Cluster 3 116.2~180 0~16.84 0~1.34
Cluster 1 0~35.91 0~23.84 0~1.48
k=4 Cluster 2 126~180 0~16.84 0~1.32
Cluster 3 35.34~77.21 0~17.87 0~8.49
Cluster 4 77.21~126.43 0~32.21 0~1.94
Cluster 1 0~31.29 0~23.84 0~1.48
Cluster 2 146.1~180 0~16.84 0~1.32
k=5 Cluster 3 106.3~146.1 0~15.65 0~1.34
Cluster 4 68.02~107.15 0~32.21 0~1.94

Cluster 5 30.46~68.04 0~17.87 0~8.49
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FIGURE 3: Step data distribution for k = 2: (a, b) represent histograms for step-length and speed, for cluster 1; (¢, d) represent the same features
for cluster 2; the mean value for each cluster is also represented as a thin blue vertical line.

approach and recorded the accuracy of each of the four
classifiers (one classifier for each value of k) in predicting the
classes associated with the clusters. In all four scenarios, the
classification accuracy was 99% meaning that, based on the
angle feature, the step data can be clearly divided into 2, 3, 4,
or 5 groups of turning angles.

In this study, we decided to choose a coarse level of
granularity in quantifying the path movement patterns based
on the step-length data by putting the data into two categories
(k = 2) and show that the two identified turning patterns
are important in differentiating behavior in the presence and
absence of food. We noticed that when k = 2 (Table 5), the
two clusters represent two movement patterns, shallow and

sharp turns, characterized by angles less than 90 degrees and
angles larger than 90 degrees, respectively. In other words,
cluster symbol “1” will denote a sharp turn defined as an angle
between two consecutive steps being less than 90 degrees and
cluster symbol “2” will denote a shallow turn defined as the
angle between two consecutive steps being larger than 90
degrees. Within each of the two clusters, although there is a
significant overlap between the ranges for speed and length,
we noticed that cluster “1” had larger values for its outliers
with respect to speed and cluster “2” had larger lengths for
its step data (Figure 3). In other words, there are some sharp
turns that are executed at higher speeds and some shallow
turns that correspond to larger steps.



TABLE 6: Selected feature for each type run-length encoding matrix.

Type of RLE matrix Selected descriptors
IMF RP, LRHAE, ALN, SRHAE
AMF RP, LRHAE, ALN
BAMF RP, ALN
BAAMF RP, LRHAE, SRHAE
IMFL RP, SRE, ALN
AMFL RP, ALN

FIGURE 4

3.2. Run-Length Encoding Descriptors. The symbol-encoded
paths of Is and 2s were further encoded using the run-
length encoding approach presented in Section 3.3. Using
(1) we generated four run-length encoding matrices (IME
AME BAME and BAAMF) and two additional matrices that
were the logarithm transformation of the matrices IMF and
AME. For each RLE matrix, we extracted the set of eleven
run-length encoding descriptors (using the formulas from
Table 3) and analyzed the power of these descriptors in
differentiating between N2 and #ph-1 on food and off food.
As some of the 11 features are highly correlated, to reduce the
redundancy of the data, we performed a correlation analysis
for each set of descriptors and kept only the descriptors with
correlations smaller than 0.9 for further analysis. Table 6
shows that only five RLE descriptors can be used further to
learn the similarities among the different types of worms and
food conditions.

3.3. Clustering of C. elegans Using RLE Descriptors. The C.
elegans data was grouped into five clusters using all eleven
features and the selected set of features for each one of the
six RLE matrices. The analysis of the clustering showed the
same groupings for the 57 videos regardless of the calculation
of the RLE matrix and the use of all or reduced set of RLE
descriptors. Therefore, we present in Table 7 the results for
one of the combinations, BAMF matrix and its two selected
RLE descriptors, RP and ALN.

The results show that, using the RLE descriptors, we are
able to separate 75% of the N2 on food data (cluster 5) from
all the other C. elegans data. In addition, N2 off food data are

Computational and Mathematical Methods in Medicine

relatively well clustered together with tph-1 off food data in
cluster 1 and cluster 3. Most importantly, 100% of the tph-1 on
food data is grouped with 64% of N2 off food data (clusters
3 and 4). Our observation of tph-I mutants, which fail to
produce serotonin, suggests that tph-I mutants continue food
search behavior even on food. 100% of the tph-I off food data
were also grouped with 91% of the N2 off food data across
three clusters (clusters 1, 2, and 3). These observations show
that tph-1 mutants either on food or oft food behave like wild-
type off food animals. Interestingly, through our approach
we were also able to distinguish between the two differently
collected N2-nnf data, one in which the worm was starved for
a longer period of time.

4. Conclusions

In this study we aimed to quantify the movement behaviors
of wild-type N2 and tph-I mutant animals, so that we
could identify if tph-1 mutants show defects in foraging and
food search behaviors. By encoding worms’ path, extracting
features for each worm, and performing clustering analysis,
we conclude that the locomotory behavior of tph-1 on food
resembles the wild-type N2 animal off food. In addition,
we found that five of the eleven RLE descriptors can be
used to efficiently represent the path characteristics for C.
elegans data. Our unbiased, unsupervised analysis provides
evidence that shallow and sharp turns are the most critical
factor that distinguishes C. elegans movement behaviors in
the presence and absence of food. This finding is surprising
in that we expected that based on previous studies speed is
one of the important factors that determine on food and oft
food behaviors [13, 16].

As future work, we will investigate the relationships
among the C. elegans data when encoding the path with more
than just two movement patterns. We will look into the cluster
patterns formed for larger values of k and identify subcluster
patterns within the two identified patterns. For the latter, we
expect that, for example, if duration of a traveling a step will
be important, we can further refine the turns into either short
or long turns. We will be also looking into other similarity
metrics for the clustering approaches. While we normalized
the features individually to the range 0 to 1 using the min-
max normalization and then used the Euclidean distance,
we have not accounted for the fact that one of the features
is an angular component. We will address this limitation by
designing a combined similarity metric that will include a
cosine similarity metric for the angular component similarity
comparisons.

While the RLE descriptors provide important informa-
tion about the distribution of different path characteristics,
the time-component is not integrated in the analysis. To
address this limitation, our future work will include the
investigation of dynamic time warping (DTW) to compare
C. elegans paths encoded through sequences of pattern
movements. Furthermore, we will be looking into the gen-
eralizability of the proposed approach to other domains that
make use of trajectory data such as for animal or human
mobility studies based on GPS data.
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TABLE 7: Cluster makeup based on RLE descriptors; each cell number represents the ratio between the number of worms of a specific type
that fall under that cluster and the total number of worms in that cluster; the numbers in parentheses represent the ratio between the number
of worms of a certain type which fall under that cluster and the total number of worms of that type.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total # of videos
N2_f 0 0 0 0.12 (25%) 1(75%) 4
N2_nf 0.84 (33%) 0.5 (3%) 0.58 (55%) 0.38 (9%) 0 33
C. elegans data N2_nnf 0.08 (50%) 0 0.03 (50%) 0 0 2
tphl_f 0 0 0.29 (69%) 0.5 (31%) 0 13
tphl_nf 0.08 (20%) 0.5 (20%) 0.10 (60%) 0 0 5
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